

Med
K53090

Crancis. If. Mitlla
q Ynewer Street
Golden Squara
(Vondon

ANATOMY -

THE HORSE,

EMBRACING THE

STRUCTURE OF IHE FOOT.

BY

WJLLIAM PERCIVALL, M.R.C.S.,
Late veterinary surgeon in the first life guards; and AUTHOR OF ' LECTURES ON HORSES.'

Abstract

"Anatomy may be estecmed the very basis of medicine and surgery. Without a knowledge cf anatomy, we fecl ourselves incompetent to treat the most common surgical case. And in the majority of instances in which a member of our profession has disgraced himself, it may be traced to his ignorance of this foundation of his art."-Carmichael's Lectures.

LONDON:

LONGMAN, BROWN, GREEN, LONGMANS, AND ROBERTS.

 BA:THOLOMFW Cs Osr.

PREFACE.

Among the modern veterinary works published in our own country, that there should not be one exclusively devoted to the science of anatomy, will not appear altogether so surprising when we come to consider the opportunities of place and circumstance required to cultivate this study; the unwearied assiduity and labour incumbent upon any chance of success; and, after all, the probable umprofitableness of such a work in the book-mart: for (to echo the sentiments of Sir Charles Bell, our highly distinguished physiologist) the public really do not comprehend the importance of anatomy as a science.

In the composition of the present work (parts of which have already made their appearance in 'The Veterinarian,') the Veterinary Lectures, formerly published by the Author, have been freely drafted from: at the same time, the old matter has undergone much revision, correction, and emendation, and has been altogether fresh cast - has been, in fact, arranged in a systematic form: a plan, the Author is induced to hope, that may tend much to facilitate the progress of the student. On points obscured by any doubt or mystery, the Author has consulted the most eminent continental veterinary authorities; above all others, the
work of M. Girard, Director of the Veterinary School at Paris. And in framing his nomenclature in accordance with that in use among human anatomists, the Author has availed himself of the products of the labours of his own countryman, the clever and indefatigable Stubbs. To Mr. Bean, also, who aided him in the dissection of the nerves ; and likewise to Mr. Smith, for an account of the car, the Author begs to kindly acknowledge his obligations.

That many, very many discoveries, and most important and valuable ones too, yet remain to be made through anatomical research, no one conversant in the science will pretend to gainsay; and that they, in the progress of time, will come to light, and redound amply to the credit of those who may elicit them, is no less the firm persuasion than the fervent hope of the Author of the work herewith offered to the profession.

CONTENTS.

Page
Introduction xi
Section I.-Osscous System.
Of the skeleton 1
Tabular enumeration of the bones 3
Terms used in descriptive anatomy 4
Bones of the trunk ib.
Bones of the head 19
Bones of the extremities 4.8
Section II-Muscular System.
Of the muscles. 75
Table of the muscles. 76
Cutaneous muscles 82
Muscles of the head 84
Muscles of the trunk 103
Muscles of the extremities 133
Section III.-Circulatory System.
Of the blood 163
Of the heart and pericardium 172-173
Of the blood-vessels 176
Of the arteries ib.
'Table of the arteries 177
Description of the arteries 179
Of the veins 207
Table of the veins 208
Description of the veins 210
Section IV.-Respiratory System.
Of the larynx 221
Of the trachica 223
Page
Of the thyroid glands 226
Of the lungs and pleura ib.
Pleura 227
Lungs 229
Section V.-Digestive System.
Of the mouth 234
Of the tongue 237
Of the salivary glands 239
Of the pharynx 240
Of the cesophagus 241
Of the abdomen 242
Peritoneum 243
Of the situation of the viscera of the abdomen. 245
Of the reflection of the peritoneum 24.8
Of the stomach 249
Of the intestincs 253
Of the liver 259
Of the splcen 262
Of the pancreas 263
Section VI.-Absorbent System.
Of the absorbents 265
The thoracic duct 267
Receptaculum chyli 268
lyymphatics discharging themsclves into the abdominal (thoracic) duct ib.
fymphatics discharging themsclves into the thoracic duct itself 271
Section VII.-Urinary System.
Of the kidneys 273
The ureters 277
Of the capsulæ renales 278
Of the bladder 279
Section VIII.-Generative System.
Male organs of gencration 282
Of the testicles and scrotum ib.
Of the vesicule seminales 291
Page
Of the penis 292
Of the prostate glands 298
Female organs of generation 299
Of the vulva ib.
Of the clitoris 300
The meatus urinarius 302
Of the uterus 303
Of the Fallopian tubes 305
Of the fimbrix 306
Of the ovaries ib.
Of the udders 307
Section IX.-Nervous System.
Of the brain 310
Dura mater 311
Pia mater 313
Membrana arachnoides 314
Brain ib.
Cerebrum 316
Cerebellum 322
Base of the brain 324
Medulla oblongata 325
Pituitary gland ib.
Of the spinal marrow ib.
Of the nerves 328
Table of the cerebral nerves 332
First pair, or olfactory nerves 335
Second pair, or optic nerves ib.
Third pair, or motores oculorum 336
Fourth pair, or pathetic ib.
Fifth pair, or par trigeminum ib.
Sixth pair, or abducent 339
Seventh pair, or auditory 340
Eighth pair, or par vagum 341
Accessory uerves to the eighth pair 344
Ninth pair, or lingual ib.
Tenth pair, or sub-occipital 345
Spinal nerves ib.
Cervical nerves 346
Dorsal nerves 348
Lumbar ncrves 350
Page
Sacral nerves 351
Coceygeal nerves 352
Nerves of the fore extremity ib.
Nerves of the hind extremity 355
Sympathetic neive 357
Section X.-Sensitive System.
Of the nose 362
Nasal fossæ ib.
Nasal sinuses 364
Nasal ducts ib.
Of the eye 364
Of the appendages 365
Eyebrow ib.
Eyelids ib.
Eyelashes 367
Structure of the eyelids ib. ib.
Tarsal cartilages 368 368
Ciliary or meibomian glands ib.
Tunica conjunctiva 369
Membrana nietitans 371
The lachrymal gland 372
Caruncula lachrymalis 373
Lachrymal puncta and conduits 374 374
Lachrymal sac ib.
Ductus ad nasum 375
Museles of the eyeball 376
Concluding observations ib.
Of the eyeball 377
The coats or membranes 379
Selerotic coat ib.
Cornea 381
Iris 352 355
Corpora nigra
Corpora nigra
Choroid coat 386 386
Retina 359 359
Of the humours 390
Aqueous humour ib.
Crystalline lens 391 391
Vitreous humour 392
Of the ear 393
The exter al ear ib.

Contents.

Page
Concha 393
Meatus auditorius cxtcrmus 395
The internal car 396
Tympanum ih
Labyrinth 399
Scmi-circular canals 400
Cochlea 401
Section XI.-Tegumental System.
Of the skin 402
Cutis ib.
Cutiele 400
Rete mucosum 409
Of the liair 410
Of cellular membrane 414
Of fat 416
Section XII.-Plantar System.
Of the foot 418
Extermal parts 419
The hoof ib.
The wall 422
The sole 428
The frog 4.23
Development of the hoof 433
Structure of the hoof 434
Production of the hoof 435
Properties of horn 4.36
Internal parts of the font 437
The coronary substance ib.
The cartilages 4.39
The sensitive laminæ or lamellæ 4.4.
The sensitive sole 442
The sensitive frog 443

INTRODUCTION.

In all ages have medical philosophers regarded a knowledge of anatomy as requisitc to the attainment of the science of medicine ; but in no age, we may venture to assert, las the truth of this opinion shone upon the mind with brighter light than at the present time. In this, our own day, we may look around and seem to trace the success of each one eminent in the healing art to his anatomical acquirements : at least we may safely affirm, that not one of our present medical distinyués could have gaincd the same ground without a knowledge of anatomy; and he would appear to have reached the highest station who has had the wisdom and foresight to make that seience the foundation of his other professional pursuits.

However much lack of knowledge and respectability on the part of its practitioncrs may have disparaged it, the Vetcrinary Art itself must claim kindred with human medicine, anatomy and physiology being their common parents. Both sciences spring from the same sourcc, and must be attaincd by a like course of study. The surgeon has lived to the day to be convinced, that no so sure road to reputation and distinction lics open to him as the broad and accessible onc through the dissectingroom ; and the day will comc (should it have not yet arrived) when the Vetcrinary Surgeon will discover that the same path
is the only one which even he ean rationally pursue. The age of grooms and farriers is on the deeline; and the day fast approaehing, when seience must and will assert the same sway over the veterinary profession as she so triumphantly excreises at the present day over the medical world at large.

After this eneomium on anatomy, it comes very natural to inquire what we learn or profit by the scienec. A short aud pithy answer (though it might be deemed an unsatisfactory one) may be given to this question, by repeating, that no really useful medieal learning ean be aequired without it. A professor of medieine with a mind unfurnished with anatomy and physiology, is preeisely in the situation of a meehanie who mudertakes to repair a deranged or broken machine without any acquaintance whatever with its mechanism or operations: both sueh persons are empiries, and worse than empirics-impostors in their professions: either of them perchance may do good; but there is ever muel to be apprehended that they may be working some irreparable mischief. We hear of "wonderful cures" being performed by persons having no pretensions whatever-indeed possessing none-to medical seience ; and in this hit-or-miss manner of proceeding, it eannot be denied that some valuable discoveries have been made: could we, however, but set against these diseoveries, brilliant as some of them may have turned out to be, a true eatalogue of the failures attendant upon the experiments in whieh they had their origin, we are sorely afraid the pieture would exhibit a eomplexion which even the discoverers themselves conld not regard without mingled dissatisfaetion and remorse.

Plain and obvious as this necessity for fundamental knowledge must appear to every reflecting mind, yet there are gen-tlemen-men of education-enough to be found who eommit their horses, in disease as in health, entirely to the eare of their grooms! or, who eall to their aid the blaeksmith or bellhanger, rather than put faith in a man who is, or ought to be, even under every disadvantage, alone qualified to eomprehend the nature and eause of disease. It was once so with human medicine: science has, however dispelled the gloom in that fuarter ; and will as certainly, in the progress of time, in like mamer enlighten our own elouded and sunless regions.

Want of edueation among its members, literary as well as medieal, has done more real injury to the eanse of veterinary science than any one individual agent besides. Superiority in knowledge is the only effeetive weapon we possess, with which we are able suecessfully to combat our opponents: without that, we may exhibit the shadow, but hold not the substance of pre-eminence over those who have for ages had possession of the praetice of that art, of whieh we come before the public, not merely as praetical but as seientifie professors.

By learning anatomy, we beeome aequainted with the situation, form, comeetion, and structure of every part of the body. Its aetion or use is taught us by the seienee of physiology. From whieh we proeeed to the third natural link in the chain of fundamental medical knowledge, - pathology, or the doetrine of disease. Anatomy prepares the mind for, while, it excites it to, the study of plysiology ; a seienee no less admired for the sublimity of its dogmas, than ardently pursued for its fruitful and valuable products. To conclude, let us onee more repeat, that anatomy forms the groundwork of physiology ; and that he who possesses a knowledge of both seiences eombined, holds in his hand the key to all rational practice, as well in medieine as in surgery, be it human or be it veterinary.

The science of anatomy admits of division into general, and particular or descriptive anatomy.

General Anatomy treats of the several elementary parts or simple tissues into which the organs or eomplieated parts of the body are resolvable: developing their differeut propertics-mechanieal, eliemical, and vital ; and at the same time exposing their various modes of association, by whieh is eonstituted organization; the phrase "organizatiou" being used by anatomists to imply perfeetion or adaptation of strueture to its end, design, or function.

Particular or Descriptive Anatony views parts and organs, eutire-as we find them: taking cognizance of the
form and structure of each; and noting its relations, such as situation, direction, position, dimensions, connection, \&c. In fact, it is the object of the work before us.

Anatomy may also be said to be particular when its inquiries become confined to any one individual species of animals; in which sense many subdivisions may be made of it, though they all become conveniently reduccd to three, viz., human, veterinary, and comparative anatomy.

Human Anatomy restricts its investigations to the human species.

Veterinary Anatomy, though perhaps strictly applicable (in accordance with its dcrivation) to beasts of burthen, is, at the present day, understood to comprehend all domesticated animals; or, at least, such of them as come more immediatcly into our domestic scrvicc.

Comparative Anatony extends its vicw over the whole animal creation, but derives its name from a reciprocal comparison of them, or from a comparison of them individually with man as a standard; and acquires importance from the mutual illustrations it affords in structure and function.

The study of anatomy, more, perhaps, than that of most other sciences, will be found to be facilitated by systematic arrangement; and the nearer approach this makes to the end we have in view in such study (which is, primarily, physiology), the greater seem to turn out the advantages therefrom resulting. For this reason, in the work before us, a physiological systematization has becn prefcrred; by which, parts and organs co-operating to one common end or purpose, will be fould classed together in the same system. Co-opcration in function, however, so far from indicating identity of structure, is in many instances cffected by organs of structures the most dissimilar ; while, on the other hand, similarity of texture pervades many parts bclonging to differcnt physiological systems: two facts that may be adduced as forming some objection to the classification here adopted. But, we conccive, they are both overruled by the insight which the present plan gives us into physiology ; the object, let it never be forgoten, we have in
view in prosecuting anatomy. The following table exhibits the

PLAN OF THE WORK.		
SECTION.	systely.	contained parts.
I.	Osseous	Bones; Ligaments; Joints.
11.	Muscular	Muscles; Tendons; Bursæ Mucosæ.
III.	Circulatory	Blood; Blood-vcssels; Heart.
IV.	Respiratory .	Larynx; Trachea; Lungs. \{ Mouth; Tonguc; Salivary Glands; Pha-
V.	Digestive	$\left\{\begin{array}{l} \text { Mouth; Tonguc; Salivary Glands; Pha- } \\ \text { rynx; Esoplagus; Stomach; Intes- } \\ \text { tines; Liver; Spleen; Paucreas. } \end{array}\right.$
VI.	Absorbent	Absorbents; Absorbent Glands.
VII.	Urinary	$\left\{\begin{array}{c}\text { Kidneys; Renal Capsules; Urcters; } \\ \text { Bladdcr. }\end{array}\right.$
	$\left\{\begin{array}{l}\text { Male } .\end{array}\right.$	$\left\{\begin{array}{l} \text { Testicles; Vasa Defercntia; Vesiculæ } \\ \text { Seminales; Penis. } \end{array}\right.$
VIII,	$\text { Gcuerative }\left\{\begin{array}{l} \text { Female } \end{array}\right.$	$\left\{\begin{array}{l} \text { Vulva; Clitoris; Meatus Urinarius. } \\ \text { Vagina; Uterus ; Fallopian Tubes ; } \\ \text { Fimbriæ; Ovaries. } \end{array}\right.$
IX.	Nervous	Brain; Spinal Maxrow; Nerves; Ganglia.
X.	Sensitive .	Nose; Eye; Ear.
XI.	Tegumental	Skin; Hair ; Cellular Mcmbrane; Fat.
XII.	Plantar .	Fect.

Conformably to this plan, the bones come first under consideration ; they it is that, being of a nature, hard, firm, and inflexible in themselves, form the framework of the animal strueture ;-that constitute the walls of defence and pillars of support to the other parts of the body. The skeleton presents a beautiful illustration of this; it exhibits almost a perfect outline of the living animal:

> "How changed! and yet how like!"

It forms altogether an inimitable piece of meehanism, serving the united purposes of proteetion, support, and locomotion. The cranium affords an asylum for the delicate organs of sensation; the thorax, a place of seeurity for the vitally important ones of respiration; while the four legs, after the manner of the four eolumns of a building, support the body, resting upon the feet as their pedestals. Form and strength are likewise fundamentally derived from the osscous fabrie. The dimensions
and proportions of parts must neeessarily be regulated by the bony frame, and their powers also must be greatly dependent upon the nature of this foundation: a faet that has not escaped the observation cven of those but little aequainted with the seienee of anatomy, as we may gather from the trite remark, that sueh a horse possesses "plenty of bonc."

Superadded to all this, the bones are the agents, though but passive ones, of locomotion ; the active or moving powers being the next order of parts- the muscles. And when we eome to examine into the different forms and proportionate magnitude of the bones; the curious and admirable methods by whieh they are fitted and adapted to each other ; and the singular advantages they, in their relative situations and positions, present to the moving powers, the museles; we eannot fail to be struek less with the beauty of the strueture of the skeleton, than persuaded of what paramount importanee a knowledge of it must be to him who is setting out in the study of anatomy.

Compared with other living substanees, bone possesses so little animal or vital material in its eomposition, that hardly any differenee is pereeptible in its aspeet either in life or death: altogether, it is found to bear eonsiderable analogy to inorganized matter ; not undergoing that rapid spontaneous deeomposition, after the departure of life, to whieh other parts of the body are subject, but enduring for ages without losing even its original shape.

During the earlier periods of fæetal existence, we find no bone whatever in the body-nothing but pieces of gristle or cartilage, assuming the forms of the bones into which they become at various periods afterwards eonverted: cartilage being a firm, solid, flexible substance, intermediate in its degree of hardncss between bone and flesh, and serving many useful purposes in the animal economy, for which bone would be toostiff, unyielding, and brittle, and other inaterial too soft and unsubstantial. For this reason it is employed in the temporary plaee of bone, in the foctus; and for the same reason, in some parts-in the ears, nose, windpipe, \&e.-is eontinued as a substitute for it during life.

No less than two hundred and thirty-cight bones are found to be reguired to eomplete the fabrie of the skeleton ; whieh (in order for them to admit of elastieity and motion) are linked and joined one to another by eurious, highly ingenions methods of
comnection, that come, indiscriminately, under the general denomination of joints. Such, however, is the variety observable among the joints, that anatomists have found it necessary to make some sort of classification of them. The most natural and convenient one seems to be that which arranges them in three classes: First, into membranous joints, formed for elasticity only, such as those of the cranium and face. Secondly, into cartilago-ligamentous joints, desigued both for elasticity and motion; such as the comnection existing between the splint and cannon bones; between the bones of the pelvis; and between the vertebre of the spine, and the ribs and the breast-bone. Lastly, into capsular joints, the most perfect but the most complicated description of articulation, and the one intended solely for the purpose of motion, simple or compound, according as the necessities of the parts themselves may require. In the construction of this kind of joint we find, first, the ends of the bones forming it to be nicely shaped and fitted to eachother; secondly, the adjusted extremities of the bones to be covered with cartilage, to render them smooth and polished like ivory; thirdly, a capsule of a membranous nature attached around and investing these cartilaginous ends; fourthiy, lateral and other ligamentous chords, running from one bone to the other, to strengthen the comection; fifthly, a fluid resembling the white of egg, exuded from the internal surface of the capsule, for the purpose of lubricating the cartilaginous euds, and preserving them from friction. Although such is the general composition of this third kind of joint, we find it varied in every particular instance to suit the intentions of nature: exciting our admiration no less for its inimitable beauty or construction than for its wonderful power and effect.

Luding our account of the passive mechanism of locomotion, we come to consider the active powers or means by which the machine is set in motion. Little, perhaps, would that person imagine, who contemplated simply the dead body, that muscle or flesh possessed such capability ; much less would he suppose its power to be of that wonderful nature which experience has taught us that it is. Even the anatomist himself discovers nothing in the structure of a muscle to account for such properties; but is compelled, after the most tedious and elaborate
research, to ascribe them to something he cannot explain, dependent upon the presence and exercise of the vital energy. Only by ealling in this mysterious power to his aid, ean he pretend to offer any reason why a piece of flesh that would of itself be torn asunder by the weight of a few ounces, should, in a living state, be capable of lifting and sustaining a hundred or more pounds!

A muscle, anatomically examined, is found to eonsist simply of a congeries of longitudinal fibres, disposed in packets or bundles, severally eneased in eellular membrane, and by the same material connected altogether into one solid body. These fibres have, superficially viewed, the appearance of being single and indivisible: through mieroseopic aid, however, we learn, that not only are the packets made up of bundles of fibres of smaller and finer mould, but that even their component fibres are themselves packets of similar composition ; in which way we become continually foiled and disappointed in our researches after the ultimate or original fibre, whereunto no investigator has hitherto arrived.

Though museles ordinarily are red, colour is not essential to them : it is entirely dependent on the blood contained in their vessels, some being naturally white or colourless, like what we find them in almost all fish, and many birds. In general, museles possess bulk correspondent to their power, and are so shaped and positioned as to have full effect in regard to the function they have to perform ; while in their situations they confer upon the body beauty of outline, combined with exquisite symmetry of form. In number we eompute them at about three hundred and twelve. And when we come to reflect that most of them are suseeptible of varied action, and to calculate to what extent these actions may be multiplied by different combinations, we shall not feel so much surprise at the endless multiplicity and diversity manifested in the motions of the body. From what has been said, therefore, it appears that the museles are the active or essential agents of locomotion ; the bones, the passive part of the apparatus: the two chicf ends of locomotion being, to enable the animal to obtain food, and avoid such objects as may seem anywise offensive or detrimental to him.

With few exceptions, museles are distributed over the body
in pairs, or fellows, there being an equal number of eorrespondent magnitude and power ranged on either side. And their positions and attachments are such as to enable them to aet as antagonists one to another, either direct or indirect, singly or in combination : the grand seeret furnishing us with the explanation of the vast variety of motion, internal as well as external, of which the body is eapable.

The generality of museles are furnished with what are called tendons or sinews; whieh being eomposed of a material meehanieally stronger than the flesh itself, but mueh less bulky, serve the useful purpose of eonnecting the muscles to the part to be moved, without at the same time proving an ineumbranee from their volume. In texture they are dense, tough, and fibrous; and in aspect have a glistening blueish-white hue, forming a beautiful contrast with the florid red of the fleshy portion of the musele.

There is yet another part belonging to the museular apparatus; one that answers the same purpose that the synovia or joint-oil does in the interior of a joint: in the same manner as that serves to prevent frietion betwcen boncs, the burse mucose, which likewise eontain synovia, obviate similar ineonvenience arising between tendons, or between tendons and bones.

From the organs of support and locomotion, we proceed to those eoncerucd in the cireulation of the blood over the amimal machinc. These eonsist of the heart, the arterics, and the veins. The heart in its situation in the middle of the eavity of the thorax, operates after the manner of a foreing pump, throwing blood into the trunks of the arteries, through whose manifold ramifieations it is conducted over every part of the body, to be afterwards conveyed back again by the vcins. In this manner arc exeeuted the important functions of nutrition, growth, and secretion. Blood is to the animal what sap is to the vegetable : it nourishes the body; supplies new materials for its growth and repair ; and, at the same time, beeomes the vehiele for the removal of the old and worn-out matters ; besides furnishing the various secretions, sueh as bile, urine, scmen, perspiration, \&e., whieh, by a process alike wonderful and mystcrious, are claborated in organs constructed cspecially for the purpose,
through the extreme ramifications of the arterial system. Above all, blood is the medium through which the spirit of life itself is eliminated and diffused over the body: every part owing its vitality and susceptibility of action to a continual fresh supply of this fluid.

These important purposes served by the blood, necessarily tending to a consumption as well of its material quantity as of its vital principle, it became necessary that means should be provided in the animal economy for the replenishment of both these losses. Accordingly, we find one system of parts formed for the supply of fresh blood; another for the purpose of the vivification of the fluid. This latter function is performed by the respiratory system. The lungs, constituting that system, are two bulky bodies, in structure bearing mueh resemblance to a honeyeomb, through whose cells a large proportion of the blood is conducted by the pulnonary vessels at every round of the eirculation, in order that it may be exposed to atmospheric air, and from its influence derive those vital properties that render it fit for the support of heat and life in every part through which it has subsequently to circulate; experience proving to us, that deprivation of blood to a part is followed first by the loss of heat, and ultimately of its vitality. In what this extraordinary influence of the air upon the blood consists, we are only vaguely informed: in truth, we know but very little more for certain concerning it than the palpable change of colour the blood undergocs, from a very dark to a birght scarlet red.

To make up for the expenditure in the quantity of blood, we find a number of organs provided, comprehended under the head of the digestive system; the ultimate object of whose combined operation is, the transmutation of the food into a fluid fit for becoming blood. The organs concerned in the process of digestion are-the mouth, in which the food is broken down and mastieated by the teeth, and at the same time mixed with saliva; the pharynx, which receives the food from the mouth, and by the aet of deglutition transmits it to the cesophagus, the tube that conducts it into the stomach. Within the stomach, the food becomes converted into a uniform homogencous masis, termed chyme; and thus becomes prepared
for its further passage into the intestines, in which, from the admixture of bile coming from the liver, and pancreatic juice from the pancreas, a further change takes place in the alimentary mass, attended by a spontancous separation of it into such parts as are veritably nutritious, and such as are cxcrementitious, or only fit for being ejected out of the body. The nutritious particles assume the appearance of a milky juice, to which anatomists have given the name of chyle; and the process by which it is produced is denominated chylification.

This brings us to the consideration of the absorbent system: the absorbent vessels bcing the conductors of the chyle from the cavity of the intestines into the veins, in which it becomes mingled with the general mass of blood. Independently of this, however, the absorbents are employed in removing old, decayed, or worn-out parts of the body, at the time that the arteries are restoring the loss by the deposition of new material ; so that, in point of fact, the body is undergoing a continual repair, or rather renovation, and thus is maintained in perpetual vigour and aptitude for action.

The old worn-out material, together with other matters conveyed into the circulation, having now become useless and excrementitious, we find a channel for their expulsion in the urinary system. This includes the kidneys and the bladder; the former being organs of secretion-by which is meant, organs haring the power, by an action peculiar to themselves, of separating a substance or fluid from the blood altogether different from the blood itself, and which either answers some important purpose in the animal economy, or becomes the medium for the ejection of useless or excrementitious matters ; the latter, simply a rescrvoir for the urine, containing it until convenience may suit for its discharge.

In order for the animal machine, thus constituted, to be set in action, the nervous system becomes neccssary ; that system which is the source of all sensation, as well as of all motion, and by which the animal is signally elevated beyond the vegetable creation. Sir Charles Bell, who has thrown such splendid new light upon this department of anatomy, arranges the nervous system in four classes: First, comprising nerves of sensation; sccond, nerves of voluntary motion; third,
nerves of respiratory motion; fonrth, nerves of the sympathetic system, by which are regulated the functions of mutrition, growth, and dccay, and whatcver is directly neccssary to animal cxistence. The simplest form of nervous system is found to consist in a central ganglion, with a single nerve attached to it; and is exhibited in animals whose organs of motion are found to be imperfect. But should the creature possess organs of progression, and be endowed with organs of sense in addition, then nerves and ganglia are superadded, and a sensorium or brain is formed, which becomes at once the seat and source of all motion and sensation, the throne of reasou, and grand focus of cvery intellectual faculty. In this manner-
"Nature, in her productions slow, aspires By just degrees to reach perfection's height."

Intimately in structure connectcd with, and in function entirely dependent upon, the nervous system, is the sensitive system ; comprehending the nose, the eye, and the ear. Were it not for the nerves interpassing between these organs and the brain, we could neither smell, nor sce, nor hcar ; and in proportion as thesc senses in diffcrent animals are acutc, so we find the nervous structures of their individual organs to be more or less developed. The nerves belonging to the sensitive organs are not included in the foregoing classes: posscssing the pcculiar faculties of taking cognizance of odour, light, and sound, they differ as much from the nerves of common sensation as Sir Charles Bell has demonstratcd the latter to do from those of motion.

Exclusively of the nervous influence, the anatomical mechanism of the scveral organs included in the sersitive system, is no less wonderfully than admirably adapted to those ends which, in each of them, it is designed to answer ; and rises far more beyond all human art and contrivance than it is possible for the mind of man to conccive. That the hound should be able, with fatal fidelity to his prey, to pursue the evanescent odour of footsteps, is owing to a faculty possesscd by the nose ; but one equally inexplicable to $u s$, with the extraordinary telescopic and microscopic powers possessed by the eyc, or the fincr and more delicatc sense inhabiting the car.
'The term of life of every animal being limited to a morc or
less distant period, according to its kind, it became necessary, in order to guard against annihilation, to make provision for the procreation of the species. In the higher classes of animals, generation is cffected by concurrence of the sexes, the organs for the purpose being different in them respectively, though reciprocally adapted to the same end; but in some animals of a lower grade, the sexes are found combined in the same individual, and generation takcs place without any copulative act whatever. In the animals by which we are surrounded in common life, we find a male and female sex ; and these are distinguished, in an anatomical point of view, by the possession of organs of a totally different character. In the male we have the testicles, which secrete the peculiar fluid from the blood, known by the name of semen; and the penis, an orgau formed for the conveyance and transmission of the semen into the womb of the female; besides seminal ducts and reservoirs to contain the fluid until it is wanted. In the female we find a vagina or canal leading into the uterus or womb; attached to the horns of which by two serpentine tubes, called the Fullopian, are two oval bodies, smaller than the testicles in the male, named the ovaries, or female testicles, in which it is now ascertained the germ or first rudiments of the forthcoming foctus are generated. The organs of the female are set in action by the stimulus of excitation they receive from the seminal fluid of the male; and the result of a long, tedious, and myterious process is, a foetus-a prototype of its parents.

Covering all and clothing all, we have the skin with its coat of hair; which two parts, along with the cellular membrane and fat, we have ranged in a system we have denominated the tegumental. The cellular membrane itself may be regarded in the light of an internal covering to the body; for it clothes or lines the inner surface of the skin, being the medium of connection between the common integuments and the parts subjacent. The fat likewise is much intermingled with the cellular nembrane, and answers the purpose of a covering; as well as that of filling up vacuities and interstices, and giving a degree of rotundity and beauty to the form which the animal would much lack without it.

Lastly, comes under our notice the system to which we have prefixed the epithet of plantar; meaning thereby to denote, that it embraces the four feet-the pedestals upon which repose
and move the four limbs or columns of support. Though plain and unobtrusive in their outward aspect, the feet will be found to exhibit an internal mechanism worthy of the study and meditation of a medical philosopher of the highest pretensions : indeed, we are hardly going beyond our warranty in asserting, that in no part of any animal shall we find a structure exhibiting more beauty of design than is displayed in the anatomy of the horse's foot. In addition to this consideration, however, we, as reterinarians, are enjoined, by an imperative duty consequent upon its importance in a pathological point of view, to examine this part with more than ordinary solicitude; thereby, not only that we may obtain a more correct insight into the nature of its diseases, but be enabled to exercise a scientific control over the mechanical operations of the farrier.

ANATOMY OF THE HORSE.

SECTION I.

OSSEOUS SYSTEM.

OF THE SKELETON.

The Skeleton is the simple, jointed, bony frame, divested of the soft parts and dried. There are two kinds-

1. The natural skeleton is that in whieh the bones remain attached to eaeh other by their natural eonneetions, denominated liguments.
2. The artificial skeleton is made by separating the bones from all their eonneetions, by maeerating or boiling, and afterwards joining them again in their natural order and relative position, by wire or other means, so as to imitate as nearly as possible the natural one ; over whieh it possesses the advantages of cleanliness, distinetiveness, and more or less artifieial mobility of the joints.

Construction. Leaving the head and neek out of eonsideration, the entire frame will be found to come with suffieient proximity within the limits of a square, formed by drawing perpendieulars, touehing the extreme parts before and behiud, from a horizontal line level with the surfaee of the ground, to another parallel to it touehing the summits of the baek. A line extended perpendieularly through the middle of this square, divides the frame into two nearly equal parts, and falls upon the ground (represented by the inferior horizontal line) equidistant from the four points of tread; a line drawn in the horizontal direetion through its middle, ineludes the trunk within the upper division of the square, the space formed by the limbs, as well as the limbs themselves, within the lower scetion. The limbs represent four eolumns supporting the body, the bones eomposing whieh, though many of them are obliquely plaeed, are found, on taking the aggregate of their direetions, to maintain their bearing in lines parallel to the common centre of gravity, which
may be said to be represented by the perpendieular line extended through the middle of the square: the angular position of these bones renders their motions more extensive and faeile, at the same time that they, so placed, present convenient and powerful levers for the operation of the museles. Furthermore, the bones forming the limbs are, superiorly, lengthy and few in number ; whereas, below the fetloek, they are small, and eonsist of several picees : the rationale of whieh is, that the long bones are well adapted for extent of motion; the short ones, for resistance and multiplieity of movements. The head and neek operate as a burden, in addition to half of the trunk, upon the fore limbs; although the hind limbs appear the greatest and most eapable of resistance: this apparent ineongruity is removed when we come to learn that the latter constitute the powerful engines of progression.

Of the multiplicity and variety of pieces or distinet bones of whieh the skeleton is composed, most are found to be double, or to exist in pairs; such are the ribs, most of the bones of the head, and all those of the limbs: there are, however, several single bones; and these may be regarded as the key-stones of the fabrie, being in reality the media through whieh the two lateral halves of the skeleton (eomposed of the bones in pairs) are united together into one entire structure. In this arrangement, the symmetry of the whole is preserved most completely, even as completely as if every bone had had a fellow ; since both sides or longitudinal halves of the single bones exaetly correspond.

The bones so far influenee and determine the form of the soft parts that in very many (perhaps the majority of) instanees, the animal is reeognised in the appearance of the skeleton; in other examples, however, this is not so remarkable ; in all the resemblanee ean be traeed only in eertain parts. In gencral, the head, ehest, and legs-below the knees and hoeks present striking outlines of the same parts in the living animal; whereas, the neek, loins, arms, and haunehes, have few or no points of similitude.

Division. THE SKELETON is eomposed of 238 bones, and is divided into trunk, head, and extremities.

The Trunk is subdivided into spine, thorax, and pelvis.
The Itesd comprises the cranium and the face.
The Extremities are four in number: two fore and two hind.

TABULAR ENUMERATION OF THE BONES.

TRUNK.

SPINE.		TIIORAX	PELVIS.
Cervical Vertebre Dorsal Vertchre Lumbar Vertebræ		Sternum.	Ossa Immominata
	. 18	Ribs, 18 on each	Sacrum
		side	$\begin{gathered} \text { Coccygcal Bones, } \\ \text { varying } \\ \text { to } 18 . \end{gathered}$
Total	30	Total . . 37	Total

HEAD.

CRANIUM.	FACE.
Frontal Bone	Nasal Bones . . .
Parietal Boncs-pai	Superior Maxillary Bones
Occipital Bonc	- Inferior Maxillary Bones
Temporal Bones-two pairs . . 4	$\stackrel{\sim}{5}$ Malar Bones ${ }_{\text {c }} 16$
Etlimoidal Bone	む Lachrymal Bones . . . ¢
Sphenoidal Bone	ミ Palatine Bones
	5 Superior Turbinated Bones
10	Inferior Turbinated Bones
	Vomer-single Lower Jave
$\text { Bones of }\left\{\begin{array}{l} \text { Malleus } \\ \text { Incus } \end{array}\right.$	Lower Jaw
$\text { the Ear. }\left\{\begin{array}{l} \text { Stapes } \\ \text { Obiculare } \end{array}\right\}$	Teeth ${ }_{40}^{18}$
	Os Hyoides
Total 14	Total

EXTREMITIES.

FORE.	IIIND.	
Scapula $\}$ Shoulder Bones 2	Femur-Haunch Bone . . . 1	
Humerus $\}$ Shouder Bones	Patclla-Stifle Bone	
Radius \} Aim Bones. . . . 2	Tibia $\}$ Thigh Bones	
Bones of the Knce.	Astragalus . . .	
E Scaphoid \|		Os Calcis . . . $\}$ Hock Bones 6
	Cuboid Bone . .	
	3 Cunciform Boncs	
	The bones below the hock correspond in name and num-	
Sesamoid Bones-Fetlock . . . 2	ber to those below the knee,	
Pastern Bone 1	viz.	
Coronet Bonc 1		
Coffin $\}$ Foot Bones . . . 2		
Total 21	Total 19	

CERTAIN TERMS used in descriptive anatomy may require some explanation.

The anatomist views the body in the erect position ; the limbs preserving, in the direction of the tendency of the weight, perpendicular lines in respect to the trunk, and parallel lines in regard to the correspondent fore and hind fect, and also in the transverse direction, in relation to one foot to its fellow ; the head and neek maintaining their natural degrees of clevation and curvature ; the tail crect. In this position the anatomist assumes, to aid him in his deseriptions, that an imaginary plane extends through the body, bisecting it into lateral halres; this is continued through the neek and head, and deseends between the legs. The correlative terms, superior and inferior, anterior and posterior, require no clucidation, unless it be in regard to the head and neek: the line bounding the superior regions is considered to extend from the tip of the coceyx over the occiput to the upper lip; that forming the inferior boundary, from the lower lip, along the under jaw, down the neek, and along the belly, with some interruption in the croup, to the extremity of the tail. The adoption of the compounds of these terms, leads to still further accuracy in description : such are antero-superior, antero-inferior, supero-anterior, infero-anterior, \&c. Antero-superior denotes the antcrior compartment of the superior region; supero-anterior, the superior compartment of the anterior region; and so on. Inner and outer cxpress relation to the bisceting plane, running throngh the middle, median or mesian, region : but the componuds mesio-superior, mesio-posterior, \&e., have no reference whatever to the middle regions: they simply imply the middle compartments of the superior and posterior regions. According to this arrangement, every distinct part, the head, neek, shoulder, quarter, arm, thigh, \&e., is divided, by imaginary lines, into five regions :-supcrior, inferior, antcrior, posterior, and middle ; each of which is subdivisible into three minor compartments : e. y., the superior recgion is distinguishable, if required, into antero-superior, mesio-supcrior, and posterosuperior; the anterior into supero-anterior, mesio-anterior, and infero-anterior; and so with the others. Without this explanation the anatomical detail, to follow, might prove perplexing or even unintelligible: by such preparation, the labour of the anatomist is abridged and facilitated; the progress of the student smoothed and accelerated.

OF THE TRUNK.

The trunk comprehends the vertebral chain, the thorax, and the pelvis.

I.-THE VERTEBRAL CHAIN.

Also callcd the spine, vulgarly the back-bone, reaches from the occiput to the sacrum, constituting the bony structure of the neck, back, and loins, and consists of thirty scparate pieces, denominated vertebre, which arc classed, in accordance with the part they enter into the formation of, into cervical, dorsal, and lumbar.

Configuration. It bears altogether a resemblance to an S , providing the letter be reversed, turned in the horizontal dircction, and an additional eurve given to it ; thus, $\simeq \frown$. Proceeding from the vertcx with more or less crest-like curve, it sinks into a bend in the opposite dircetion at the posterior part of the neck ; from this, in the back, it at first gradually rises, but shortly afterwards pursues the horizontal linc, or even dips a little: in the loins, however, it rises very perceptibly, forming an arch of considerable extent, which, posteriorly, is completed by the declivity of the coccyx.

OF THE VERTEBRA IN GENERAL.

Conformation. The vertebre bear a common resemblance, one to another, manifested by the following general characters. Every vertcbra is in form symmetrical, and presents middle and latcral divisions. 1st. The middle consists of the body, a cylindrical solid part, having a convex surface antcriorly, a concave one posteriorly, and both roughened by the implantation of the iutervertebral substances ; the arch, extended transversely from the sidcs over the body, so as to include its superior surface; and this surmountcd by the spinous process; lastly, the vertebral, spinal, or medullary hole. 2d. The sides present two transverse processes, jutting outward; four articulatory processes, two antcrior and two postcrior, having smooth surfaces for articulation with those of the vertebre next to them ; four notches, the excavations betwcen the arch and the body, constituting, by apposition, with others in the contiguous vertebræ, the holes of conjugation.

CERVICAL VERTEBRA.

Larger than the others, and differ more remarkably in their individual conformation.- In number, seven; and named ac-
eording to their numerieal order, begiming from the head : the first, however, has got the designation of atlas, and the second, of axis or vertebra dentata.- In figure, quadrangular. Body, oblong; anterior surface of it, smooth, convex, heart-shaped, apex turned downwards; posterior surface, correspondently concave. The vertebral hole is larger that in the other elasses, and semi-oval in figure. Two spinous processes; the crest or superior one is bifid, eleft and divergent posteriorly, united at a sharp angle anteriorly; the inferior (the additional) spinous process is curved like an S reversed and inclined - ; being eonvex and prominent posteriorly, sharp-edged and curved upwards anteriorly. The transverse processes are very broad, but short, arise from the body as well as the arch, are bifid, presenting four projecting ends, two forwards, two backwards, and are eaeh perforated by a foramen ; which transmits the vertebral artery and vein. The articular processes are large, directed horizontally forwards and backwards, and present broad surfaces for artieulation; those on the anterior looking upwards and inwards, those of the posterior downwards and outwards. The notehes are found between the articular processes and the body.

DORSAL VERTEBRF.

Volume, less than that of cither of the other classes.-Number, eighteen; (in some instances nineteen;) distinguished by their numerical order, counting from the neek backwards. Body small, short, thick, and semi-eireular; flattened superiorly, prominent and edged inferiorly; anteriorly, smooth, convex, and heart-shaped; posteriorly, correspondently coneave. At the junction of the arch with the body are situated four small eup-shaped articular surfaces, two prescnted forwards, two backwards, which in eonjunetion witi those next to them form soekets for the reception of the heards of the ribs. The vertebral foramen is of less diameter than in the neek, and is oval from side to side. Spinous process long and flattened on its sides; thick and triangular or prismatic at its root: presenting a sharpened edge forwards, a flat or obtuse border backwards; thick, irregular, and tuberous at its summit. Transrerse processes, short and thick, ineurvated upwards, and tuberous at their extremities; their sides presenting eircular articulatory surfaces for the tubereles of the ribs. Articular processes, very short and procceding from the roof of the areh : the anterior, face upwards; the posterior, downwards and backwards. There are only two notches, and these are smaller than those of the cervical ; they are situated between the posterior articulatory processes and the costal surfaces upon the body.

LUMBAR VERTEBRIE.

Volume, between that of the eervieal and dorsal.-Number, in some subjects five, in others six. Body, short and thiek: flattened superiorly, prominent inferiorly ; and bearing much resemblanee to that of a dorsal, only that it is something larger, is oval from side to side, and thicker anteriorly than posteriorly : its artieulatory eonvexity in front and coneavity behind assume also rather an oval than a heart shape. The vertebral hole is semi-circular, and of larger diameter than in the dorsal vertebræ. The spinous process is shorter than most of the dorsal ; has broad flat sides ; protuberates at the front of its summit ; and stands erect with a very slight inclination forwards. The transverse processes stand out horizontally, at right angles from the body, slightly inclined in the form of arches: are long and broad ; flattened above and below ; and gibbous at their extremities. The articulatory processes, though small when compared with the eervieal, are larger than the dorsal ; they projeet from the roof of the arch in the horizontal direction ; the anterior, protuberate at their extremities, are wide apart, and present concavities inwards ; the posterior, are nearer together, and present eonvexities outwards. The notches are similar to those in the dorsal vertebræ.

PECULIARITIES OF THE VERTEBRA.

Of the cervieal, four vertebræ are distinguished by peeuliar characters.

The First Verterra, inappropriately named the atlas, for the head is suspended from it instead of being supported by it,) is defeetive in the essential vertebral properties; being simply an irregular riag with broad projecting sides. It has no body; the place being in part supplied, in the articulated spine, by the odontoid process of the second vertebra, for the reception of which, the infero-posterior part of the ring is made smooth and articulatory ; this sometimes reduces the dimensions of the vertebral hole, though it remains even then the most capacious of any, and measures more from side to side than contrariwise : its inferior surface is deeply impressed by the odontoid ligaments. It has no superior spinous process, but there is a prominence in the situation of it ; and the inferior spine is shortcr, thieker, and more obtuse than the others. The transverse processes are broad, modivided, lateral plates, sloping downwards, perforated by three pairs of foramina: one posteri-
orly to their middles, through whieh run the vertebral arteries; two through their anterior parts, one of whieh is directed outwards and downwards, the other runs inward and opens into the vertebral eanal: the latter give exit to the sub-oceipital nerves. 'The auterior' artieular processes are represented by four horizontal projections, with semieireular borders, whose internal surfaces are smooth, look towards each other, and together form two lateral eoneavities for the reeeption of the condyles of the oeeipital bone. The posterior artieular proeesses are formed into broad, triangular, eonvex, smooth surfaees, looking baekwards, with an inclination inwards.

The Second Vertebra, or axis, also denominated the dentata (from a peeuliar projection anteriorly, which in the human subject is resembled to a tooth) is the largest of the eervieal elass, exeecding the others, however, more in length than in breadth. The body is elongated, and (in place of a hemispherieal termination) anteriorly, presents the remarkable proeess named the odontoid, whieh is smooth and convex below, where it artieulates with the infero-posterior part of the ring of the atlas ; exeavated and impressed above by the odontoid ligaments. The spinous process is very broad, and forms an elevated erest, bifid posteriorly. In front of the body are two oval foramina, corresponding to the holes of eonjugation. The transverse proeesses are slender, and have only posterior extremities ; the holes through them are also small. The anterior artieular proeesses are represented by two broad ovoid smooth surfaces; united with the sides of the odontoid projection ; and sloped off baekwards, both above and below, to admit of free motion between them and the posterior artieular surfaces of the atlas.

The Thimd, Fourth, and Fifth possess the genuine characters of ecrrieal vertebre, and elosely resemble one another ; the third, however, has eommonly a more elevated superior spine than either of the others, and is narrower aeross the mesiosuperior part of the body, measuring from the roots of the artieular processes: whieh dimension inereases in the fourth, but is greatest in the fifth.

The Sixtif has no inferior spine; and its transverse processes are trifid, consisting caeh of three eminenees.

The Seventi Cervical Vertebra is the shortest, and in its general eonformation partakes of the charaeter of the first dorsal. Its body posteriorly presents two semilunar articular hollows for the formation of the sockets for the rils. The superior spine is clevated and sharp, The transverse processes are short, obtuse, snd not perforated.

Of the dorsal vertebre, the distinctions are less mumerous and striking.

Tife First Dorsal Vertebra has a cervieo-dorsal conformation, manifested in the form of the body, the length and sharpuess of the spinous proeess, the protuberance and singleness of the transverse proeesses, the breadth and direction of the articular processes.

The Second Dorsal Vertebra differs from the others in the eurvation of its spine baekwards, against that of the third; and in the breadth and direetion of its anterior artieular proeesses.

The other dorsal vertebræ arc distinguishable prineipally from the comparative form and length of their spines. The first spine is short compared to the seeond, and terminates in a sharp apex; the seeond has a broader extremity, and in some instances is bifid; the suceceding grow broader, and more obtuse at their ends until they assume a form similar to those of the lumbar vertebre. The fifth spine is generally the longest; the 12 th or 13 th the first that assumes the lumbar eharacter.
M. Girard eorreetly observes, also, that the artieular depressions upon their bodies for the heads of the ribs are less deeply marked as we proceed baekwards.

Tine Eighteenth Vertebra, and the scventeentl gencrally, have no articular surfaces upon their transverse processes, but whole ones upon their bodies for the ribs.

In the lumbar region-
The First, Second, and Third have broader spines, and their artieular proeesses are nearer together; The Fourth possesses a surface for articulation with the fifth on eaeh transverse proeess; The Fifti assumes somewhat of the eharaeter of the first pieee of the saerum, and has four surfaees for artieulation on its transverse proeesses; two anteriorly, opposed to those on the fourth ; two posteriorly, adapted to similar surfaces on the sacrum.

GENERAL REMARKs ON THE VERTEBRAL CHAIN.
The Spine exhibits for consideration four surfaees and two extremities.

Surfaces-Extremely irregular, presenting various cminenees and sprojeetions, hollows, grooves, and foramina.

Superior Surface-In the neek, broad and (from the absence of spinous proeesses) prescrving a general level ; the equality being interrupted only, anteriorly, by the spinal crest of the
vertebra dentata; posteriorly, by the spine of the seventh vertebra. In the back and loins, the surface offers a continued series of spinal projections; long, with broad tuberous ends, sloping backward, in the withers ; short, crect, with broad sides, and terminated by oblong ridges, posteriorly. On the sides, rumning close to the roots of the spinous processes, extending from the dentata to the last lumbar vertcbra, are the vertebral grooves, filled by the spinal and semi-spinal museles belonging to the neck, back, and loins.

Inferior Surface-Presenting great uniformity from the gencral regularity of the inferior cervical spines and the angular portions of the bodies of the dorsal and lumbar vertebre: excepting, that the sixth cervical spine is defective, and that the one or two last lumbar vertebre are fiattened inferiorly.

Lateral Surfaces-Very irregular. Presenting, in the neck, broad, bifid, transverse plates, with capacious vertebral chamels or grooves between them and the articulatory processes above, which are occupied principally by the complexus major. Underneath these grooves run the foramina for the vertebral bloodvessels ; and through their sides pass the holes of conjugation. - In the back and loins the holes of conjugation are situated immediately behind the transverse processes; and the lumbar vertebree alone possess lateral vertebral grooves, but which are very narrow compared with those along the neek.

Extremities-Broad and articulatory. The anterior cxeavated to receive the occipital condyles; the postcrior, transversely oblong, presents three smooth surfaces for articulation with the sacrum.

Vertebral Canal-Capacious and semi-oval through the neck; transversely oval and small through the back; scmi-circular through the loins, and of greater diameter than in the back, less than in the neek. United, anteriorly, with the cavity of the cranium ; continuous, posteriorly, with the sacral canal. Containing the spinal marrow and its membrancs.

II.-THE CHEST. (THORAX.)

The thorax or chest is the ample conoid cavity constituting the anterior part of the trunk, formed by the ribs laterally and the sternum infcriorly, in which are contained the organs of respiration and circulation.

> THE RIBS. (COSTA.)

Number. Thirty-six; ranged in pairs, cightecn on either
side: occasionally there exist thirty-eight, and even forty ribs. They are distinguished by their numerical order, eounting. from before backwards.

Conformation. In general similar: they are elongated, eurved or twisted, convex along their outer sides, concave along their inner, and taking a direction from within outwards and from above downwards; they vary, however, in their length, degree of curvature, and obliquity of direetion.

Division. Into true or sternal ribs, and false or asternal ; the former, nine in number, being those whose cartilages are actually inserted into the sternum ; the latter, the remaining nine, being only connected therewith through the intervention of others. Each rib possesses two extremities, two surfaces, and two borders.

Extremities. The superior or vertebral, eomprehends-1. The head, the protuberant or antero-superior portion, presenting two convex smooth surfaces, for articulation with the bodies of the vertebre between which it is received, and these divided by a rugged noteh, into which is fixed the inter-artieular ligament of the head. 2. The neck, the contracted part, supporting the head. 3. The tubercle, the prominence behind the head, at the root of the neck, whieh has a flat smooth surfaee for articulation with the transverse process of the hinder vertebra eonneeted with the head. 4. In front of the tubercle, rumning across the baek of the neek, is a groove, along which make their exit branches from the intereostal vessels and nerves. The inferior or sternal extremity swells a little in volume, and is of less eompact or more porous texture than the bone above: it is terminated by an oval roughened depression; from this takes root the eartilage of the rib, which thenee proceeds at an angle more or less obtuse and rounded to the sternum.

Surfaces. The external is eonvex and more or less uneven. The ribs do not form regular arches; they projeet outwards from the spine, and then curve suddenly downwards, the posterior ones at the same time inclining baekwards: the place where the rib commences its deseent, the most curved or erooked part, is named its angle. In all the long ribs this surface, anteriorly, is more or less grooved for the attaeliment of the external intereostal museles.-The internal surface is uniformly eoncave, smooth, and polished. It is lined by the pleura.

Borders. With the exeeption of the first and last ribs, the anterior borders are thin and sharp; the posterior, obtuse and rounded: the former give attachment to the intereostal muscles; the latter, along the upper half, however, only, present grooves in whieh run the intereostal vessels and nerves.

Peculiarities. The first is the shortest and thiekest of the ribs; its upper part is rounder, and its lower broader and more expanded than any other: it is but little and irregularly arehed, and the eoncarity of its areh is turned direetly forwards. The seeond is a remarkably straight rib, being only eurved in its neek. From the seeond the ribs progressively inerease in breadth to the seventh, in length to the ninth, and in eurvature to the very last; the eighteenth being in proportion to its length the most erooked rib: from the tenth, the ribs grow shorter, narrower, and more obtuse or rounder in their borders. The posterior differ also from the anterior ribs in being eurved throughout their entire length; whereas the former are only very pcreeptibly bent at their augles. In the eighteenth, and sometimes in the seventeenth rib, the artieulatory surfaee of the tuberele is confounded with that of the head, and the neek is wanting.

The Cartilages of the Ribs, properly so ealled in the young subjeet, reecive depositions of osscous matter as the animal advances in life, until at length they aequire rather the eharaeter of spongy fragile bones than eartilage. They eorrespond in number to the ribs, and like them inerease in length from the first to the ninth or tenth, after whieh they progressively decrease; but this is liable to variation: the first eartilage is remarkably short; those belonging to the true ribs are in general not very long, but broad, thiek, and resisting; those proceeding from the false ribs are, on the contrary, mostly very long and comparatively slender, and ineapable of offering much resistance-are, in faet, so formed and eonnceted that they admit of eonsiderable motion.

THE BREAST-BONE. (STERNUM.)

Conformation. The sternum (being a single bone) is symmetrieal in its form, shaped, altogether, like the keel of a ship; posteriorly, flattened from above downwards ; anteriorly, from side to side. It is eomposed of seven irregularly formed bones, and of the ensiform and eariniform eartilages.

Division. Into four surfaees and two extremities.
The Superior and Inferior Surfaces are pyramidal in figure, being broad posteriorly, eontraeted into borders antcriorly : the former, slightly coneave, terminates between the eartilages of the first two ribs; the latter, irregularly convex, ends in the cariniform cartilage.

The Lateral Surfaces are broader anteriorly than posteriorly. The three foremost bones present broand, superficial, lateral eon-
cavities; the four hindermost, projeeting lateral borders, whieh ineline downwards and form the boundary lines between the inferior and lateral surfaces. The indentations upon the fore and hind parts of the separate bones, form, in the united state, laterel coneavitics for the reeeption of the eartilages of the ribs: the hindermost bone, itself, reeeiving two entire eartilages.

The Extremities are constituted of projecting eartilages. -The Cariniform Cartilaye, arising in a eurve from the inferior border, forms a prominent and remarkable eonvexity in front, flattened on either side, and affords attachment to the sterno-maxillares and sterno-thyro-hyoidei. The Xiphoid or Ensiform Cartilaye is fixed to the last bone, and assumes a form in some measure correspondent therewith, being broad and flattened above and below : it is terminated however by a thin horder, to the figure of which it owes its name, though this is subjeet to much variation.

GENERAL REMARKS ON THE THORAX.

Form. That of a truneated eone slightly ineurvated, the basis of which is eut obliquely, from abore downwards and from behind forward; the point of the apex eut off perpendieularly; the axis running in a direetion from the front baekward and downward.

Dimensions. The antero-posterior diameter is the greatest. As we approaeh the apex the perpendicular more and more exeeeds the lateral measurement; towards the basis, in consequence of the sides diverging, these two diameters become about equal.

Division. Into two surfaees and two eireumferenees.
Exterior Surface.-Presenting, anteriorly, the eariniform eartilage projecting from the sternum, with its sharp edge turned downwards, for affording attaehment to the peetoral museles; laterally, the eonvexities of the costal arehes and their eartilages, and between them the intereostal spaces filled by the intereostal museles; superiorly, the dorsal spines, transverse processes, and vertebral grooves; inferiorly, the sharpened lower border of the sternum, terminated by the xiphoid eartilage.

Interior Surface-Formed, below, by the ineurvation of the sternum and xiphoid eartilage; on the sides by the smooth eoneavities of the ribs together with their cartilages; above and along the middle, by the angular, smooth, descending portions of the bodies of the dorsal vertebre ; above and along either side, by an oblong fossa formed by the angles of the ribs,
into which are received the superior thiek borders of the lungs.

Anterior Circumference - Perpendicularly semi-oval, the small end turned downwards; bounded by the first dorsal vertebra, the first pair of ribs, and the sternum; making a passage for the trachea, œesophagus, longus colli, carotid arteries, jugular veins, vertebral arteries and veins, axillary arteries and veins, par vagum, sympathetie and recurrent nerves, and thoracic duct.

Posterior Circumference-Wide, but most extensive from above in the antero-inferior direction ; bounded by the last dorsal vertebra, the ensiform cartilage, the last two ribs, and the false eartilages; affording attachment to the abdominal museles, but more particularly to the diaphragm, by whieh the intervening space is occupied.

III.-THE PELVIS

Forms the posterior boundary of the trunk; is connected with the spine, and supported by the femoral bones; presents a large, irregular eavity, open before and behind, in which are containcd part of the intestines and the urinary and genital organs ; and is composed of four bones, -the sacrum and os coccygis, and the two ossa innominata.

the rump-bone. (os sacrum.)

Situation. At the superior part of the pelvis, continued from the vertebral chain between the ossa ilia.

Figure. Resembling the lumbar portion of the spine, from which it declines with a slight bend, presenting a convexity externally, a coneavity internally, thereby augmenting the area of the pelvic cavity.

Division. Into two surfaces, two borders, a base, and an apex.
Superior Surface-Very irregular. Presenting, 1st, On the mesian line, five considerable eminences, corresponding to the lumbar spines, from which they differ in sloping in an opposite direction, in increasing in breadth, while they diminish in length, from first to last. 2dly, Laterally, two superficial grooves, picrced by the four superior saeral foramina, through which pass out the superior sacral nerves.

Inferior Surface-Regular, smooth, and slightly concave. It presents-Four transverse lines of demarcation, denoting the original division of the bone into four separate pieces. These are bounded laterally by two superficial groores, pierced by four pairs of inferior saeral foramina, through which make exit the corresponding sacral nerves.

Lateral Surfaces-Thick anteriorly, growing thin posteriorly, and presenting slight protuberances, (corresponding to the vertebral transverse processes, which serve for the attachment of the sacro-iliac ligaments.

Base-Composed of a middle and two lateral parts. The middle presents a convex articulatory surface, transverscly oval, for adaptation to the last lumbar vertebra; surmounted by two articulatory processes, between which are received the last two of that name of the loins; and having on its sides two notches of conjugation for the last pair of lumbar nerres. The lateral or anterior transverse processes, broad, thick, and projecting, and triangular in figure, point forwards and upwards as well as outwards: superiorly, they have two surfaces of articulation for the ossa illa; anteriorly, two others which unite with the last transverse processes of the loins.

Apex-Presents also an oval surface, which articulates with the foremost bone of the tail; having on its sides two notches, for the fifth pair of sacral nerves; and, farther removed outward, two little posterior transverse processes.

The Sacral Canal for the spinal marrow is triangular in figure, and gradually contracts its diameter from before backwards.

Development. In the young subject this bone consists of five distinct and separable pieces, united, one to another, by a fibrocartilaginous substance which in the adult is converted into bone.

the tail-bones. (ossía coccygis.)

Situation. Behind the sacrum, to which the coccyx forms an appendix.

Form. (Of the coccyx entire.) Conical, elongated, and more or less curved.

Conformation. The coccyx or tail is constituted of several small bones resembling vertebre, varying in size and development, and also in number from thirteen to cighteen.

Division. As a whole, the coccyx presents for consideration two surfaces, two borders, a base, and an apex.

Superior Surface-Convex. The two and sometimes three first bones possess complete bony arches, from which arise one or two spinous eminences giving attachment to the erectores coccygis, and consequently they possess an uninterrupted spinal canal ; in the following two or three pieces, the spinal arch becoming gradually more defective, the closed canal degencrates into a chamel, open superiorly, and that in the four or five subsequent
pieces into a simple groove ; until at length all traces of such formation disappear.

Inferior Surface-Concavc. The first bone possesses breadth and flatness inferiorly, the same as a lumbar vertebra: the others display less and less of the vertebral character back to the fifth or sixth, after which they present angular borders. Into these parts are inserted the depressores coceygis.

Lateral Borders. The three or four anterior bones have transverse processes, increasing in length with their priority ; which give attachment to the sacro-sciatic ligaments, and also to the curvatores and compressores coccygis. The fifth and subsequent bones are nothing more than cylindrical forms, and differ in little else than in a regular respective diminution in volume.

Base-Presents an oval surface for articulation with the end of the sacrum; and also two little articulatory processes, receiving between them correspondent sacral eminences; and below these processes two notches, for the transmission of the fifth pair of sacral nerves.

Apex-Obtuse and rounded.

THE HIP, haUNCH, or EdGE BONES. (OSSA inNOMMNATA.*)
Situation. Forming the latcral and inferior parts of the pelvis.
Form. Very irregular: large and flat; broad at the extremities, which turn in different directions; middle portion contracted.

Division. Into two surfaces and four borders.
The External or Dorsal Surface-Divided by the contracted portion in the middle into two parts. The anterior part, also distinguished as the dorsum ilei, is even aud smooth, slightly concave, triangular in figure, and faces outwards and backwards : it affords attachment to the glutei, maximus et in-ternus.-The posterior division presents, outwardly, the acetabulum or cotyloid carity, hemispherical, nearly three inches in diameter, looking outwards and downwards, surromeded by a prominent lip of bone which is interrupted below by a noteh, and having a roughened aepression in its middlle into which is implanted the round ligament confining the head of the os femoris within the cavity; above and in front of the acetabulum the bone is depressed and roughened in two places from which takes root the bifureated tendon of the rectus

[^0]femoris; to the inner side of and below the cavity is the obturator foramen, a large oval opening, elosed by an expansion of ligament, throngh the anterior part of which is a perforation for the passage of the obturator ressels and nerves. Behind the foramen the surface is broad, even, and smooth, and gives origin to the abductor muscles of the thigh; above the foramen, it is smooth but rounded, over whieh part play the obturator internus and gemelli.

The Internal or Ventral Surface-Divided the same as the external. The anterior part faces inwards and forwards, is slightly and unevenly convex, has a superficial scabrous depression posteriorly, marking the place where the bone rests upon, and has strong ligamentous attachment to the transverse processes of the sacrum: the remainder of the surface below is occupied by the iliacus, the part above being opposed to the sacrum.-The posterior part is subdivided by a prominent border (upon which is a rough mark showing the point of insertion of the psoas parvus) into a small triangular superficial coneavity, looking forwards, which gives origin to the sartorius, and an extensive but irregular one direeted upwards; this last is much consumed by the obturator foramen, posteriorly to which the surface is remarkably smooth and slightly excavated for sustaining the bladder.

Anterior Border-Sigmoid in figure, slightly concave and thin in the middle; terminating, behind, in a sharp salient angle, the posterior iliae spine ; before, in a thiek quadrangular part which gives rise to four eminenees : the two larger ones are the anterosuperior and antero-inferior iliac spines; the two smaller, tubercles or appendices to them. The border itself is called the crista ilei. It affords attachment to the longissimus dorsi, obliqui abdominis, externus et internus, and transversalis abdominis.

Posterior Border-Having its anterior third thick and seabrous, where it is united through the intervention of fibrous cartilage with its fellow, forming the symphysis puhis; posteriorly to this, it grows thin, which part has also a ligamentous conncction with the opposite bone, and afterwards reeedes from its fellow, terminating outwardly in a thick, oblong, waving, ronghened prominence, called the tuberosity of the ischium, to which are attached the adductor magnus, bicep femoris, and abducior tibialis, and also the saero-sciatie ligaments.

The Superior Border-Extending from the posterior iliac spine to the isehiatic tuberosity, is waving in its course, forming an irregular semicirele, and presents along its anterior two thirds a sharp edge, which opposite to the aectabulum is roughened by the implantation of the sacro-sciatic ligaments; alter this $\begin{aligned} & \text { it } \\ & \text { is }\end{aligned}$
rounded by the play orer it of the obturator internus and gemelli, and at lengtl ends insensibly in the tuberosity. -There is a lesser superior border, rumning from the tuberosity to the acetabulum, whose posterior half is prominent, very sharp, and irregular, forming the ischiatic spine.

The Inferior Border-Describes a sigmoid flexure : it extends from the anterior iliac spine to the symphysis pubis. Its anterior third is sharp) ; about its middle is a medullary hole ruming backward; here it gives rise to two borders: one obtuse and smooth, ending at the edge of the acetabulum; the other, more prominent and sharp, is the linea ilio-pectinea, or brim or boundary of the carity of the pelvis, rumning onward to the symphysis. Upon its anterior part is a rough place, the iliopectineal eminence, marking the insertion of the psoas parvus; posteriorly are two rough eminences, with a groove between them wherein run the mited tendons of the psoas magnus and iliacus: to the outer one, the pubic spine, is fixed the external chord of the abdominal ring.

Connection. Anteriorly and inferiorly with the sacrum ; posteriorly and inferiorly and in the middle with each other; outwardly with the femoral bones.

Development. In the foctus this bone is separable into three distinetly formed pieces:- the ilcum, the largest division, the triangular plate in front; the ischium, the part projecting backwards; and the pubes, the inferior and middle portion. They all contribute to the formation of the acctabulum; the ischimm and pubes together form the obturator foramen. These parts specdily complete their bony union after birth; and the ischimen and pubes the soonest.

OF TIIE PELVIS IN GENERAL.

Division-Into cxtcrior and interior, inlet and outlet.
The Exterior presents-in front, the crest and anterior and posterior spines of the ileum; behind, the divergent tuberosities of the ischium ; on the sides, the triangular planes of the ilea which are clothed by the gluteal museles, the acetabula, and, between them and the ischiatic tuberosities, the rounded smooth surfaces of the ischia, over which play the rotating muscles of the haunch; above, the sacrum; below, the symphyses of the pubes and ischia; laterally and infcriorly, between the symphyses and the acetabula, the foramina ob,turatoria.

The Interior is divided into two eompartments by a prominent circumferent line forming the brim of the pelvis: the open irregular space before this line, is the inlet or entry; behind it, com-
mences the cavity of the pelvis, which again is bounded posteriorly by the outlct. The latcral walls of the cavity are formed principally ly the ilca; the ischia and pubes, united at their symphyses, including the ohturator foramina, are mostly consumed in completing the cavity below; while the sacrum alone constitutes the superior boundary. The supero-inferior diameter of the brim in the young subject exceeds the latcral; in the adult mare these two diameters, and also the antero-postcrior length of the cavity, measuring from the brim to the extremc points of the ischiatic tuberosities, are about cqual-about ten inehes.

The Intet displays-latcrally, the ilea, with their thin projecting anterior spinons processes; superiorly, the promontory of the sacrum and the sacro-iliac articulations; inferiorly, the grooves for the psoas and iliacus, and the symphysis pubis.

The Outlet presents threc notches: two lateral, very extensive; onc middle, considerably smaller. The two former, named the great sciatic notches, constituted by the postcrior borders of the ileum and ischium and the sides of the sacrum, are principally occupied by the sciatic ligaments, although they give transit to the pyramidal muscles, the gluteal and obturator vessels, and the sciatic nerves. The middle notch is the pubic arch, formed by the divergence of the ischiatic tuberosities: it is occupied in either sex by the urinary canal.

OF THE HEAD.

The head is an oblong quadrangular form, hroad and flattened on its sides, narrow and contracted anteriorly and supcriorly, bulky at the opposite points, hollow interiorly." It is remarkable for the prolongation and capaciousncss of the parts devoted to the formation of the nose and mouth, and for the diminished sphere of the cranium. It constitutes the anteriormost part of the skeleton, is articulated with the spine by which it is suspended, and is divided into cranium and face.

I. -THE CRANIUM.

The cranium or brain-case is but small when eompared with the bulk of the body in general: it forms the supero-posterior part of the head; is prominent and convex, superiorly and laterally ; irregular, and in places open, inferiorly; hollow and vaulted within. It is composed of ten picces-threc pairs and four single bones; viz., supcriorly and anteriorly, of the two frontals; superiorly and in the middle, of the parietal; supe-
riorly and posteriorly, of the occipital; laterally, of the four temporals; inferiorly and anteriorly, of the ethmoid; inferiorly and in the middle, of the sphenoid; inferiorly and posteriorly, of the oceipital bone.

FRONTAL BONES. (OSSA FRONTIS.)

Situation. The frontal bönes form the antero-superior part of the cranium, that broad flat part which we term the forehead, and which in the living horse is commonly marked with a pateh of white hair, denominated a star.

Fiyure-Irregular. Flat, superiorly; coneave, underneath.
Division-Into two surfaces and four borders.
The External Surface is flat and smooth, sometimes even slightly depressed in the situation of the frontal sinus. Projecting from it outwardly is the external orbital process, forming the frontal arch and articulating with the temporal bone; underneath, the arch is excavated for the reception of the lachrymal gland; and through its inward end is a hole, (in some rare instances, two,) the supra-orbital foramen, for the transmission of a small artery and nerve of the same name to the forehead; below the foramen, internally, is a small depression, marking the place of attachment of the eartilaginous pulley belonging to the superior oblique musele of the eye. From below and behind the arch proceeds downwards and backwards the internal orbital process or plate, divided into two by a noteh into which projects the wing of the ethmoid bone, whose extremity is received into a mortise formed within the base of this plate; this part also articulates, within the orbit, inferiorly, with the sphenoid, posteriorly, with the temporal, and, anteriorly, with the lachrymal and superior maxillary bones. The anterior portion of this process, behind, where it joins the sphenoid, is piereed by the internal orbital foramen, which gives passage to the lateral nasal nerve; the surface behind the posterior portion is smooth and depressed, making by union with it part of the temporal fossa.

The Internal Surface is divided by a vaulted eranial septum into two uncqual concavities: the posterior forms a cap, for the anterior lobe of the cerebrum, which rests upon the septum, the indentations upon the surface answering to the cerebral eminences; the anterior concavity constitutes the frontal sinus, whose interior is much enlarged by the slant taken by the septum, and the cavity continues to extend with age until it occupies the entire front of the bone. One frontal sinus is separated from the other by the nasal spine, composed of a
lamina from each bone; there are also several imperfect septa traversing the interior of each sinus, partially dividing it into as many different chambers.

Borders-Denticulated and squamous. The posterior or parietal is arched, describing segments of two distinct circles, one rumning from within outwards, the other from above downwards, and is overlaid by the parietal and temporal bones. The antcrior or nasal border is waving, inclines backwards as well as outwards, is terminated internally by the nasal process, and is overlapped by the nasal and lachrymal boncs. The frontal border is straight; broad and triangular anteriorly, where it forms the septum between the sinuses: it unites with its fellow; and has at the place of junction, internally, a slightly elevated longitudinal crest or spine, which with the opposite one forms a groove for the reception of the longitudinal process of the dura mater. The cthmoidal or outer border is irregular, forming a junction with the lachrymal and sphenoidal, and, by overlapping, with the ethmoidal bone.

PARIETAL BONE, (OS PARIETALE.)

Situation. Mesio-supcrior part of the cranium.
Figure-Symmetrical; quadrilateral ${ }^{3}$; vaulted : convex externally, concave internally.

Division-Into two surfaces and four borders.
The External or Convex Surface is divided longitudinally by a mesian crest, which is bifurcated anteriorly and marks the course of the suture existing in early life, into two lateral convexitics; these are most elevated towards the supcro-external angles, and their surfaces, though otherwise smooth, cxhibit a few scattered small foramina, and are imprinted by the continual action of the muscles covering them, the prints growing deeper with age; and, it appears, the general prominence less. The triangular space between the bifurcations of the crest generally rises above the level of the surrounding surface.

The Internal or Concuve Surface is divided into two concavities by an internal crest which is commonly double, having a longitudinal groove in the middle : it is terminated posteriorly by a three-sided process, the parietal protubcrance, to which, as well as to the crest itself, is attached the falciform process of the dura mater. In front of this projection the longitudinal furrow ends in the two transverse grooves, which run along the posterior border, between it and the temporal bones: the former lodges the longitudinal, the latter the lateral sinuses of the dura mater. The cavities themselves are adapted to cover the mid-
dle lobes of the cerehrum, by which they are indented; they also show the traces of the ramifications of the arteries supplying the dura mater.

Borders-Denticulated and squamous. The anterior is serpentine and unites with the frontal bones; the posterior lies upon the occipital bonc, and internally has two short bifid crests growing from it, forming sides of the transverse grooves, from which it extends down, on either side, to the wing of the sphenoid bonc; the lateral borders are irregular, and are overlaid by the temporal bonc.

Development. In the foal, indeed generally until the sccond or third ycar, a longitudinal suture is demonstrable, dividing this bone into two correspondent pieces.

OCCIPITAL BONE. (OS OCCIPITIS.)

Situation. Postero-superior and inferior parts of the cranimm.
Fiyure - Symmetrical; irregular : presenting convexities and projections outwardly; concavitics, and a large circular aperture inwardly.

Division-Into two surfaces, external and internal, and fow borders.

The External Surface is divided by a transverse mark into two portions, a super-occipital and a sub-occipital portion, which were once two separate boncs, and presents, 1st. Along its median line, and from above downwards, the occipital erest, bounding the cranium posteriorly, and giving attachment to the complexus; below this, the occipital tuberosity, to which is fixed the cervical ligament, with broad, rugged, posterior occipital depressions marked by the attachments of the recti capitis postici ; still lower, the occipital hole, transversely oval, and traversed by the spinal marrow and its membranes, the vertebral artery, and accessory and sub-occipital nerves; below aud in front of this hole, the hasilar process, articulating with the sphenoid bone, whose under surface shows the basilar fissure, triangular and widening in its course to the occipital hole, where it terminates: to this process are attached the recti capitis antici. 2dly. On each side, the continuation of the crest, desecnding to the root of the styloid process of the same bone, into which is implanted the obliquus capitis superior; below this, continued from it, the styloid process, whose length is regulated by that of the jaws, affording attachment to the obliguus capitis anticus; inwardly to this, bordering on the occipital hole, the occipital condyles, extending hackward for articulation with the atlas, and roughened upon their inner sides
by the insertions of the long odontoid ligaments; between the condyle and the styloid process, the condyloid notch; and in front of the condyles, the condyloid foramina, which are oceasionally double, for transmitting the lingual nerves.

The Internal or Cerebral Surface presents, superiorly, the oecipital cupola, for covering the cerebellum, by whieh the surface is indented ; below, formed in the basilar process, the basilar fossa, which supports the medulla oblongata upon its broadest and posterior part, the pons varolii upon its anterior and deeper part.

Borders. The superior is dentieulated and unites with the parietal bone; the infcrior or anterior, with the sphenoid; the lateral join the petrous portions of the temporal bones.

Development. In the foal this bone eonsists of four pieces ; in after age of two, the above described super-oceipital and suboccipital portions: in adult life it beeomes one entire bone.

TEMPORAL BONES. (OSSA TEMPORUM.)

Situation. Lateral parts of the cranium.
Conformation. They consist of four separate pieces, in pairs, each irregular in its form. One pair presents vaulted ovoid plates, surmounted by curved or hooked projections; the other are solid convex forms, remarkable for their hardness and whiteness.

Division. In man these pieces are united and are considered as the squamous and petrous portions of one bone: in the horse, although the same names are preserved, the portions are in reality distinct bones.

THE SQUAMOUS PORTION. (PARS SQUAMOSA.)

Presents two surfaees, an external and internal, and a circumference.

The External or Auricular Surface is convex, and has projceting forward from its middle in a eurvilinear direetion the zygomatie process ; this unites with a similar projection coming from the malar bone, the two forming the zygomatie arch, against whieh abuts the frontal areh : superiorly, this process presents a broad concare surface eontributing to the temporal fossa, and has a narrow sharpened convexity projecting upwards and backwards from it ealled the zygomatic erest; inferiorly, running transversely to its root, is the glenoidal eavity, for the reeeption of the eondyle of the inferior maxilla, bounded in front by a smooth transicrse eminenee denominated the articular from its being included within the temporary-maxillary articulation, and behind
by the anterior mastoid process, which deseends in the form of a conc, scrves to strengthen and limit the motion of the articulation, and gives attachment to part of the levator humeri. Bchind the root of the postcrior-articular process is the mastoid foramen, for transmitting blood-vessels to and from the temporal fossa. Farther backward is the orifice of the temporal conduit, which gives passage to a vein.

The Internal or Cerebral Surface is coneave, to contain and support the posterior lobes of the cerebrum by which it is imprinted, and displays several arborescent grooves, marking the eourse of the posterior arterial ramifieations of the dura matcr.

The Circumference, ovoid and clongated posteriorly, is denticulated and squamous, execpting at the posterior part, where it is joined to the petrous portion. The superior part lies upon the side of the parietal bone, and behind that upon a very small proportion of the occipital ; in front, it lies upon the frontal, and below upon the sphenoid.

the petrous portion. (pars petrosa.)

Is important from lodging the internal organ of hearing. It presents two parts perfectly distinct from each other in structure, position, and use ; one is external or mastoideal, the other internal or ecrebral. From the former projects downwards the posterior mammiform or mastoid process, in which is distinguished a base inferiorly, and a crest superiorly : the latter joins the oecipital crest. Below and rather towards the front of the process is the external orifice of the aqueduct of the vestibule; directly in front of the process is the external auditory meatus and foramen, surrounded by a jutting oval rim, notehed in the middle, which constitutes the auditory process; to the inner side of the meatus is the hyoideal proeess, surrounded by a prominent cireular edge, with whieh is comnceted the os hyoides. Behind the meatus is a general protuberanec, spheroid without, eavernous within, bottomed by a thin bouy shell, within whieh are enclosed the mastoid cells; proceeding from the inferior, anterior, and inner part of the bone is the styloid process; at whose root are two openings, one below for the Eustachian tube, the other above, the styloid foramen for the chorda tympani.

The Internal Part exhibits three surfaces for consideration. One superior and posterior, smooth though uneven, is exeavated for adaptation to the side of the cerehollum, by which it is impressed in places; it has a prominence ruming aeross its
middle, and just beneath this an irregular aperture, liaving interiorly two distinet passages, one terminated by a eul-de-sac, including a foramen, which leads to the eoehlea and eommunieates through some small pores with the labyrinth; the other, the internal auditory foramen, is for the conduit of the auditory nerves, and communicates with the aqueduct of the vestibule. Another surface, the anterior, contributes in a small degree to the formation of the eoneavity for the posterior lobe of the eerebrum. The inferior surface, parted from the superior by a fissure, is convex and prominent, but irregularly so : it constitutes the exterior wall of the labyrinth.

The petrous portion is reccived between the squamous and the oecipital hone, and though it is rarely found united with cither of them by bony matter, yet, loose as it is, it is so locked in that it cannot be disjointed but with considerable diffieulty and even fraeture of some part.

SPHENOID BONE. (OS SPHENOIDES.)

Situation. Inferior and middle parts of the eranium.
Form. It bears a striking resemblanee to a bird in flight, with its wings and legs extended: a eomparison that has given rise to its -

Division-Into body, alæ or wings, and pterygoid proeesses or legs: altogether presenting for consideration two surfaees and two borders.

The Inferior Surface, irregularly eonvex, is distinguishable into three parts :-a middle and two latcral portions. The middle, thick, prominent, eylindroid, and oblong from before baekwards, by its union with the basilar portion of the oeeipital bone and the body of the ethmoid, forms the base of the eranium: its porousness denotes muscular attachment. Between the middle and lateral parts, on either side, runs a narrow fissure denominated the pterygoid, whielı leads into two small canals, one entering the cavity of the nose, the other the orbital hiatus: this fissure affords a passage to the pterygoid branch of the portio dura.-The lateral divisions send forth by the sides of the fissures the pterygoid processes, which project downwards and forwards, form a union with the palate bones, and afford attachment to the iriternal pterygoid inuseles. At the bases of these processes are the pterygoid foramina; above and internally to the base is the orbital hiatus, a considerable aperture, obliquely ovoid from above downwards, opening into the back of the orthit, and including the supero-posterior and infero-posterior orbital foramina: the former transmitting the ophthalmie nerve
and artery, and the third pair of nerves; the latter, the superior maxillary nerve. Immediately over the hiatus is the opening of the eanal which conduets the pathetic nerve into the orbit: it is in part formed by the ethmoid bone.

The Superior or Cerebral Surface is unevenly concave, being impressed by the middle lobes of the ecrebrum, which it supports. It presents three general conearities:-a middle and two lateral. In the centre of the middle division is the pituitary fossa for lodging the gland from which it takes its name; it is bounded on the sides by the optie fosse, which are ocenpied, inwardly, by the optic nerves, outwardly, by the eavernous sinuses. Farther removed outward and forward is the foramen lacerum orbitale ; and immediately over it the spinal foramen, through which passes the pathetie nerve before it enters its eanal.

Borders. The Posterior or Occipital consists of an oval solid part in the middle, which is united with the basilar process of the occipital bone, and laterally, of two wide irregular notehes contributing to the formation of the foramina lacera basis cranii. -The Anterior or Palatine Border has a similar oval middle, joined to the ethmoid bone; and has a connection also with the romer.-Each Lateral Border is distinguishable into two parts: -a posterior, which is sealy and denticulated for adaptation to the squamous temporal bone; and an anterior or orbital portion, projeeted forward to unite with the anterior extremity of the same bone, and also with the ethmoid, while it forms the posteriormost part of the orbit.

Connection-With the oeeipital, ethmoid, and squamous temporal bones; also with the palate bones and vomer.

ETHMOID BONE. (OS ETHMOIDES.)

Situation. Antcro-inferior part of the cranium ; immediately hefore the sphenoid bone ; where it constitutes the partition between the cramial and nasal cavities.

Form. One portion, the posterior, bears a resemblance to a bird with its wings extended, as in the aet of flight, having no legs, but a long erected neek and a small round head: the anterior part consists of a thin, brittle, porous, spongy strueture, of considerable volume.

Division-Into a middle and two lateral parts.
The Middle Portion is large in bulk, consisting of a body behind, and of two voluminons spheroid spongy masses in front, parted by a septum. The body is ollong from before backwards, concare superiorly, conves inferionly, and interiorly
formed into two eoneavities, the ethmoidal sinuses; these are divided by a broad perpendicular plate, which extends upwards to unite with the nasal spine; (the partition between the frontal sinuses;) below, it is received into the groove of the vomer ; while in front it sustains the eartilaginous septum of the nose, the septum nasi ; altogether eompleting the division of the nasal cavity into two chambers: the ethmoidal plate itself is composed of two thin laminæ which in old subjects become consolidated into one. Posteriorly, on either side, the body presents the optic hiatns, transverscly oval, leading to the optie foramen; the posterior surfaee is oval to form a junction with the sphenoid bone. Arising from the upper and fore part of the body is a pyramidal eminence somewhat eurved, callcd the crista galli : it sustains in front the perpendicular plate, the falciform process of the dura mater behind, while from its sides extend the cribriform plates-two ovoid, thin, brittle lamella, which are reecived between the frontal orbital plates and the floors of the frontal sinuses, pierced by numerous small holes for the transmission of the filaments of the olfactory nerves, and whose concave eerebral surfaces are denominated the ethmoidal fosse and are occupied by the olfaetory sinuses. To the outer side of cither fossa opens the internal orbital foramen; from which a fissure runs upward to the part of the cribriform plate comnected with the principal eornu of the ethmoidal cells.

The Ethmodar Celle, the voluminous stiueture protruding from the front of the cribriform plates, eonsists of a great many thin, brittle, porous osseous plates, euved or rather convoluted so as to form numerous narrow, elongated, cornuform sinuses, rendered separate and distinct from one another by intervening longitudinal groores, with which from above they all in common have communication. These canals proceed, converging a little as they advance, to terminate underneath the superior turbinated bone, at the baek of the nasal fossa, within a spaee communicating with the middle meatus. The anteriormost cornu or cell is conspicuously long and capacious: the rest inerease in dimensions according to their proximity to this large one. Issuing from the front of the eells is a broad, thin, funnel-like process, which unites with the supcrior turbinated bone and forms a sharp prominent crest, serving as an imperfect septum between the frontal and maxillary sinuses.

The Lateral Portions, alæ or wings, display more convexity than coneavity superiorly, the revcrse inferiorly: they originate from the supero-lateral parts of the body; eonsist of thin, flexible plates; spread outward and uprard, contributing to the posterior and inward parts of the orbits, and terminate in scmi-
circular borders, sloped off behind, which, posteriorly, lie upon the wings of the sphenoid, laterally, are embraeed by the bifid orbital plates of the frontal bone, and, in fine, received into the mortise of the same. Upon their internal surfaces the ale support the anterior lobes of the cerebrum : their opposite surfaces constitute within the orbits the ossa plana.

Connection-With the sphenoid and frontal, the vomer and superior turbinated bones; and with the eartilaginous septum of the nose.

II.-THE FACE.

The face constitutes the antero-superior, anterior, and inferior parts of the head, making altogether (including the inferior maxilla) about four fifths of the whole : it is the part to which the head owes its prolongation anteriorly, and principally its lateral breadth. It is bounded, behind, by the cranium ; at the sides, by the zygomatic and orbital arches; infero-posteriorly, by the ethmoid and sphenoid bones, and the basilar process of the occipital. It is composed of two perfectly distinct and separable parts; viz., the superior maxilla or syncranium ; and the inferior maxilla or diacranium : the latter consists of a single or indivisible piece, ealled the lower jaw ; the former or upper jaw is constituted of seventecn picces, but which are elosely and immoveably united; viz., the nasal bones, the superior and anterior maxillary, the malar, the lachrymal, the palatine, the superior and inferior turbinated, and the vomer : the tecth are equally distributed between the jaws. First, of the superior maxilla.

NASAL BONES. (OSSA NASI.)
Situation. Superior part of the face ; where they constitute the roof of the cavity of the nose.

Fiyure - Vaulted, thin, clongated; mostly convex externally, concave internally ; broad posteriorly, tapering and terminating in a sharp point anteriorly : the single bone represents the section (about one third) of a hollow cone, split longitudinally ; the two bones together form the outline of a heart as painted on cards.

Division-Into two surfaces, two borders, a base, and an apex.
Surfaces. The External is not merely smooth; it is polished. It is not everywhere uniformly convex : indeed, the sides are towards their middle slightly concave; and the outward side is most depressed.-The Inlernal Surface is concave, that it may enlarge the area of the cavity of the nose: the chamel it forms
is the nasal fossa, the posterior and inferior parts of which are occupied by the superior turbinated bone; the unoecupied part constituting the upper nasal meatus. Posteriorly, between the two bones a sinus is formed, whieh, though sometimes called the nasal, proves to be nothing more than the anterior ehamber of the frontal, the two uniting into one cavity.

Borders. The Superior is straight; but its edge is turned inward, forming a sort of internal crest, which along with its fellow is embraced by the superior border of the cartilaginous septum of the nose. Along their superior borders the two nasal bones are united-in the young subject by a sort of mortiseconnection ; in the adult, by a suture half denticulated and half plain or smooth-edged. The Inferior Border is waving, and is denticulated and mortised in its articulation with the superior and antcrior maxillary bones ; it is united also by denticulation with the lachrymal.

The Buse has its border broadly sloped off and denticulated, and is united with the frontal bone, lying upon its anterior border.

The Apices of the two bones form together the nasal peak ; a perfectly insulated or unconnected and remarkable projection, which gives support to the nostrils, and has attaehed to it the dilatator narium anterior.

Connection-With the frontal, superior and antcrior maxillary, and lachrymal bones: the two together maintain, superiorly, in its place, the septum nasi.

SUPERIOR MAXILLARY BONES.

(OSSA MAXILLARIA SUPERIORA.)

Situation. Supero-lateral parts of the face.
Figure-Trilateral : thick in the middle ; posterior part, gib)bous; antcrior, thin, tapering, and laminous.

Division-Into thrce surfaees, two extremitics, and three borders.

The External or Facial Surface is partially subdivided into antero-superior and postcro-inferior portions by a protuberant ridge named the superior maxillary spine, which forms one continuous line with the zygomatic spine and ends abruptly opposite to the third molar tooth : the upper subdivision is mueh the larger, and affords attachment to the masseter. Rather above the middle of the upper surface opens the infra-orbital foramen, traversed by blood-vessels and nerves bearing the same name.

The Inferior or Palatine Surface exhibits the concave side of
a vanlted, demi-arched, oblong plate, called the palatine proecss or bony palate, which forms the partition between the eavities of the nose and mouth : posteriorly, this plate denticulates with the palate bone; anteriorly, with the anterior maxillary bone. The surface is bounded along the outer side by the alveolar proeesses, and between it and them runs a groove for the conduit of the palatine artery.

The Superior or Nasal Surface forms the outer side and half of the floor of the nasal eavity. Like the inferior surface it is concave, but unevenly so, being more excavated towards the posterior than the anterior part: in fact, the broad channel formed by both bones constitutes three forrths of the bony parietes of the nasal carity. To a longitudinal spine rmoning along either side of this chamel is attached the inferior turbinated bone, dividing it laterally into two canals, named the inferior and middle meatus. At the supero-posterior part of the nasal chamber, bechind the superior turbinated bone, the maxillary simes opens through an oval aperture into the middlle meatus: within the meatus itself, anteriorly to this, arehed over by a little transverse eminence, is the orifice of the lachrymal conduit, which is traversed by the lachrymal duct.

Extremities. The Posterior swells into a large rounded protnberance, the maxillary tuberosity ; between which and the palate bone is a hiatus presenting three apertures: one is the posterior palatine foramen ; another, the anterior palatine foramen and conduit leading to the palato-maxillary canal ; the third is that of the infra-orbital eanal, leading to the foramen of the same name. To the outer side of the tuberosity is the malar process, articulating with the malar and lachrymal bones and the zygomatie process of the temporal. The Anterior or Dental Extremity is pyramidal and laminous, and contains an incurvated, conoid, alveolar cavity for the lodgement of the tusk : it denticulates with the anterior maxillary bone.

Borders. The Superior or Nasal is laminous to be united to the nasal bone ; and has a mortise in its fore part to receive the border of the anterior maxillary bone. The Inferior or Alveolar Border presents two parallel plates divided by transverse septa into six quadrangular cavities, the alveoli, for the implantation of the molar teeth. Behind the last molar tooth is the alveolar. tuberosity, a rugged eminence giving attachment to the pterygoideus internus. The Internal or Palatine Border denticulates with its fellow.

Connection - With the squamous temporal and nasal bones ; and with the anterior maxillary, malar, lachrymal, palate, and inferior turbinated bones.

ANTERIOR MAXILLARY BONES.

(OSSA MAXILIARIA ANTERIORA.)
Situation. Supero-anterior and antero-lateral parts of the face. Form-Irregular ; eonsisting of a broad, thiek portion or base, turned forwards, from which is sent off a thin flexible plate ; and a narrow, elongated, tapering portion, turned baekwards.

Division-Into three surfaees and three borders.
Surfaces. The superior or nasal surface is smooth, eonrex, and oblong ; more extensive externally than internally ; and free from all connection, it forming one side of the nasal space, in correspondence with its fellow. Outwardly, it affords attachment to the nasalis brevis labii superioris; inwardly, it is invested by the pituitary membranc. The inferior or palatine surface is vaulted, it contributing to the formation of the palate : within it, of an oval form, is the interdental space, whieh is oeeupied by two thin flexible plates, the palatine processes, denticulating along the sides with each other. In the side of the bone is a deep hollow, for the reception of that portion of the superior maxillary bone whieh holds the tusk; and the remainder of the surface, posteriorly, is articulated with the same. The anterior or labial surface is broad, smootl, and convex, and gives attachment to the depressor labii superioris, the gums, and the membranous and cellular tissuc entering into the composition of the upper lip.

Borders. The anterior border is broad and curved, and is composed of two laminæ, formed apart and divided by five transrerse septa into six conical alveolar cavities, for lodging the incisive tecth. Thre posterior border is narrow and sloped off, and dentieulates with the nasal bone. The internal border is broad, quadrilateral, and eurved, and denticulates withits fellow, forming thereby the superior maxillary symphysis, through whieh runs the foramen incisirum, for the transmission of the palatine arteries.

Particularities. These bones are remarkable for smoothness of surfaec, and eloseness and hardness of texture. They are united at the symphysis, in the young subjeet by a fibrous eartilage, in the adult by osseous matter; so that, by maecration, they are separable in the one instance, inseparable in the other. Their alveolar eavities increase in number and size with the age and growth of the animal.

Connection - With the superior maxillary and nasal bones, and with each other.

malar bone. (ossa malarum.)

Situation. Autero-external part of the orbit.
Figure-Irregularly triangular, presenting a broad basis forwards.

Division-Into three surfaces, three angles, a basiform and an apiform cxtremity.

Sureaces. The internal or facial surface is divided into two portions by the zygomatic angle or spine: the upper division is smooth and nearly flat, with the exception of a depression anteriorly, which marks the attachment of the nasalis longus labii superioris ; the lower part is narrow, and roughened by the adherence of the masscter. From this surface, posteriorly, arises the zygomatic process, which is very obliqucly sloped off, and laminated for adaptation to the process of the sance name, mecting it from the temporal bone, the twotogether forming the zygomatic arch. The internal or maxillary surface is concave, to enlarge the capacity of the maxillary sinus, to which it contributes. The orbital surface presents a smooth concavity, which forms the infero-external part of the orbit, and is scparated from the facial surface by the orbital angle.

Angles. The inferior angle constitutes the principal part of the zygomatic spine: it is continuous with the temporal bone behind, and in front by the superior maxillary. The superior angle is lunated, and constitutes the infero-external portion of the orbital circumference. The posterior angle, or rather border, is jagged and irregular, and unites with the superior maxillary bone.

Extremities. The anterior extremity or base is broad, irrcgular, and denticulated, and articulates with the superior maxillary and lachrymal boncs. The posterior or apiform end forms the zygomatic process.

Particularities. Thesc bones contribute to the formation of the orbits, maxillary sinuses, and zygomatic arches, and their articulations exhibit a sort of dove-tail mechanism.

Connection-With the temporal, superior maxillary, and lachrymal boncs.

lachrymal bones. (ossa lachrymalia.)

Situation. Antcro-cxternal part of the orbit.
Form - Trrcgularly infunctibuliform.
Division-Into threc surfaces and five borders.
Surfaces. 'The external or facial surface, triangular', flattened, and smooth, is bounded, laterally, by the external and internal facial borders; superiorly, by the orbital ridge. It exhibits, a little above its centre, a rounded eminence, the lachrymal tubcrele, to which is fixed the orbicularis palpebrarum. The internal surface is concave, but very irregularly so, being divided into two hollows by a cylindrical promincuce, caused by the lachrymal conduit. It constitutes part of the roof of the maxillary simus.

The orbital surface is triangular and smooth, decply exearated in front, extended and flattened posteriorly, and makes the antero-external side of the orbit. In the excarated part arc observable-a eircular depression, marking the origin of the short oblique musele of the eye, and, before the depression, the lachrymal fossa, a fumnel-shaped hollow, forming the entrance into the laehrymal eanal : within the hollow reposes the lachrymal sae ; the eanal is traversed by the laehrymal duet.

Borders-Denticulated, with the exception of the nasal, which is plain. The external faciul border articulates with the malar bone; the internal facial (ineluding the nasal border), with the nasal and frontal bones: the external orbital border unites with the malar and maxillary bones; the internal orbital border with the frontal bone.

Particularities. A semi-transparent bone, important from its conneetion with the laehrymal apparatus.

Connection. With the frontal, nasal, malar, and superior maxillary bones.

PALATE BONES. (OSSA PALAT1.)

Situation. Infero-posterior part of the faee, adjoining the base of the eranium.

Figure. One portion is semi-cireular; otherwise it is irregular.
Surmaces.-The palatine surface is that whieh is turned downwards, and contributes to the formation of the palatine arel. The nusal surface, the broadest, coufronts its fellow, the two forming the sides of the posterior opening of the nose : its superoposterior part is picreed by the posterior palatine foramen. The orbital surface is in part smooth, where it enters into the composition of the baek of the orbit; and in part rough and laminated, where it artieulates with the superior maxillary bone: the latter portion exhibits the palatine eanal, which leads to the anterior palatine foramen. Between this and the superior maxillary bone, a hiatus or sort of vestibule is left vaeant, in whieh is observable the posterior opening of the foramen above mentioned, besides two others formally deseribed. The ethmoidal surface is divided from the nasal by the palatine erest, to which the vomer is joined : it is oblong and concave, and constitutes the floor of the ethmoidal simus, possessing several irregular ridges, which form so many imperfeet septa, projceting into the eavity.

Borders.-The palatine, round, smooth and lunated, forms the eircumferent boundary-line of the posterior opening of the nose, and affords attaelment to the relum palati : from it, poste-
riorly, desends the styloid process, whose extremity, in the recent subject, is provided with a cartilaginous pulley, in whieh rums the tensor palati ; the posterior side of the process is rough and laminated for articulation witl the pterygoid proeess of the sphenoid bone. The supero-lateral and infero-lateral borders unite with the superior maxillary bone: the former has also a connection with the inferior turbinated bone : these borders are both denticulated.

Extremities. - The posterior or orbital is expanded, and is received between the frontal and ethmoid bones: the anterior extremity is narrow, incurvated npwards, and joins its fellow.

Particularities. The styloid processes, or rather epiphyses, are rarely preserved disunited and entire after maceration, owing to the late period at which they continue to be ligamentons at their roots, as also to the length, slendermess, and eonsequent frangibleness of them.

Connection. With the frontal, ethmoid, and sphenoid; and with the superior maxillary, inferior turbinated bones, and romer.

THE TURBINATED BONES, SUPERIOR AND INFERIOR.

 (OSSA TURBINATA, SUPERIORA ET INFERIORA.)Situation. Within the ehambers of the nose, attaehed to the onter walls; the superior above ; the inferior below.

Form. Oblong, thin, foliated, eonvoluted, cavernous.
Division. Into external and internal surfaces; superior and inferior extremities.

Surraces.-Porous. The extermal is convex ; and presents series of longitudinal grooves, disposed in an arboreseent manner, which mark the ramifieations of very small blood-vessels. In eonsequence of the bone beingrg rolled up or twisted round itself after the fashion of a turban, the outward snperficies becomes extensive, althongh it diminishes in breadth beyond the exterior, from the internal convolution being, in course, smaller than the external. The internal surface, or opposite side, is coneave, and, like the former, necessarily diminishes as it proceeds inward. 'The interior itself is eavernous, or rather eellular', being unequally divided by transverse septa into several little simuses or eells, communicating through small apertures one with another, and through the intervals between the eonvolutions, with the middle nasal meatus.

Extremities. - The posterior or busiform, are broad; their interior is capacious, and opens superiorly; and they communieate with the sinuses immediately behind them. The anterior or api-
form extremities are contraeted and closed ; and give oriein, in the recent subject, to two cartilaginous productions, which project into the ehambers of the nose.

Particularities. These bones are four in number' : two superior, and two inferior. They are thin, and porous or spongy in their texture ; brittle, and yet possessing sufficient elastieity to cnable them to resist considerable pressure, and withstand, without fracture, any ordinary injury.

Difference. Thic superior bone exceeds in volume the inferior, and makes its convolution from bclow, its upper border being attached; whereas, the reverse is the case with the inferior one.

Connection. The superior bone is conneeted, above, with the ethmoid ; and laterally, with the nasal bone. It eontributes to the formation of the anterior part or floor of the frontal sinus. The inferior turbinated is fixed to the superior maxillary bone.

THE VOMER.

Situation. Along the fioor of the nose, preserving the median longitudinal line dividing the chambers.

Figure. Elongated: posterior portion, broad, quadrilateral, and flattened; anterior, narrow, grooved, and lengthened.

Division. Into two extremities and two borders.
Extremities.-The Posterior or broad part cehtibits a lower surface, somewhat convex, which is smooth and free; an upper surface, somewhat eoncave, which embraces and almost conceals the body of the ethmoid bone; " superior crescentic border, between which and the ethmoid is a narrow hiatus, giving passage to some blood-vessels and nerves to the septum narium; two lateral borders, united with the palate bones; and four cormu or projecting acuminated ends, the two superior articulating with the sphenoid bone, the inferior with the palate bones. 'Ine anterior extremity is broader than other parts of the groored slaft, in eonsequence of being flattencl above and below; it reaches as far forward as the palatine processes of the anterior maxillary bone.

Borders.-The superior presents a long narrow chasm or groove, decper posteriorly than anteriorly, which receives the cartilaginous partition ealled the septum narium. The inferior border is semi-cylindrieal, and presents a posterior part, smooth and free from any conncetion; and an anterior, whiel denticulates with the palatine processes of the superior maxillary bone.

Connection. With the ethmoid and sphenoid, and with the superior and anterior maxillary and palate bones.

THE INFERIOR MAXILLARY BONE. (OS MAXILLARE INFERIUS.)

Constituting, by itsclf, the inferior maxilla, or lower jaw.
Situation. Composing the infcrior and postcrior parts of the face.

Form. Symmetrical, bearing much resemblance to the lefiter \varangle; the angular or narrow part being presented forwards, the sides diverging and opening backwards.

Division. Into borly, neek, sides, and limbs or branches, together with their respective exterual and internal surfaces and borders.

The body is the anterior undivided portion, reaching back so far as to include the tusks within their sockets. The neck is the eontracted part springing from the body ; the two together forming a solid bond of union between the sides, sustaining them, together with the branches, in immovable relative position. In the young subject, a longitudinal median suture, named the inferior maxillary symphysis, divides the bone at this part into separable symmetrical halves; bony union, however, solidifies the two early in life, after which they are no longer distinet pieces. The externul surface of the body is eonvex and rounded, and in places rough and porous, from the attachment of the levator menti and gums. A groove across the neck marks the course of the former symphysis. At the place where the neek joins the side, near the superior border, is the anterior maxillary foramen, which forms the outlet of a canal running between the lamine of the bone along the roots of the molar tecth : it is traversed by the third division of the fifth pair of nerves. The internal surface of the body is slightly concave, and is rough and porous from the attachments of the gums and membrane of the mouth ; that of the neek forms a channcl for the tongue, and receives the insertion of the frenum linguæ. The border projects forward, forming a parabolic curve, and presenting, superiorly, conical alveolar cavitics for the six lower incisive tceth and the two infcrior tusks ; posteriorly, on the neek, the border rises into a sharp edge, which is rendered less prominent in old horses, in consequence, it would appear, of the repeated pressure and friction of the bit.

The sides are the parts eomprehended between the neek and the branches : they support all the inferior molar tecth. They inerease in breadth from before baekward, are flationed laterally, and present external and internal surfaces, superior and inferior borders. The surfaces, though, generally speaking, they may be pronounced to be flat, possess a degrec of prominence in carly and adult life which they lose in age : this may be ascribed in part to
the tectl, aud in part to the comparative porousness or ineompaetness of strueture of the young bone. The external surface is occupied by the depressor labii superioris; the internal by the muscles of the hyoidean region. The vaeuity between the sides takes the name of inter-maxillary space.-Of the borders, the superior exhibits twelve quadrangular alveolar cavities for the molar teeth, formed by the separation of the laminæ eomposing the bone, and the addition of so many transverse thin partitions or septa. The inferior border is thiek, round, and smooth in early life; but, as age advances, grows thin, sharp, and irregular.

The branches, the parts direeted upwards, are broad, thin, and slightly curved ; and offer for notice two surfaces, two borders, two processes, and a noteh. The surfaces are gencrally smooth, though they exhibit marks of museular attachment : the external one is elothed by the masseter ; the internal, by the pterygoideus internus; the latter, also, is piereed a little behind the last molar tooth, by the posteriormaxillary foramen, whieh forms the entrance to the dental eanal, the anterior maxillary hole being its outlet. The borders: - Theposteriorisbroad, and roughened by the attachment of the stylo-maxillaris and masseter : the part where it makes its eurvature to join the side is called the angle of the jaw. The anterior border is thin, and presents a sharp edge, turned inwards : it gives attachment to the buecinator and depressor labii inferioris. Processes:-The posterior border is surmounted by the condyle,- the transverse, cylindroid, smooth eonvexity which is reeeived into the glenoid eavity in the temporal bone. The anterior border ends in the eoronoid process, which is flattened on its sides, has sharpened edges, and is slightly eurved baekwards; into it is implanted the temporal musele. Between the two proeesses is the corono-condyloid notch, which affords space for the motion of the jaw, as also for the insertion of the temporal musele.

III.-THE HEAD IN GENERAL.

We shall now take a review of the head in its entire or articulated state, making, to facilitate the description, a

Division of it into External and Internal parts.

The External Parts

may be conveniently distinguished into superior, posterior, inferior, and lateral surfaces; and each of these surfaces admits of a further subdivision into cranial and facial regions.

THE SUPERIOR EXTERNAL SURFACE comprehends-

1. The superior cranial region, in which we find several zigzag denticulated lines, denominated sutures, indieating the boundaries and articulations of the several individual bones.

In this region, commencing from its anterior limits, we observe the frontal suture, formed by the articulation of the frontal bones; surmounted by a transverse serpentine one, the coronal suture, showing the line of junction of these bones with the parietal ; next, the parietal prominences, bounded posteriorly by the lambdoidal suture, whieh joins the oceipital with the parictal bones: lastly, forming the posterior boundary of the region, the occipital crest.
2. The superior facial region, continuous, behind, with the last-described region, presents to view, commeneing from its posterior boundary, the transverse suture, the line of union between the bones of the cranium and those of the faee, joining the frontal to the nasal and laehrymal bones; eontinued forwards, in a direet line with the frontal, the nasal suture, whieh unites the nasal bones: this suture runs within a sort of hollow from the bone, on its sides, rising into the nasal prominences : these are bounded laterally by the lateral nasal sutures, formed by the junetion of the nasal with the maxillary bones, both superior and anterior. The nasal peak is the united apiees of the nasal bones, projecting forward over the anterior nasal opening; whieh aperture is bounded laterally by the superior convex surfaces of the antcrior maxillary boncs, and in front is oviform and contimued into the superior maxillary symphysis, through whieh runs the foramen incisivum: lastly, the superior atveolar processes, and the incisive teeth, ranged in a row and fixed within the alveolar cavities.

The POSTERIOR SURFACE is entirely cranial: it is bounded, superiorly, by the occipital crest, and, inferiorly, by the occipital hole; it presents the occipital tuberosity, and on its sides the broad posterior occipital depressions, deeply and ruggedly pitted by muscular attaelıments ; also, projeeting from the postero-latcral parts of the foramen magnum, the occipital condyles.

The INFERIOR SURFACE eomprises-

1. The inferior cranlal region, whieh is bounded, posteriorly, by the oceipital hole and condyles; anteriorly, by the romer and palate bones; laterally, by the zygomatic arches. Procceding from behind forwards, we obscrye - 1st, along the median line, the basilar process, impressed by the basilar fissure; the condyloid foramina on its sides, near the roots of the condyles; "semicircular prominence denoting its junction with the sphenoid hone; the borly of the sphenoid bone, its articulution with that of the ethmoid, and a small semihmer portion of the latter left risible within the crescentie border of the romer. 2d, On either side, the orcipital styloid fromess: between it and the condyle, the
ocripital notch ; in front of the noteh and root of the oceipital styloid projection, the petrous portion of the temporal boneexhibiting, posteriorly, the posterior mastoid process, having at its root the external orifiee of the aqueduct of the vestibule: directly in front, the auditory process and meatus, at the imner side of whieh is the hyoideal process; behind the meatus are the mustoid cells :" projeeting from the inner and anterior part, is the slender temporal styloid process, having at its root the Eustachian opening and styloid forcmuen. In front of, and rather outwardly to the petrous portion, we observe, - ithe anterior mastoid process ; at its root, the mustoid foramen : extending outwardly, in front of it, the glenoid cavity, bounded anteriorly by the temporal articular process. The foramen lacerum is the large irregular opening formed by the oecipital, temporal, and sphenoid bones, comprehending the tempero-occipital and spleeno-occipital liatus, and traversed by the internal earotid artery, the jugular vein, the eighth pair of nerves, and the inferior maxillary nerve. This foramen is bounded in front by the ala of the splienoid bone, whose borders are joined to the temporal and ethmoid bones by the sphenoidal suture. Curving forwards and downwards from the ala is the pteryyoid process: it articulates along its front part with the palatine styloid process, whieh is eomparatively slender and deseends beyond it. At the root of the pterygoid proeess is scen the pteryyoid foramen, forming one continued passage with the infero-posterior orbital hole.
2. The inferior facial region eonstitutes the remainder of the inferior surface: it is bounded, posteriorly, by the sphenoid and ethmoid bones; and, anteriorly, by the incisive tee th. Beginning from behind, we perceive,-in the middle, the broad part of the vomer, embraeing the body of the ethmoid; and its superior cornua extending under that of the sphenoid bone, at whose points are found the spleno-palatine foramina, whieh open again under the infero-posterior orbital : anteriorly to this it articulates with the palate bones, both laterally and along their mid-dle.-Latcrally, the palatine styloid processes, and the nasal and prelutine surfaces and border's of the palate bones, by whieh latter is formed the posterior oprening of the nose: this aperture in its general figure is oval lengthwise, and is equally divided into two semilunar halves by the shaft of the vomer, about one third of whose length is seen through the orifice. Farther outward, on the sides of this opening, the maxillary tuberosities; immediately above them, the maxillary hiatus, or entranee to the posterior palatine foramen, the infra-orbital canal, and the anterior palatine conchit; extending forward from the tuberosities in parallei lines, the alveolar processes and ravities for the twehe stperior molar
teeth; from which project inward the palatine processes belonging to the same bone, joined by the palate bones above, and the palatime processes of the anterior maxillary bones below: these parts, altogether, constitute the bony palate. The anterior third of the palate takes the name of interdental space; it is, in fact, a longitudinally oval interval, which is incompletely filled by the anterior palatine processes. At the junction of the contributing portions of the palate and maxillary bones to the palatine arels, opposite and near to the last molar tooth, is the pulato-maxillary foramen; from which takes its rise the palato-maxillary canal, whieh courses the roots of the alveolar processes, and conducts an artery of the same name forwards. Along the middle of the areh runs the palutine suture, uniting the palate and superior and anterior maxillary bones of one side to their fellows on the other. At the external borders of the interdental space, formed by the superior and anterior maxillary bones, are the alveolar cavities for the tusks, commonly nearer by about one third to the corner incisive than to the first molar tecth. The symphysis of the superior maxilla continned in a line from the palatine suture; piereed by the lower opening of the forcmen incisivum, which is situated at the roots of the antcrior palatine processes, and gives passage to the palato-maxillary arteries. The anterior maxillary surface is vaulted in front, to extend the superficies of the palate. In conclusion, we have the inferior alveolar processes, alveolar cavities, and inferior surfaces and faces of the incisive teeth.

Eaci LATERAL SURFACE ineludes-
I. Tue lateral cranial region, which is bounded, posteriorly, by the occipital erest and condyloid process; anteriorly, by the orbit. It presents to observation-one side of the occipital crest, descending to the base of the styloid process, whenee a sharp ridge extends from it to the zygomatic erest, which ridge forms the inferior boundary of the temporal fossa. The external side of the occipital styloid process, roughened from the attachment of the stylc-maxillaris. The petrous portion of the temporal bone, loeked in between the squamous portion of the same and the oecipital bone, comprising-the mastoid process, in apposition with the base of the occipital styloid process behind, and with the descendimy plate of the squamous portion in front. Withn a circular space formed by this plate behind, and the anterior mastoid process before, protrudes the auditory process, to which is attached the external car: it is perforated by the meatus cuditorines externus, whose orifiee is expanded or trumpet-shaped. The temporal zyyomatic process is continuous, posteriorly and inferiorly, with the anterior mastoid; at which part its surface is exeavated to make room for the attachment of the extermal ear :
from this the proeess curves upwards and ontwards, and subsequently forwards, in the form of an arch, meeting on the outer side of the orbit with the zygomatic process of the malar bone, and articulating with it through the zyyomatic suture, the two completing the zygomatic arch, against which abuts the frontal arch. The zygomatic crest and the articular process, the one rising, the other descending, from the temporal part of the arch, are also observable.
2. The lateral facial region extends from the orbit to the incisive teeth. It is partially and very unequally divided into superior and inferior departments by the zyyomaiic spine; which arises from the infero-external and anterior part of the arch of the same name, reaches forward about one third of the length of the face (measuring from the orbit), and ends abruptly: the inferior depart. ment is occupied by the massetcr, to which the spine gives attachment ; the superior, by much the most extensive surface, exhibits, a little higher than its middle, the infra-orbital foramen; near the imer angle of the orbit, the lachrymal tubercle; between the foramen and the tubercle, a depression, marking the attachment of the nasalis longus labii superioris; anteriorly, a superficial hollow, denoting the place of attachment of the caninus: besides these, various other muscular impressions are pereeptible. The sutures displayed upon this surface are,-the lateral nasal, extending from the transverse suture to the lateral opening of the nose, and uniting the nasal to the lachrymal and superior and antcrior maxillary bones; the malar suture, running transversely downward and outward from the lateral nasal, and comnecting the superior maxillary to the lachrymal and malar bones; the luchrymal suture, extending perpendicularly backward from the malar, and continuing its course within the orbit, uniting the lachrymal and malar bones; the maxillary suture, extending obliquely, forward and downward, from the anterior part of the lateral nasal, and joining the superior and anterior maxillary bones. Supero-anteriorly (in relation to this surface) we perceive one of the lateral openinys of the nose, bounded in front by the nusal peak, behind by the superior or convex border of the anterior maxillary bone. In front of this border, the bone shows the surfaee for the attachment of the depressor labii superioris. From the inferior parts of this region project the molar, canine, and lateral incisive teeth.

INTERNAL PAR'TS:

C'omprehending the Cavities of the Cranium, Orbit, Nose, cund Moutl.

I.-Cavity of the cranium.

Construeted for the lodgement of the brain with its appendages : is in form ovoid, flattened inferiorly, broader anteriorly than posteriorly ; its antero-posterior or long diameter measuring about seren inehes; its transverse or lateral diameter, about four inehes ; its vertical or perpendicular diameter, about three and a half inehes. At the same time it is to be observed, that, although the general form of the eavity is the same, its dimensions may and do vary in different heads. The eight bones eomposing the eranium all present internally surfaces more or less eoneave, which, united, form the eavity under eonsideration; henee it is that the interior is not regular or uniform, but presents to view different hollows, whieh are adapted to distinet prominenees of the eerebral mass.

DIVISION of the interior surface into roof and base of the eranium :

The roof is formed by the frontal, parictal, and oceipital bones: its superfieies is larger than the extent of the base, and it is without any apparently defective places, observable in the latter. It presents-1st. On the mesian line, from front to baek, the sarittal groove, for the longitudinal sinus, formed by the frontal and parietal crests, erossed towards the front by the coronal suture, and bounded posteriorly by the parictal protuberance, to which is attached the tentorium, and behind which is the occipital cupula, for eovering the cerebellum. 2d. On either side, along the same line, the cerebral concavities of the frontal bone; the coronal suture, the boundary line between them and the parietal concavities; the transverse grooves, for the lateral sinuses; and, sunk within them, the lambdoidal suture.

The base is formed by the temporal, sphenoid, ethmoid, and oeeipital bones. It presents, 1 st. On the middle line, from before baekwards, the crista galli, and on its sides the ethmoidul fossee and cribriform plates, bounded laterally by the internal orbital plates of the frontal bones, and them piereed by the internal orbital foramina; the concave surface of the body of the ethmoid bone; The optic hiatus leading to the optic foramina; a transverse suture between the ethmoid and sphenoid bones. Upon the sphenoid bone, the piluitary fossa, bounded laterally by the two optic fosse; the latter leading to the foramina laeera orbitalia, over which are the spinal foramina: a transserse clevated line denotes the place of junction of the sphenoid with the occipital
bone. Belonging to the oeeipital bone, are the basilar fossce and the occipital hole. 2d. On either side, in the same direction, the internal surface of the winy of the ethmoid bone, rather more conrex than concave, for the support of the anterior lobe of the cerebrum ; the concavity of the wing of the sphenoid bone, for the reception of the middle lobe; the concavily of the squamous part of the temporal bone, for lodging the posterior lobe: and the sutures bounding these three cerebral surfaces. The foramen lacerum basis cranii, formed between the wing of the sphenoid anteriorly, the basilar process of the occipital bone internally, and the petrous portion of the temporal bone externally and posteriorly : it is wide and irregular before, narrow behind, and is distinguished in to the spheno-occipitalandtemporo-occipitalhiatus. The petrous portion of the temporal bone, presenting a narrow triangular surface forwards and upwards, whieh contributes to the posterior cerebral concavity ; a broad smooth but uneven surface inwards, against which inclines the cerebellum, and upon which we distinguish-a, the orifice of the meatus auditorius internus ; b, a thansverse prominence, and several cerebral indentations; c, an irregular convexity downwards, which forms the boundary wall of the labyrinth; d, a fissure separating it from the former. Lastly, the sutures uniting the petrous to the squamous portion and to the occipital bone. Of the occipital bone, a part of the internal surface assisting in the formation of a concavity for the cercbellum, by the convolutions of which it is indented; the surface even and smooth, and slightly excarated below this, for the support of the medulla oblongata ; still lower, the condyloid foramina, through which the ninth pair of nerres pass out.

> II.-THE ORBITS,
'Two in number, are formed for the lodgement, attaehment, and protection of the cyes and their appendages.

Figure.-Symmetrical. The cavity, which is extended horizontally backward and inward, has, viewed in front, a pyramidal aspect: the base, represented by the front, has four sides and four angles; one only of the sides, however, is sufficient in extent to reach the apex, the others being all more or less imperfect. A line drawn in the horizontal direction through the axis of this figure, inclines more outwards than forwards, more forwards than downwards, intersecting another horizontal line projected directly forward at an angle of about 70°, and one extended laterally, directly outward (at right angles with the former), at about 20° : the inclination downard, however, will in course rary with the erect position of the head.

Struciure. The orbit is emmpesed of unequal portions coming
from four of the hones of the cranium, and from three of those of the face: viz. the frontal, ethmoid, sphenoid, and temporal bones; the malar, lachrymal, and palate bones.

Division. Into sides, angles, base, and apex.
SIDES.-The superior side or roof of the cavity consists ouly of the frontul arch ; which is coneave and smooth internally, to make room for the lachrymal gland, and has anterior and posterior borders, sharp and slightly curvated. The inferion side or floor of the orbit is formed by the orbital surfaces of the lachrymal and malar bones, is broader than the roof, though, like it, is deficient as a whole. It comprises the orbitul portion of the Tachrymal suture: it is terminated, in front, by a smooth, rounded, curvated border; behind, nearly midway between the base and apex, by a shorter and straighter border. The interNal or vasal side, the broadest and only eomplete one, is formed prineipally by the internal orbital process of the frontal bone, into the noteh of which is received the os planum: the ethmoid bone further contributes, and also the sphenoid and palate bones, the three constituting that irregular termination of the cavity behind which represents the apex. The frontal orbital plate is smooth and slightly coneave, and is united below by a continuation of the transverse suture with the lachrymal bone. Its border in front, though slightly eurvated, is very irregular, having several notches and one or two small foramina in it ; it also presents a little tubercle, to which the lachrymal carunele is attached. The external or zygomatic side is formed prineipally by the zygomatic process of the malar bone, that of the temporal contributing but little: it is concave and smooth internally, somewhat broader below than upwards; is intersected obliquely by the zygomatie suture, and has an anterior border, smooth and eurvated ; a posterior one, sharp and straight.

ANGLES.-The supero-internal angles, one before, the other behind, are formed by the begimning of the frontal areh, through whieh, midway between them, passes the supra-orbital foramen. The infero-internal angle ineludes the lachrymal fossa. Tiel supero-external angles, one anterior, the other posterior, are intersected by the suture uniting the frontal and zygomatie arehes. The infero-external angles, partieularly the anterior, are rounded and smooth.

BASE.-Of the cireumferent border, the superior and internal parts, about two fifths of the entire circle, are formed by the os frontis; the inferior and internal parts, about one fifth, by the lachrymal bone; and the remaining two fifths by the malar and temporal hones, in the proportion of three parts of the former to one of the latter.

THE APEX or back of the orbit, formed by the eithmoid, sphenoid, and palate bones, is piereed by five foramina: the two round are the internal orbital and optic, which are ranged in a row with two oval and larger in size, the supero-posterior and inferoposterior orbital; the one behind is the spinal foramen.
III.-CAVITIES OF THE NOSE,

Comprehending the nasal fosse or ehambers, and the sinuses. These eavities oceupy about two thirds of the internal space of the superior maxilla, the remaining third belonging to the eranium; from whieh they are partitioned by the cranial septum of the frontal bone, in union with the eribriform plates and crest of the cithmoid.

THE NASAL FOSSA may be said to inelurle about twothirds of the entire space devoted to the olfactory eavities. They constitute the interior of the proboscis ; have four boundary walls, one above, one below, and two laterally; are separated from eaeh oither by a septum ; but are open both before and bebind.

The superion wall presents an irregular coneave formed by the internal surfaees of the nasal bones, the eells and grooves of the ethmoid, and small portions of the nasal surfaces of the palate bones.

The inferior wall is hocizontal ; it catends forwards beyond the superior, but is eonsiderably overreached lyy that wall postcriorly : it is formed by the palatine portions of the anterior and superior maxillary, and by the palate bones. The surface is transversely eoneave, and presents a slight eminence a little behind its middle.

Each lateral wall or side presents an irregular coneavity, and is formed by the anterior and superior maxillary and the palate bones. To it are attached the superior and inferior turbinated bones, by whieh the fossa is divided into three separate passages or meatus. The superior meatus, comprised between the nasal and superior turbinated bones, extends from the augle of the lateral nasal opening, passing over the etlimoirlal eells, to the eribriform plate, following superionly the declination of the wall. The middle meatus, ineluded between the turbinated bones, leads superiorly into the ethmoidal grooves and cells, and into the sinnses of the head, and ends below beneath the termination of the superior. This passage, like the former one, is narrow ; but its greatest diameter is, obliquely, in the perpendieular direetion; whereas the other measures most from side to side. It reeeives the apertures of the duetus ad uasum, maxillary sinus, ethmoidal grooves, and turbinated eells. The inferior meatus is the most eapacious
as well as most direct one. it extends along the inferior wall, from the anterior to the posterior opening of the nose.

The septum nasi is the partition scparating one fossa from the other. It is formed, posteriorly, by the ethmoidal plate; inferiorly and posteriorly, by the vomer ; supcriorly and anteriorly (and principally), by a broad perpendicular plate of cartilage.
The openings of the nose are- The anterior, divided by the nasal peak and septum nasi into two, and formed by the superior borders of the anterior maxillary bones: the posterior, divided after the same mamer by the vomer and septum, and formed by the nasal surfaces and creseentic borders of the palate bones.

THE SINUSES OF THE HEAD communicate with, and may be said to constitute part of, the nasal cavitics. They are the frontal, nasal, maxillary, sphenoidal, ethmoidal, and palatine.

The frontal sinuses, formed within the frontal bones, are situated so that a straight line extended between the superointernal angles of the orbits passes opposite to about the angular or decpest parts of their eavities. The simus (on either side) has a triangular figurc. The superior side or roof is flat, and (barring the septa) even upon its surface; whereas the posterior side is irregular, being convex inwardly, where it is formed by the cranial scptum; coneave outwardly, where it is opposed to the part composing the temporal fossa. The inferior side slants from behind forwards, and from below upwards, is irregular on its surface, and open or defieient outwardly, where the carity communicates with the maxillary sinus. Of the angles, one is dirceted upwards; another downwards, terminating in the nasal sinus, with whieh it is conjoined, the two forming one continuous carity ; the third points backwards, and is directly opposite to the imaginary transverse line above alluded to. The earity is traversed and divided into several unequal open eompartments and recesses by septa; the prineipal of which is one extended between the superior and inferior sides: it is partitioned from the opposite sinus by the nasal spinc. The sinus is but small in the young compared to its proportionate dimensions in the adult subject: it continues to increase afterwards with age, and ultimately extends throughout the whole of the frontal bone.

The nasal sinuses, formed by the nasal bones above and the superior turbinated bones behind, are nothing more than the culs-de-sacs or blind terminations of the frontal sinuses.

The maxillary sinuses, the largest of these cavitics, are spacious but very irregularly formed. They are situated below and in front of the frontal. Of this simus, on cither sidc, the postcrior and external walls are formed by the malar and lachrymal bones, whose orbital processes constitute a thin partition
between it and the orbit ; the inferior parts eonsist of the excavatoons in the superior maxillary bone; superiorly, the sinus is open, being there continuous with the frontal: the boundary line between these cavities is marked by the suture uniting the lachrymal to the frontal and nasal boncs on the outer side, and by the prominent crest formed by the junction of the superior turbinated with the ethmoid bone on the inner; underucath which part, through a eurved (and in the recent subjeet sort of valvular) fissure, the sinus opens into the middle meatus, between the bases of the turbinated bones. The carity is but small, and still more irregular, in the young subject, in consequence of the intrusion of the yet uncut molar teeth.

The frontal sinus, then, terminates in the nasal, but both discharge themselves iuto the maxillary; the maxillary has also a blind termination, but emptics itself into the posterior part of the middle nasal meatus.

The sphenoidal sinus is situated within the palatine portion of the body of the sphenoid bone. It has no existenee in the young subject, the bone being solid throughout; but in proeess of growth a carcrious hollow is formed, which, from the secession and attenuation of the lamine of the bone, continues to enlarge. It communieates, by two ovoid openings, with the ethmoidal sinuses.

The ethmoidal sinuses are tiro eavities, separated by the perpendieular plate, situated beneath the ethmoidal cells. They have openings in front, communicating with the lowermost and largest grooves of the same bonc, and with the palatine sinuses.

The palatine sinuses are formed between the superior maxillary and palate bones; are situated below and in front of the former; are separated from each other by the vomer; and open into the maxillary sinuses: they are irregular in form and eavernous interiorly. They are not to be found in the young subject. Some might be inelined to treat them as parts of the maxillary sinuses; they are, however, as perfectly distinet from the latter as the frontal are.

IV.-THE MOUTH.

The mouth is the cavity included between the superior and inferior maxillæ, making (in the skeleton) one common vaeuity with the inter-maxillary space. Its antero-posterior dimensions ean be but little varied; but its supero-inferior diameter will be increased in the ratio of the distance to which the inferior maxilla recedes from the superior; the cavity during the dis-
traction of the jaws assuming the figure of a misplaced \gg, the angle of which is turned baekwards.

The mouth is formed-superiorly, by the palatine and superior and anterior maxillary bones; inferiorly, by the inferior maxilla ; laterally, by the molar teeih; anteriorly, by the ineisive teeth. Behind, through the posterior opening of the nose, it eommunieates with the nasal fosse.

OF THE EXTREMITIES.

In mumber, four.-Disposed in pairs.-Divïled into fore and hind extremities.

I.-THE FORE EXTREMITIES.

Situation. Antcro-lateral parts of the trunk, from whieh they proeced downward.

Dicision. Into shoulder, arm, knec, leg, pastern, eoronet, and foot.

OF THE SHOULDER.

Constituted of the scapula, superiorly; and of the humerus, infcriorly.

BLADE BONE. (SCAPULA.)

Siiuation. Antero-lateral part of the thorax. Its position is oblique, the antero-superior angle being direeted forwards and upwards; the postcro-superior, downwards and baekwards. The former rises above the transverse proeess of the fourth dorsal veriebra; the latter is opposed to the angle of the seventh rib. The eoracoid proeess comes opposite to the sternal extremity of the first rib.

Form. Triangular: inferior angle irregular and detruncaied. Broarl and thin, superiorly ; narrowing, but growing thieker and more substantial, inferiorly.

Division. Into two surfaces, three borders or sides, and three angles.

Surfaces. External and Internal. The external, sometimes ealled the dorsum seapulx, is divided unequally into two superficial concavities, named the fossic antea et postea spinatre, by the spine, a longitudinal eminence arising gradually from the superior border, and terminating imperecptibly in the neek, the smooth eontracted part above thic lower extremity of the bone: the posterior is thrice as large as the anterior fossa; the one giving attachment to the antea spinatus, the other to the postea spinatus musele; and the spine to the traperius. In the posterior fossa, near where it joins the eervix seapule, is the medullary foramen, direeted downward. The internul surface, also ealled
the venter seapulæ, and sometimes the subseapular fossa, is smooth, though uneven, being excavated in the middle, flattened laterally and inferiorly, and is marked by the attaehment of muscles: in the middle, and principally, by the subseapularis; around the posterior angle, by the teres major ; superiorly, by the scrratus magnus; still higher, along the border, by the rhomboidci.

Borders.-The superior, nearly straight and but little mor than half the length of the lateral, is thick, and presents a grooved scabrous summit, into which is fixed the cartilage of the scapula, forming a flexible plate of considerable breadth, diminishing in thickness as it ascends from the bonc, and terminating in a thin convex edge, which is inelined inward.-The anterior border discribes the figure of an inverted S . It is thin, and presents a slarp edge superiorly ; below, it grows obtuse and rounded, and terminates in the coracoid process, a rough hemispherical prominence, presenting in front of the shoulder-joint, to whieh is affixed the coraco-brachialis and flexor brachii. The posterior border is obtusc, rounded, and smooth, except that, infcriorly, therc are some few unimportant asperities: it affords attachment to the teres minor and large head of the triceps extensor braehii.

Angles.-The two supcrior are rectangular and sharp: the postcro-superior has, externally, a prominence just below it, marking the origin of the teres major. The inferior angle is represented, or, rather, has its place supplicd, by the glenoid cavity - the smooth oroid slallow cup, notched inwardly, formed for artieulation with the head of the os humeri : it is rendered deeper a marginal cartilage ; and lias around its border inequalitics and porosities, to which is fixed the capsular ligament. Betweon the glenoid cavity and the coracoid proeess, internally, is an exeavation, scrving for a passage to the tendon of the subscapularis.

Connection. -The scapula is attached to the thorax by the several muscles passing between them ; also by two ligamentous faseiæ.

Development. In the very young subject, the coracoid process forms an cpiphysis: in old age, the cartilage of the scapula takes on ossifieation.

HUMERUS.

Situation. Between the scapula and the arm; placed in an oblique but contrary direction to the scapula, viz. downwards and baekwards; whereby an angular space, of eonsiderable cxtent, is left between the two bones.

Form. Cylindroid; presenting the appearance of having been twisted around itself.

Division. Into a body and two extremities.

Bonv. - Angular, with expanded, flattened sides, superiorly ; cointracted and rounded, inferiorly. From its upper, fore, and outer part, projeets the tuberosity; whose point is roughened by the insertion of the levator humeri. The outer side of the body is exeavated and smooth ; it is oecupied by the humeralis externus: the imer side is rather prominent and roughened, and exhibits a small seabrous eminenec, whieh rceeives the tendons of the latissimus dorsi and teres major; also, lower down, we find the medullary foramen, pointing downwards.

Superior extremity-Larger than the inferior, presents for eonsideration a head and four tubereles. The head is the hemispherieal smooth part projeeting posteriorly ; it is designed for articulation with the glenoid cavity of the seapula, which it mueh execeds in extent of superfieies, and thereby obtains more freedom and variety of motion. Into the irregular and indented groove by which the head is surrounded, is fixed the eapsular ligament. Antcriorly, the head is surmounted by the tubereles: the three direetly in front are anti-artieular, and have between them two smooth grooves, which, as well as themsclves, are covered by eartilage, and altogether serve as a pulley for the tendon of the flexor brachii to play over. The outer artieular tubercle is joined by a protuberant ridge with the tuberosity. The fourth, or outer tuberele, serves to guard against disloeation.

Inferion extremity-Displays a speeimen of the diarthrodial or pulley-like artieulation. It consists of two eondyles, dis tinct from each other posteriorly, being theres eparated by a deep ovoid fossa, into whieh is reecived the olecranon of the ulna; but united, inferiorly and anteriorly, into a broad semi-eylindrieal artieular surface, divided by a prominenee eneireling its middle into two depressed compartments, of which the inner has twiee the breadth of the outer, and bounded by two lateral prominent edges: furthermore, the eondyles, of which the inner is larger and more projeeting behind as well as before, meet at an angle above the fossa, and there run into union with the body. There are also two scabrons pits above the artieular surfaces in front, which, like the cavity behind, oceasionally reecive processes of the bone below.

Connection. The head of the humerus is adapted to the glenoid cavity of the seapula; the eondyles are fitted into coneavitics upon the upper extremity of the radius.

Development. In the young bone, the head, condyles, and tubereles are epiphyses.

OF THE ARM.

The arm is eomposed of a single bone, the os bruchii, whieh corresponds to the human radius and ulna united together.

ARM-BONE (OS BRACHII.)

Form. Cylindroid; flattened before and behind; slightly eurved forwards.

Division. Into radial and ulnar portions.
The radial portion consists of a body and superior and inferior extremities.

The body is long ; prominent and smooth anteriorly ; slightly excavated and ronghened posteriorly, where it is pierced in a direction downward by the medullary foramen : the former is elothed by the extensor museles of the leg and foot ; the latter by the flexors of those parts.

The superior extremity, like the inferior, expanded into greater breadth than the body, presents an articulatory surface, divided, by a gentle eminence running across the middle, into two eoncavities, of which the inner is broader and more eircular than the outer; the latter, indeed, has a superficial rising, taking the direction which makes a similar but imperfect subdivision of it: those coneavities reeeive the condyles of the humerus. The external lateral process is more prominent and slarper than the internal, and is surmounted in front by a small tubercular eminence : to these processes the lateral ligaments are attached ; the eminence serres also to deepen the outer cup of articulation.

The inferior extremity is remarkable for the number and variety of its articulatory surfaces, and for presenting a hiatus exteroposteriorly, as if a piece of the bone had been ehiselled out. It possesses three articulatory surfaces. The largest, or inner one, is quadrilateral in outline, sigmoid in superficies ; the middle is similar in form, but of smaller dimensions ; the outer, or smallest, is an ovoid convexity. The internal lateral process is the most prominent ; the external has a groove along it. The bone is also grooved in front by the passage of the extensor tendons.

The ulvar portion consists of body, projection, and articulatory surface.

The body is the tapering triangular part which is firmly united above, but more intimately below, with the radial portion ; between the two is an interval, admitting of the passage of a circulus of blood-vessels.-The surface eomposing part of the humerobraehial articulation, in form a semilunar eoncavity, is only in part articulatory, the lower half presenting roughened inequalities for ligamentous attachment : it is adapted to the smooth troehleal
surface between the humeral eondyles behind.-The projection, named the olecremon: the part eorresponding to the elbow in man, is one of eonsiderable magnitude, standing out in a direetion upwards and baekwards from the upper extremity of the radius; it is prominent and uneven on its outer side, cxearated and smooth on its imner, and terminates in a broad, rough protuberanec, into whieh is implanted the trieeps extensor braehii. In addition to two sides, it possesses two borders, both sharp, and disposed in eurvatures looking inwardly : the anterior terminates in a projecting point, whieh forms the superior boundary of the artieular surfaee; the posterior extends down, and beeomes continuous with that of the body.

Connection. With the humerus, above; with the seaphoid, lunar, and euneiform bones, below.

Development.-In young life the ulnar portion forms a distinet bone from the radial, the two pieces eorresponding to the ulnar and radius in man or the dog : indeed, the former in the colt extends nearly to the knee: but as life advanees, the two portions beeome so eompletely amalgamated and eemented together, inferiorly, that no longer ean any traee be found of their original soparateness.

OF THE KNEE. (CARPUS.)

The knee of the horse eorresponds to the wrist of man, and for this reason is teehnieally considered as the carpus. It is composed of seven small bones : in some instanees an cighth has been found. Six of these bones are ranged in rows, forming two tiers, eonsisting each of three pieces : the seventh is placed eompletely behind the others.

The First, or Superior Row, is formed by the seaphoid, lunar, and cuneiform bones.

The Second, or Inferior Row, by the trapezoid, great, and un(iform bones.

SCAPhoid bone. (OS SCAPhoides.)

Form. Semi-ovoid : convex and eurvated on one side ; slightly hut unevenly coneave on the opposite.-Divided into four sur-faces:-1st, Superior surface, sigmoid and smooth, artieulating with the arm-bone. 2d, Inferior surface, semi-ovoid and smooth, resting upon the trapezoides and magnum. 3d, Internal surface, convex, and roughened by the attaehment of the lateral ligaments. 4 th, Inlomul surface, uniting in two distinct places with the lunar bonc.

Cuneiform.-Divided into four surfaces, base, and apex :1st, Superior surface, triangular, artieulating with the arm-bone. 2d, Inferior surface, oblong, uniting with the magmum and uneiform bones. 3d, Internal surface, exeavated, joining above and bclow, with the seaphoid. 4th, Intermal surface, exeavated, articulating in two places with the euneiform bone.-Base, broad and rough, presenting forwards. Apex, obtuse and rounded, turned baekwards.

CUNEIFORM BONE. (OS CUNEIFORME.)
The smallest boue of the superior row. Figure-Pentan-gular.-Divided into five surfaces :-1st, Superior surface, small, oval, and cupped, articulating with the arm-bone. 2d, Inferior surface, smooth, resting upon the unciform bone. 3d, Internal surface, convcx and roughened, receives the attaehment of the extcrnal lateral ligaments. 4th, Internal surface, joining in two places with the lunar bone. 5th, Posterior surface, ovoid, smooth, and slanting, unites with the trapezium.

TRAPEZOID BONE. (OS TRAPEZOIDES.)

Situation-Inncr side of the knce. Form-An irregular, eurvated, flattened cone. Division-into four surfaces, a base, and an apex :-1st, Superior surface, smooth and eonvex, articulating with the scaphoides. 2d, Inferior surface, flattcued, artieulatory, and divided, the larger part resting upon the inner splint bone. 3d, Internal surface, excavated, presenting three smooth places for artieulation with the os magnum. 4th, Internal surface, convex and roughened. Base, looking forwards and inwards. Apex, turned backwards aind outwards.

the great bone. (os magnum.)

The largest bone of the knee.-Situated in the middle of the inferior row. Figure-Triangular.-Divided into two surfaces, two sides, a base, and an apex. 1st, Superior surface, presenting two articulary compartments, one, sigmoid and oblong, for the lunare ; the other, ovoid and flat, for the scaphoides. 2d, Inferior surface, broad and flat, resting upon the cannon bone. 3d, Internal side, excavated, presenting three little surfaces for articulation with the trapezoides. 4th, External side, haring two smooth places, with a pit between them, for articulation with the next boul.

UNCIFORM BONE. (OS UNCIFORME.)
Situated outwardly. Form-irregularly eonoid.
Division into four surfaces, a base, and an apex. 1st, Su-
perior surface, convex, and extended outward and baekward, uniting with the cuneiform. 2d, Inferior surface, articulatory, resting upon the outer splint, and also upon the eamon bone. 3d, External surface, convex and rough, and ligamentous. 4th, Internal surface, presenting two plaees for artieulation with the magnum.-Buse, presented forwards.-Apex, backwards.

TRAPEZIUM.*

Situation-Behind the euneiform bone. Figure-Flat, broad, quadrilateral. Division-Into two surfaees and four borders. 1st, External surface, convex, uneven; in places, elevated and roughened for ligamentous attachment. 2d, Internal surface, eoneave and porous.-Borders. Into the superior is fixed the tendons of the flexores metaearpi ; to the inferior, a ligament; to the posterior, the posterior amular ligament of the knee: the anterior possesses two smooth oval surfaees ; one for articulation with the cunciform, the other with the arm-bone.

PISIFORM BONE. (OS PISIFORME.)

Not invariably present: in some instanees two are found. Si-tuation-Behind the trapezoid bonc. Form-Orbicular or peashaped. Use-not apparent.

OF THE FORE LEG. (METACARPUS.)

Frequently ealled the cannon: sometimes the shank.
Although three bones enter into the composition of this part, viz., the large and the two small metaearpal bones, yet does the leg owe its form prineipally and its support entirely, to the former one :-

> LARGE METACARPAL, CANNON, OR SHANK BONE. (OS METACARPI MAGNUM.)

Form. Cylindrical ; flattened posteriorly.
Dicision. Into body and two extremitics.
Tue Body presents anterior and posterior surfaees. The anterior surface is rounded, prominent, and smooth, and extends round, laterally, so as to form about two thirds of the entire su-

[^1]perfieies of the eylinder. The posterior surface is flattened, and, in plaees, depressed. About one third of its length down, it is piereed by the medullary foramen, direeted inward and downward. Its sides present two triangular slips of rough seabrous surface, extending ahout half way down, marking the plaees of attaehment of the small metaearpal bones.

The superior extremity presents an artieulatory surfaee, the whole of which is flat, with the exception of a part hevelled off on its outer side, whieh artieulates with the uneiform bone; and a small, depressed, bevelled spot on its inner and posterior side, whieh reeeives part of the trapezoid bone: the flat surfaee supports the os magnum, to which in figure it eorresponds. In front, and rather inelined to its inner side, the extremity las a roughened prominenee, into whieh is implanted the extensor metaearpi : on either side, the bone is asperated by the insertion of lateral ligaments ; and the rough part posteriorly gives origin to the suspensory ligament.

The inferior extremity exhibits an artieulatory troellea, eonsisting of two equal eondyloid surfaces, parted by a semieireular eminenee, whieh is fitted into a eounterpart formation in the upper end of the large pastern bone. These eondyles have uneven pits in their sides, into whieh are fixed the lateral ligaments.

Comnection. Superiorly, with the magnum, uneiform, and trapezoid bones ; leterally and posteriorly, with the small metaearpal bones ; inferiorly, with the large pastern and sesamoid bones.

SMALL METACARPAL OR SPLINT BONES.

(OSSA METACARPI PARVA.)
Number. Two:-external and internal. Form-Elongated; pyramidal.

Situation. Attaehed to the lateral and posterior parts of the large metaearpal bone.

Division. Into bases, middles, and apiees.
Extent. They vary somewhat in length : they eommonly reach about two thirds of the large bone, downwards.

The buse, or head, is turned ipwards, and is surmounted by a Hlat artieulatory surface, whieh enters into the formation of the knee-joint. Below this, the bone is tuberous and rough, for ligamentous attachment: the external head also reeeives one of the tendons of the flexor metacarpi externus; the internal reeeives the tendon of the flexor metaearpi intermus.

The middle is trifaeial. The anterior surfaee is asperons, for firm attaehment to the large bone ; the inner surfaee is exearated, to make room for the suspensory ligament; the outer surfaee is
smooth and rounded. This part is terminated by a sharp edge posteriorly.

The apex is tapering and ends in a small bony tuberele, which inelines backwards, away from the large hone.

Difference. The external is commonly rather larger than the internal bone; they are, however, with more certainty distinguished by their articulatory surfaces.

Connection. The external bone supports the unciform; the internal, the trapezoid : both are attaehed to the large metacarpal bone.

Development. In the growing animal the splint bones are maintained by eartilago-ligamentous connections : in most adult, and in all old subjects, the ligamentous substanec beeomes conrerted into osseous matter.

OF THE PASTERN.

The pastern, corresponding to the first phalanx of the human foot, is supported by the pastern bone ; but it has also two appendices, the sesamoid bones, which are necessary to the formation of the fetlock-joint.

pastern bone. (os suffraginis.)

Situation. Below the cannon bone, with which, from taking an oblique direction, it forms an obtuse angle.

Form. Cylindroid, flattened before and behind; larger superiorly than inferiorly : about one-third the length of the eamon bone.

Division. Into body, and superior and inferior extremitics.
'Ine body presents two surfaces. The enterior is even and conrex : the posterior is meven, but flattened, and displays a slightly depressed triangular portion, into the asperous angle of which is implanted the short sesamoid ligament.

The superior or larger extremity consists of two shallow articular cups, laterally, with a decper transverse articular groove rumning between them, in which play the condyles and middle eminence of the lower extremity of the cannon hone. Behind, at the sides of the cups, are two tuberosities, to which are fixed the crueial ligaments.

The inferior extremity is bi-convex or eondyloid; consisting of two equal, articular, semi-eylindroid eonvexities, parted by a transverse shatlow depression, ruming from before backward, but more completely scparated by a little pit behind. The asperous prominences on the sides are for ligamentous attachment.

Comnertion. With the camon and coronct bones, and with the two sesamoids.

SESAMOID BONES. (OSSA SESAMOIDEA.)

Number-Two.-Situated at the baek of the articulation formed by the pastern and eannon bones.

Form. Trapezoid ; three of the sides presenting triangular faees, whose apices unite in onc point, which is dirceted upwards, and whose bases form the fourth side ; turned downwards.

Division. Into three sides, basis, and apex.
The anterior surfaces arc excavatcd, smooth, and artieulatory, and along their inward borders, which are opposed to each other, are bevelled off, by which, by the two together, a groove is formed for the reception of the middle eminence of the cannon bonc; while the coneavitics extend the articulatory surface for the condyles of that bone. The posterior surfaces are convex and asperous, for the attachment of the suspensory ligament: the two together form a sort of channel between them, in which run the flexor tendons. The lateral surfaces, whieh are grooved as well as roughened, receive the branches of the suspensory ligament. The bases grow narrow as they approach each other : their surfaces are rendered uneven by the attaehment of the long: and short inferior and crucial ligaments.

Connection. These bones are articulated only with the large metacarpal ; they arc comected both with that and the pastern bone.

OF THE CORONET.

This part answers to the second phalanx of the human foot. It has for its basc, the

coronet bone. (os coronte.)

Situation. Between the pastern and foot.
Figure. Nearly square ; its breadth execeding its longitudinal diamcter only by about one fifth. It has four surfaces.

The superior surface is bi-coneave-being divided by a simple transverse eminence into two ovoid concavities, into which are fitted the condyloid projections of the pastern bone: this eminence is bounded before and behind by small tubercular elerations; the posterior receives part of a ligament: the anterior, a portion of the extensor tendon. Laterally and postcriorly, the surface is extended by two projections, to which are fixed the lateral ligaments.

The anterior surface is convex, but irregular and asperons. Inferiorly, its sides present two remarkable depressions, into whieh are implanted the terminating branches of the tendo perforatus: above and between them, the bone is roughened by the attachment of the extensor teudon.

The posterior surface is slightly exeavated, and is free from asperities. Superiorly, it presents a smooth lip of bone, between which and the flexor tendon exists a bursal connection.

The inferior surface, like the superior, is entircly articulatory : it closely resembles that of the pastern bonc, only it is rather broader. In outline, it has the figure of a painted heart, whose apex is curved forward and upward: basis, backward and upward. It is bi-convex from before backward, consisting of two condyloid prominenees, parted by a shallow transverse depression. It is adapted to a counterpart articulatory formation of the coffin bonc.

Connection. With the pastcrn, coffin, and navicular bones.

OF THE FOOT.

The foot, or third phalanx, forms the resting, bearing, or terminating part of the limb. The coffin bone constitutes its osseous fabric ; to whieh the navicular may be regarded as an appendage.

THE COFlIN BONE. (OS PEDIS.)

Situated within the hoof, which it nearly rescmbles in-
Form-Being in its outline semi-lunar: anteriorly and superiorly, convex ; posteriorly and infcriorly, concavc. Its shape, however, varies with the natural make and morbid changes in the form of the hoof.

Division. Into rall, sole, tendinous surfaec, articulatory surface, and wings.

The wall is the semi-cireular prominent part in front, and corresponds to the wall or crust of the hoof. It is convex-most so anteriorly ; it possesses a certain degrec of declivity, which increases in degree, but decreases in extent, as we proceed from the front to the sides, the greatest clevation, as well as slant, of the wall presenting anteriorly ; and it cxhibits crerywhere a furrowed and porous surface ; the furrows, which run from above downwards, being most distinct inferiorly and laterally: and the holes or pores consisting of a large and small set, of which the large only are numerable or worthy of particular notice, the small ones being infinite, and numbers of them eren imperecptible. The foremine (for the large are alone worthy of the name, the small being simply porosities) are regularly disposed in so far that we invariably find several of them ranged at nearly equal distances around the circumference of the wall, a little above its edge ; and two others at or near the terminations of two grooves, which come from the wings, and run along the sides of the wall: five or six others also are commonly scen within the intermediate space, between the two latter. Thirough the foramina pass blood-vessels
and nerves in and out of the interior of the bone. The porosities serve mostly for the fibrous ittaehment of the laminæ.

The inferior or circumferent edge of the wall is rather semi-oval than semi-eireular. It is notehed or serrated, partieularly towards the sides, where, in plaees, the notehes opposite to the foramina widen into gaps, in order to give passage to blood-vessels to the sole. This edge, in its natural and healthy state, maintains at every point the level of a plane surface. Superiorly, in the middle, the wall is surmounted by the coronal process, from whose sides sharp waving edges run to the wings, forming the boundaries between it and the artieulatory surfaee.

The sole exhibits a broad, uniform, eoneave surface, of the figure of a horseshoe, free from asperities, excepting towards the wings. Still, however, it possesses porosites, or at least shows the marks of the fibrous implantation of the sensitive sole. It is bounded, anteriorly and laterally, by the eireumferent edge of the wall; posteriorly, by a sharp, uneven, semi-eircular edge, whieh divides it from the tendinous surfaee.

The tendinous surface has a semi-eireular shape. It is plaeed immediately behind the sole, and exhibits, lst. A rough depression in its fore and middlle part, marking the insertion of the tendo perforans. 2dly. Two lateral groores, passing obliquely inwards, and terminating eaeh in a large foramen. 3dly. A porous space intermediate betwcen the two former divisions, into whieh is fixed the inferior navieular ligament. The grooves lodge the trunks of the arteries and nerves of the foot, which pass through the foramina into the interior of the bone.

The articulatory surface oeeupies the superior part. It is half-moon-shaped. It presents two lateral eups, extending angularly baekwards as far as the wings, with a broad eminenee running transversely between them, whieh rises so gently as to be more pereeptible to the finger than the eye. This eminence is terminated in front by the coronal proeess, having an ineurvation baekwards: behind it, the surfaee is bevelled off, to whieh part is opposed the navieular bone. The artieular eavities for' the eoronet bone are deepened by the sharp, prominent edge running around their front and sides.

The alce or wings eonsist of two bifid protuberances, stretehing backwards from the body, beyond the limits of the artieulatory surface. The lower and larger division of the ala, projeeting direetly baekwards, is irregular and asperous: to it is attaehed the eartilage of the foot. The upper portions are tubereular and smooth on their surfaee: to these are fixed the first pair of the coffin ligaments. Between these divisions of the ala is a noteh (which in the reeent subjeet becomes a perfeet foramen); through
it passes the lateral artery, to be conducted by the groove leading from it to a foramen (afore mentioned) in the wall.

Connection. With the coronet aud navicular bones, and with the hoof.

Particularities. The coffin is a bonc of a soft, i.c., of a spongy, fragile texture ; and its intrinsic stability is yet further reduced by the canals pervading its interior for the transmission of bloodressels and nerves. The rery reverse of this is the case with the pastern and coronet bones: they (particularly the latter) are remarkable for compactness and solidity of substance.
the navicular or shuttle bone.* (os naviculaire).
Situation-At the back of the coffin-joint, into whose composition it cnters.

Form-Scmi-lunar: its lunated border, however, will not make ahove one third of a circle of such dimensions.

Division-Into two surfaces; two borders; and two extremitics.
Surpaces.-The superior bears a corresponding aspect to the articulatory surface of the coffin bonc, having two superficial lateral depressions, with an eminence imperecptibly rising between them. Dividing the cutire articular surface, formed by the two bones, for the reception of the coronct bone, into five parts, the navicular forms abont two divisions. The inferior surface is also articulatory ; and also cxlibits latcral depressions, but still more superficial than the supcrior, with an eminence across the middle, narrower and better marked than that above. Orer this part plays the tendo perforans.

Borders.-The lunated, broadest in the middle, narrowing fowards the extremitics, consists, supcriorly, of a smooth narrow slip of surface along the middle, which is adapted to the berelled portion of the articulatory surface of the coffin bone ; and, below, of a fluted porous part, from which a broad ligament rums to the coffin. The straight border is thin, compared to the opposite one; and is, superiorly, rough and porous, where the postcrior ligament is attached ; infcriorly, smooth and lipped, and continuous with the surface opposed to the tendon.

The extremities, directed, onc ontward, the other inward, are obtusely pointed; and are fixed by lateral ligaments to the coffin bone.

II.-THE HIND EXTREMITIES.

Situation. Comncetch with the posterior parts of the tronk, which they support.

[^2]Dicision. Luto haunch, thigh, hoek, leg, pastern, coronet, and foot.

OF THE HAUNCH.

The smperier part of the hauneh is formed by the iliae portion of the os immominatum; its middle has for base the os femoris; below and in front, it is terminated by the patella.

ROUND BONE. (OS FEMORIS.)

Form. Long, eylindrieal. Magnitude-The strongest and heariest bone in the borly; and one of the longest. Direction -Oblique; from above downward, and from behind forward.

Division. Into body and extremities.
Bony.-Upper part, expanded ; flattened, posteriorly ; prominent, anteriorly ; and having, projeeting from its outer border, a broad, flat, semi-cireular proeess, eurved forwards, whieh is the small external trochanter: to it are fixed the faschia lata, tensor vaginæ, and gluteus externus. Nearly opposite to this, only somewhat higher, the inner border has an asperous, oblong, prominenee, the internal trochanter, whieh reeeives the insertions of the psore and peetinens museles. The lower half of the body is contraeted, round, and smooth : and on its postero-external part presents a deep oval pit, with asperous surfaces, which give attachment to the gastroenemii. About the middle of the body, belind, is the medullary foramen.

The superior extremity consists of two parts: a hemispherieal, smooth, artieulatory heerl, looking upwards and inwards, joined to the body by a thick, flattened neck, and exhibiting on its inner side a wide deep fissure, into which is fixed the round ligament; the head itself being adapted to the aectabulum in the os imnominatum. The other portion is a larger irregular projection, rising posteriorly into a pyramidal eminenee, at the root of which, behind, is a deep oval eavity : this process, the great external troehanter, presents a broad, uneven, asperous surface outwardly, whieh receives the implantation of the ghteal museles; a waving roughened erest, superiorly, to whieh are attached the obturator museles; and a coneave smooth surfaee inwardly, to whieh is fixed the eapsular ligament.

Tife inferior extremity presents for consideration a trochleal prominence and two condyles. The first, the pulley-like artieulatory surface in front, eonsists of a broad semi-eireular groore, bounded on either side by a prominence, of whieh the internal projeets much more than the external: over this surface plays the patella. The condyles, most eonspienous posteriorly, mueh resemble eaeh other, exeepting that the external is
the thieker, the internal the more projecting, of the two. They exhibit bold, convex, rounded articulatory surfaces, presenting inferiorly and posteriorly, which rest upon the tibia; on their sides are rough eminences for the attachment of the lateral ligaments ; and between them is a deep asperons fossa, into which are implanted the inter-articular or crucial ligaments. At the base of the external condyle, below and in front of it, is a pit from which springs the tendon of the extensor perdis. From the condyles, posteriorly, proceed epieondyloid ridges, uniting them with the body of the bone.

Comnexion. With the pelvis, above; with the patella and tibia, below.

Development. The extremities in the growing animal are epiphyses : prior to the adult period, however, they become consolidated with the body; and the inferior extremity earlier than the superior.

STIFLE BONE. (PATELLA.)

Situation. Upon the trochea lsurface of the inferior extremity of the round bone.

Outline. Quadrangular: convex externally ; irregularly coneave internally.

Division. Into three surfaees and four angles.
The anterior surface is convex, most prominent towards the middle, and in places porous and roughened by tendinous aud ligamentous attachments.

The posterior surface is entirely artieulatory, and mequally divided by an eminence ruming across it into two shallow eoneavities, which are adapted to the condyles of the round bone, the inner being the larger one.

The superior surface-the space bounded by the superior and lateral angles-is uneven and roughened by the implantation of the tendons of the reetus and vasti museles.

The angles are all blunt or rounded off. To the superior is fixed the tendon of the rectus; to the inferior and lateral, the ligamenta patellæ: between the superior and external lateral one is an eminenee looking like a fifth angle : it gives attachment to the vastus externus.

Connection. By museles and its eapsular ligament, with the round bone; by its own four proper ligaments, with the tibia.

OF THE THIGH.

The bone correspondent to the bone of the thiyh-the veritable os femoris of a man-in the horse enters into the formation of the part we eall the haunch; while the tibia and fibula, the
human leg bones, beeome of this quadruped the basis of the part we are in the labit of ealling the thigh.

TIBIA.
Situation. Between the stifle and the hoek.
Form. Long, straight, prismatie: larger superiorly than inferiorly.

Direction. Oblique; but eontrariwise to the round bone.
Division. Into body, superior and infcrior extremities.
The body exhibits thrce faces and three angles. Two of the faces are smooth, and are seen anteriorly ; one looking outwards, the other inwards: the former covered by the extensor pedis, the latter by the skin. The posterior face is the broadest, and is strongly marked with several longitudinal muscular furrows. The anterior angle is rounded off, and below disappears altogether: the sides are sharpened and roughened by museular attachment.

The superior extremity, more bulky and extensive than the infcrior, exhibits-Supcriorly, two irregularly ovoid flattened articulatory surfaces, which, by means of intervening eartilages, are aeeominodated to the condyles of the round bone: these are parted by a small sharp elevation and two asperous pits, into which latter are fixed the erucial ligaments. Anteriorly, a jutting pyramidal tuberosity, from which a rough ridge runs downward into the anterior angle of the body, while, above, it ends in a blunt asperous point, turned outwards. At the sides are the two lateral proeesses, the external the more projeeting, for the lateral ligaments. Between the external lateral proeess and the tuberosity, is a groove for the passage of the tendon of the extensor pedis; and below this groove a broad exeavated portion of surfaee, from whieh arises the flexor metatarsi. The external condyle has on its side a small transversely oval exearation, marking the place of junetion of the fibula.
'Ihe inferior extremity, flattened and sprcading but little wider than the body itself, eonsists of two deep artieular grooves, running obliqucly from before baekwards, and from without inwards, and of thrce sharpened projeetions: one, cxtended obliquely, forms the partition between the grooves; the others form the latcral processes, of which the internal is more prominent than the external, both being roughened exteriorly for the latcral ligaments. The cxternal lateral process has a groove on its side, for the passage of the tendon of the peronens.

Connection. With the round bone, above; the os ealeis, below.
Development. The extremities, originally epiphyses, become apophoses prior to the adult periorl.

FIBULA.

This small and secmingly unimportant bone can be regarded but as an appendix to the tibia. It is a long, slender, pyramidal bone, affixed to the external side of the tibia by a cartilagoligamentous substance, similar to that which binds the splint bones to the cannon.

Its superior part or head is bulky, flattened from side to side, and roughened-externally, by the attaehment of the peroncus and the lateral ligament; internally, by its cartilagoligamentous connection.

The inferior part, slender and tapering, extends about half way down the tibia, whence a ligament is continucd from its termination to the lower extremity of that bone.

Connection. With the tibia.

OF THE HOCK. (TARSUS.)

As the knee of the horse answers to the wrist of man, and is therefore analogieally regarded as the carpus; so, in like manner, the hock becomes the correspondent part to the instep, and is eonsequently considered under the tcchnieal appellation of tarsus. Six small bones enter into its composition : they arcthe astragalus, os ealcis, os cuboides, and the ossa cunciforma : externum, medium, and internum.

THE KNUCKLE BONE. (ASTRAGALUS.)

Situation. Uppermost bone of the hock: the one which alone supports the tibia.

Form. Distinguished by its pulley-like formation.
Division. Into supcrior, infcrior, and postcrior surfaces.
The superior or pulley-like surface is cutirely articulatory, and eonsists of two bold semi-cireular prominences, with a decp capacious groove between them : the whole admirably adapted to the two grooves, parted by their middle projection, in the lower extremity of the tibia.- The posterior surffuce, extremely irregnlar, exhibits four polished places for articulation with the os calcis; and, between them, asperous porous interspaecs for ligamentons attachment.- The inferior surfuce, smaller than either of the others, is irregularly flattened, and almost wholly articulatory; it is embraced by the superior part of the large cunciform bone. From a pit at the foot of the pulley-like adaptation, takes its origin the extensor pedis aeccssorius.

Situation. It forms the posterior projecting part, called the point of the hock.

Figure-Irregular. Division-Into body and tuberosity.
The bony is the broad or inferior part. It is irregularly convex externally, where it is joined with the tuberosity: coneave and expanded internally, where it presents four surfaces for articulation with the astragalus, with asperous interspaces for ligament. The inferior part of the body has a narrow artieulatory surface, by which it articulates also with the cuboid bone.

The tuberosify, the projecting part behind, is oblong, flattened on its sides, and exhibits a thick, tuberous termination, into which is implanted the tendons of the gastrocnemii. The external side is flattened and roughened by ligamentous comnexion ; the internal is smooth, and inelines to concavity, by which a spaee is left which gives passage to the tendon of the flexor pedis.

CUBOID BONE. (OS CUBOIDES.)

Situation. Outer part of the hock. Form. Oblong, from back to front. Division. Into external, internal, superior, and inferior surfaces.

The external surface, broad and irregularly eurved, is roughened by ligamentous adherence.-The internal surface, irregularly excavated and asperous, exhibits three places of articulation: one, posteriorly, for the great cunciform ; the other two smaller, one anteriorly, one posteriorly, for the middle cuneiform bone. The superior surface has two articulations, with a little pit between them; one for the astragalus, a larger one for the os calcis. The inferior surface presents two articulatory places; one for the external splint bone, the other for the eannon bone.

THE LARGE CUNEIFORM BONE. (OS CUNEIFORME MAGNUM.)

Situation. Immediately underneath the astragalus.
Fiyure. Triangular : broadest side turned forwards; salient angle, backwards. Flat above and below.

Division. Into superior and inferior surfaces, sides, and angles.
The superior surface is entirely articulatory, with the exception of a little rough groove running to its middle from the outer side, which terminates in the medullary lole: it is adapted to the under part of the astragalus.-The inferior surface is very similar in appearance to the superior, cxcept that it is flat, or rather inclines to convexity: it articulates with the middle cuneiform, and also, next the internal angle, with the small eunciform. The salient or posterior angle has on its external side a surface for articulation with the euboid.

Connection. With the astragalus, cuboid, middle and small cuneiform bones.

THE MIDDLE CUNEIFORM BONE. (OS CUNEIFOKME MEDIUM.)
Situation. Underneath the large emeiform; rpon the hind camon bone. - Figure and Division, the same as the large bonc. Superior and inferior surfaces, also similar: the former articulates with the large bone; the latter with the hind cannon bone. -The salent angle, behind, is sharper and more projecting: near its point, externally, is a small surface for articulation with the cuboid.

THE SMALL CUNEIFORM BONE. (OS CUNEIFORME PARVUM.)
Situation. Postero-internal part of the hock.--Figure. small: irregular.

Connection. Superiorly, it articulates with therinternal angle of the large cunciform ; anteriorly, with the same angle of the middle cunciform; below, principally, with the internal hind splint bone; partly, also, with the hind cannon bone.

```
THE METATARSAL, HIND CANNON, OR SHANK BONE.
```

(os metatarsi magnum.)

As the cannon bone of the fore leg is said to be a match for one of the longest metacarpal bones found in the human hand; so this bone, in comparative anatomy, is regarded as a fellow of one of the nietatarsal bones which compose the foot, although it is, in the horse, the bone of the hind leg. It so nearly rescmbles the fore cannon bone, that the two, at first sight, appear to be precisely alike: there are differences, however, between them, and in particular three :-1st, The bone of the hind leg is longer by about one sixth part than the bone of the fore leg; 2dly, The body of the former is rounder and more prominent anteriorly than that of the latter; 3dly, The superior articulatory surfaces are different; one being such as is adapted to the middle and small cunciform and euboid bones; the other accommodates the inferior row of the bones composing the knee.

The pastern, sesamoid, coronet, coffin, and navicular bones of the hind extremity, so closely resemble their fellows in the fore, that the description already given of the latter, will be found to answer here.

APPENDAGES TO THE HEAD;

To wit, the os hyoides and the teeth.
THE OS HYOIDES
Consists of a frame-work of small bones, connected together by ligament, situated between the larynx and the root of the tongue.

Division. Into five picces: body, and four horns.

The body has the preeise shape of a spur ; consisting of a semi-eireular portion, from the middle of the convex side of whieh projeets a straight part, corresponding to the neck of the spur: this (latter) part, also called the appendix, is surrounded by the root of the tongue, to the fleshy fibres of which both its sides and extremity afford original attachment. The branches, or sides of the spur, are direeted baekwards, embracing between them the superior border of the thyroid cartilage. The curved part, from which the branches and neek spring, is broader and thieker than elsewhere, and has, laterally, two small artieulatory knots with whieh the short horns are connected.

The horns are four in number-two long, and two short. The short, or inferior horns, aseend obliquely fiom their articulatory connections with the body, and terminate in two oblong smooth extremities, which form similar joint-like connections with the long horns. They are flattened on the sides, and their anterior borders are sharper than their posterior. They give attachment to a pair of the museles of the tongue.-The long, or superior horns, constitute two long, flattened, thin bones, extending backwards, in a horizontal direction, from the summits of the inferior horns, with which they are articulated. Each horn presents-two smooth polished surfaces, viz. an internal and an external side ; two borders, an anterior and a posterior, the latter surmounted by a prominent erest; and two extremities: the supero-posterior has a cartilaginous junction with the hyoidcal process of the petrous portion of the temporal bone; the infero-anterior, with the short horn.

This bone gives attachment to the stylo-hyoideus and hyoideus magnus, and also to the pharynx.

Connection. With the temporal bone, larynx, pharynx, tongue, and some of the muscles of the neck.

Development. In the young animal the body itself is separable into three pieces.

THE TEETH:

The instruments for the abseission and manducation of food.
Number. Forty ; disposed in pairs ; twenty in each jaw.
Conformation. Conoid or oblong; infixed within distinet alveoles formed in the maxille; whenee we distinguish, in eaeh tooth, a part without and a part within the socket: to the former portion we give the name of borly, and that of face to the wearing surface of it; the latter is called the root, and the pointed extremity of it, the fang.

Structure. The tooth is composed of two hard substances, distinct from each other in aspect as well as nature; viz. a dense,
hard, solid bone, which is organic; and a still whiter and harder part called enamel, which is inorganic. It is only the body of the tooth which is coated with enamel ; the root is quite destitute of it : the former owes its polished whiteness to it. Upon the face it is variously disposed, according to the form of the tooth, from which it sinks, more or less decply, into the heart of all tecth excepting the tusks; forming thereby small funcl-shaped enamellated cavities, called the infundibula, whose mouths, named the pits, are indicated by the black marks upon the faces.

The tooth is essentially formed of bone, the enamel being no more than a covering or defence to it. Within the bone is a cavity, corresponding in shape and dimensions to the tooth itself. This, the cavity of the tooth, contains the pulp, inclosed within the membrane of the tooth: thesc parts are amply furnished with blood-vessels and nerves, which gain admission through the points of the fangs.

Distribution. Into three classes : 1st, the Incisors, or cutting teeth ; 2d, the Molares, or grimding tecth; 3d, the Canini, or tusks,

The incisors, twelve in number, are ranged in parabolic curves in the antcriormost parts of the jaws.-Form, a bent cone, of which the face is the basis; the fang, the apex. Face, elliptical. Pit of the same figure, and single. Fang, single, conical. The teeth in the upper jaw are somewhat larger than those in the lower. The forms, but more particularly the faces, of these tecth undergo alteration as age advances.

The molars, twenty-four in number, are implanted, in four rows, into the sides of the jaws-twelve in the upper, and twelve in the lower maxilla, six on each side; equal in magnitude to four or five incisors united together.-Figure, oblong, quadrangular, excepting the first and last, which are triangular. Faces, presenting two transverse ridges and two pits : those of the triangular teeth have an additional cminence. Infundibula, two in each tooth, which imperfectly divide the cavity, by extending through it down to the fangs, into chambers. Fanys : an upper molar possesses threc, excepting the first and last teeth, which have, occasionally, but two each. The lower molars have but two fangs.

The canine teetif, or tusks, are four in number, two in each jaw, having isolated stations in the interspaces at the sides of the body of the maxilla, between the lateral incisors and the first molars.-Form, a double cone, slightly incurvated, whose bases are joined together in one body: during growth the inner side is slightly concave and fluted. Cavity extends uninterruptedly through the whole length of the tooth. Fany, single and perforated. No infundibulum. Characteristic of the male : in the female, either imperfect or undeveloped.

Development of the Teeth. The tecth with which the young animal is provided, are, at eertain intervals of age, east off and replaeed by others: henee the distinetion of these two sets into temporary and permanent teeth. The temporary teeth are twentyfour in number-twelve ineisors, and twelve molars. The temporary ineisors differ from the permanent-1 st, in being smaller and whiter ; 2dly, in having necks or eontractions where the root joins the body; 3dly, in their fangs being slenderer and more pointed. The temporary molars differ from the permanent set-lst, in number ; 2dly, in being, individually, smaller and whiter; 3dly, in the eminenees upon the faees being sharper.

OF THE ARTICULATIONS OR JOINTS OF THE SKELETON.

TRUNK.

Articulations betiveen the occiput, atlas, and axis.The condyles of the os oceipitis are embraeed by the smooth exeavations forming the inner sides of the atlas : these articulary surfaees are eovered with eartilage, and the two bones are fastened together, by-1st, lateral ligaments, passing from the eoronoid processes of the oeeiput to the fore parts of the body of the atlas, to be fixed to the roots of its transverse proeesses ; 2d, The suspensory ligament of the head, fixed to the body of the atlas, between its anterior artieular proeesses and the upper border of the oceipital hole ; 3d, The capsular or synovial membrane, attaehed to the body of the oeeiput, around the roots of the eondyloid proeesses, and to the body and anterior artieular proeesses of the atlas. It detaches a proeess to the membranous envelope of the odontoid projeetion, by whieh all eommunieation is eut off between the joints formed by the first and seeond vertebre.

The axis artieulates with the atlas, but is also eonneeted with the oeeiput. It has-lst, The superior ligament, passing from the spine of the axis to the inferior part of the bony ring of the atlas; 2d, The inferior ligament, broad, eonneeting their inferior spinous projeetions together ; 3d, The three odontoid ligaments:two lony, passing from the sides of the odontoid proeess to the inner sides of the occipital condyles; the short and broad one, running from the point of the proeess, along a bony eanal, to the antero-inferior part of the atlas ; 4th, Capsular membrane, including the artieulatory surfaees, whieh are enerusted with eartilage, of the first and seeond vertebre, is attaehed around the posterior artieular processes of the atlas and the anterior of the axis, around the odontoid proeess, and also to the odontoid ligaments.

In the ordinary movements of the head, all the cervieal ver. tebre, more or less, participate : it is only in the nodding motion, or sudden chuck of it, that the occipital joint is especially ealled into action. When the nose is earried to one side, the orlontoid process revolves upon its own axis within the cavity of the atlas.

Common articulations of the vertebre. All the vertebre, excepting the atlas and last lumbar, articulate one with another, before and behind, through the apposition of their bodies, and the adaptation of their articulatory processes. They are bound together by-lst, The inferior vertebrul ligament, consisting of bands of ligamentous fibres ruming obliquely along the inferior surfaces of the bodies of the vertebre, expanding as they approach, and taking root in cach intervertebral substance ; 2d, The superior vertebral liyament, situated within the vertebral canal.* It pursues the same course along the imner surfaces of the upper portions of the rings which the inferior ligament does below, maintaining the whole more firmly together; 3d, Intertransverse liyaments, binding together the transverse processes; 4.th, Inter-spinous ligaments, between the spinous processes, but found only in the back and loins; 5th, Capsular membranes, inclosing the smooth cartilaginous surfaces of the articulatory processes; 6th, The intervertebral fibro-cartilages, forming the prineipal bond of union between the vertebre (so strong a one, that rather than this substance will part from its attachments, the bone itself will give way), consist of so many dense, concentric, fibrous substances, interposed between the bodies of the vertebree, to the surfaces of which they are most firmly and inseparably inherent. In form, they correspond to the bones, but in thiekiness and volume they differ in each vertebral region. The fibres are found to cross and intereross one another, and to lee so disposed as to leave in the centre spaces, which are filled with a soft, pulpy, elastic tissue, which adds to facility of motion ; 7th, Ligamentum Nuche vel Subfluvum, an elastie ligamentous substance, reaching from the occiput to the coceyx. It arises from the occipital tuberosity, and there consists of a cylindrical chord. It is continued backward along the superior border of the neck, and stretches broader and broader as it procceds, in order to reach down to the spinous processes, to all of which (with the exception of the first) it is fixed. It is broadest at the dip made by the spine in front of the withers. As it approaches the tallest dorsal spine, it narrows, and, after laving passed thesixth or seventh, again becomes a chord, or rather a band, whose greatest breadth is crosswise. It passes onward, covering and connecting the remaining

[^3]superior spines of the baek, and also those of the loins, saerum, and coeeyx, growing upon the last bone gradually smaller and smaller, and ultimately vanishing npon its extremity. Being highly elastie, it will admit of all the motions the spine is susecptible of; while it has a continual tendency to maintain or recover its original or natural form.

Articulations of the thorax. - The vertebial extremity of the rib forms three distinet and separate joints with the spine, and is further maintained by two ligaments: 1st. Capsular membrane of the head, in its attaelment surrounds and includes the whole of the head; but sends off a process, intermally, by which the surfaec opposed to one vertebra is formed into a synovial cavity, distinet from that whieh is adapted to the other vertebra, next to it. This part of the union is strengthened by some ligamentous fibres which spring from the summit of the head; 2d, Capsular membrane of the tubercle, surrounds the proeess at its artieulation with the transverse process of the vertebræ ; $3 \mathrm{~d}, E x-$ ternal liyament, fixing the neck of the rib to the spine, externally; 4th, Internal ligament, a similar one, internally.

The cartilages of the true ribs, whieh are attaehed immediately to the sternum, are received into the cups in the lateral borders of that bone, and maintained there by-1st, Liyamentous expansions, radiating from the surfaees, both superior and inferior, of the sternum to their extremities ; 2d, Capsular membranes, inclosing the extremities within their soekets.

The several portions of the sternum are united, one to another, by fibro-cartilaginous interpositions ; and their union is strengthened by the ligamentary expansions upon the surfaee, internal as well as external. The anterior bone is surmounted by a eartilage of eonsidcrable breadth, which extends in a curvature upwards, not unlike the form of the keel of a ship; hence it has got the name of the cariniform cartilage.

Aiticulations of the pelvis.-The sacro-vertebral articulation, formed between the last lumbar vertebra and the base of the sacrum, eonsists-lst, of an inter-vertebral substance in the middle, similar to what exists in the spine; 2dly, of two superior transverse ligaments, affixed to the transverse processes ; and, 3dly, of two inferior transverse ligaments, whieh run from the fourth and fifth transverse proeesses of the loins to the crista of the ilcum.-The sacro-iliac articulations are formed by the interposition of fibro-cartilaginous sulbstances between the transrerse proeesses of the sacrum and the venters of the ileum, resting upon them ; and is strengthened by ligamentary bands passing from the posterior spines and borders of the ileum to the transverse processes of the sacrum.-The sacho-sciutic ligaments are
broad expansions stretched across the sacro-sciatic notch. They are fixed to the transverse processes of the sacrum and those of the two or three anteriormost bones of the coccyx and to the postcrior parts of the ilcum and ischium, and also to the tubcrosity of the latter bone. 'Towards the anterior part of the notch, the ligament exhibits an oval opening, through which pass the sciatic b'ood-vesscls and nerves.-The obturator ligament is the fibromembranous expansion stretched like a drum-head across the obturator foramen : through its anterior part is a hole for the transmission of the obturator artery and vein. The symphysis pubis is formed by the junction of the two ossa innominata, by means of a fibro-cartilaginous substance adherent to the opposing sur-faces.-The sacro-coccygeal articulation, formed between the sacrum and coccyx, is the same as a common vertebral joint.

FORE EXTREMITY.

The shoulder-joint* is formed between the head of the humerus and the glenoid cavity of the scapula: their adaptation (as dricd bones) appears incomplete, in consequence of the comparatively disproportionate magnitude of the ball to the socket: this is in some degree compensated for, however, by the projecting border of the cartilage with which the glenoid carity is lined. The bones are maintained in apposition by-The capsular membrane, which is found very loose when denuded of the surrounding adherent muscles, bagging about the bones, in order that it may not, in the least, restrain their freedom of motion : it is inserted around the rough margin of the glenoid cavity, and around the neck of the humerus. Its internal surface is synovial ; its exterior is elothed by firmly adherent muscles, to which the chief strength of the articulation is owing; viz., its outer and anterior parts by the antea and postea spinati ; its imer and posterior parts by the subscapularis and teres minor.

The elbow-dont* is constituted of the condyles of the humerus moring in the concavities upon the superior extremity of the arm-bone, the surfaces of which are covered by cartilage. The joint is maintained by-lst, The capsular membrane, which is thin, infixed around the condyles, inchuding their cartilaginous surfaces, and the hollow behind them, and around the edges of the articulatory parts of the arm-bone; also to the olecranon process, to the lateral ligaments, and to the tendinous roots of the flexor muscles of the leg. 2d, Time lateral ligaments.

[^4]The internal, implanted above, into a depression in the side of the interual condyle of the humerus, and below where it becomes bifid, into the border of the inner articular cavity of the radial portion of the bone, and also into the body of the bone, about three inches below the first insertion. The external, shorter and stronger, runs from a similar depression on the external condyle to a tubercle on the upper and outer part of the radial bone. In the young subject, the ulnar portion of the arm-bonc is united to the radial by a fibro-eartilage ; but this gradually undergoes conversion into bone as the adult period approaches.

Knee-joint.-This includes four distinct articulations: one betwaen the arm-bone and the upper row of the carpal bones; a second, between the upper and under rows of the earpal bones themselves; a third, between the under row and the three metacarpal bones; a fourth, situated posteriorly, between the trapezium and the cunciform bone. They have all their own proper capsular membranes, which are attached around the borders of their cartilaginous surfaces, and consequently have no communieation one with another. The knee-joint altogether is further maintained by-1st, The lateral ligaments ; the external, passing on the outside from a tubercle on the arm-bone to the head of the external metacarpal bone ; the internal, divided into two portions proceeding together from a similar tubercle on the inner side of the arm-bone, the longer to be fixed to the head of the internal splint-bone, the shorter to the inner and fore part of the large metacarpal bone. Besides these, there are two annular ligaments, one, the anterior, traversing the front of the knee, being attached on the sides, and confining down the extensor tendons; the other, the posterior, passing across, behind, from the scaphoid and cuneiform bones to thetrapezium, inclosing the flexor tendons.

The fetlock-joint is composed by the apposition of the inferior condyloid extremity of the cannon bone to the upper biconcave surface of the pastern bone, and by the addition, posteriorly, of the sesamoid bones, which are also fitted to the condyles of the camon. Its binding parts are-1st. The capsular nembrane, which is infixed into the bone around the borders of the eartilaginous surfaces, and in front is inseparably united with the extensor tendon. 2d. The internal lateral ligaments: the long one passing from a little projection on the side of the large metacarpal bone to the pastern; the short one, passing underneath the former, from a depression immediately below the eminence to the pastern, behind the insertion of the long ligament. 3d. The seten sesamoid ligaments:-a, The suspensory ligament* (so

* Bourgelat has reqarded it as a temlon-" le lendon suspenseur deu boutet;" (iitard as a musele -.."M. Tarso-phatenyien."
ealled, I imagine, beeause the sesamoid bones seem to be suspended by it) is, perhaps, the strongest in the whole body, and is remarkable for its ligh degree of elastie property. It takes root, superiorly, in a projection at the upper and back part of the camon, whence it passes, inclosed within a cellular sheath, between the splint bones, filling up their interspace. Opposite to about the terminations of these small bones, it splits into two divisions, which, diverging in their descent, become implanted into the lateral and posterior parts of the sesamoid bones, and into the fibro-cartilaginous substance uniting them. From the places of implantation, two lateral slips are continued from it downward and forward to join the extensor tendon. Between the suspensory ligament and the joint, enveloped in adipose membrane, are some large bursce mucosce. In composition and texture, this ligament possesses peculiaritics: it has a sanguineous tinge interiorly, which is not perecptible in other ligaments or in tendons; and its fibres, whieh are very coarsc, are disposed in layers. But its ehief peculiarity consists in its exhibiting an intertexture of delicate, pinky, fleshy fibres, whieh appear to be the uniting medium of the ligamentous fasciculi. b, The lony inferior ligament ruus from the bases of the sesamoid bones, along the back of the pastern bone, to the upper extremity of the coronet bonc, where it expands over the posterior part of the pastern joint. c, The short inferior ligument arises, by two portions, also from the bases of the sesamoid bones, where it is in part concealed from view by the former: it is implanted, a little lower down than the long one, into a well-marked angular asperity on the back of the pastern bonc. c, Two external lateral ligaments are extended from the outer projecting angles of the sesamoid bones ; one to the camon bone, the other to the pastern. d, Two crucial ligaments, situated underncath the interior ligaments. They run, decussating each other, from the bases of the sesamoid bones to the upper and posterior or projecting parts of the pastern bone.

Pastern-donst.-The condyloid eminenees, terminating the inferior extremity of the pasteru bone, fit into corresponding depressions upon the upper end of the coronct bone, the opposing surfaces being covered with eartilage. The articulation is furnished with-lst, Capsular membranc infolding the smooth eartilaginous ends of the bones, and firmlyinkerent into their borders : it is also interworen with the extensor tendon, which passes over it in front, and behind becomes inseparably united with the inferior sesamoid ligaments. 2d, Lony lateral ligaments rooted in rough surfaces on the sides of the pastern, whenee they proceed to the coronct bone. 3d, Short lateral ligaments, broader and stronger than the former, are attached anteriorly to them, to the
same bones, above and below. The long inferior sesamoid ligament protects this articulation behind, and the extensor tendon forms a broad defence to it in front: indeed, both these parts are so knitted in texture with the eapsular membrane, that they appear to form the principal strength of it.

Corfin-doint.-The condyloid prominences eonstituting the inferior extremity of the coronet bone, are received into a bi-concave hollow formed by the upper surfaces of the coffin and navieular bones, although in an inconsiderable degree by the latter. The articulation is secured by--1st, The capsular membrane, which inwraps the cartilaginous surfaces, and becomes inserted around their boundaries. In front, it is interwoven with the extensor tendon ; behind, it is greatly strengthened by connexion with the tendo perforans. 2d, Three pairs of ligaments of the coffin bone. a, First pair pass from the superior edges of the alæ of the coffin bone upon the sides of the coronet bone, and are fixed about its middle. b, Second pair are stretched from the extremities of the alæ, also to the coronet bone, and are inserted below and behind the first. Third pair spring from the sides of the coronal process, and run to be fixed to the cartilages. 3d, Four ligaments, two single and one pair, belonging to the navicular bone. a, Superior ligament, extending from the upper and posterior part of the bone to the tendo perforans. b, Inferior liyament, a very broad one, oceupying the entire lower edge of the bone, and thence passing into the eoffin bone, just above the insertion of the long flexor tendon. c, The two lateral ligaments, fixing the lateral extremities of the shuttle to the sides of the coronct bone.

The coffin ligaments are slight in comparison to those of the pastern and fetloek, because the coffin bone, from its situation witiin the hoof, is not liable to dislocation.

SEC'IION II.
 MUSCULAR SYSTEM.

OF THE MUSCLES.

Ture fleshy parts of the body prove on dissection to be naturally divisible into numerous eompaet masses, assuming various forms and sizes, eonstituting so many distinet and separate muscles, whose number may be estimated at about 312. The majority of the muscles possess tendons or sinews, which are to be regarded as component parts of (rather than appendages to) them. The symmetry of the entire body is preserved by cach half pre-
senting (as well as bones) muscles corresponding in every essential partieular; henee they are deseribed as pairs, of which we reckon 151 : the remaining ten being single museles.* The following Table exhibits the elassification of the museles into reyions, indieative of their situation and relative comexion : it also displays the respective nomenelatures of the English and Freneh veterinary schools; the former, met with in the works of Snape, Stubbs, and Blaine, will be found to have been borrowed from human anatomy ; the latter arose with Chaussier, and has been introduced very happily into vetcrinary anatomy by Girard.
I.-MUSCLES COMMON TO HEAD AND TRUNK. No. 1.

Cuticular Region.

English names.
Mombrana Carnosa, vel Pamiculus Carnosus

French names.
\} Musculus Subcutaneus. II.-MUSCLES OF THE HEAD. No. 92.

1st. Aurieular Region. No. of Museles 9.

Attollentes et Adducentes Aurem

Antcrior Conchix Posterior Conchrs

Retrahentes Aurem
Abduccus rel Deprimens Aurem
$\} 3\left\{\begin{array}{l}\text { Temporo-auricularis Externus } \\ \text { Zygomatico-auricularis } \\ \text { Tcmporo-auricularis Internus }\end{array}\right.$
Scuto-auricularis Externus
Scuto-auricularis Internus
$3\left\{\begin{array}{l}\text { Cervieo-auricularis Extermis } \\ \text { Cervico-auricularis Mcdius } \\ \text { Cervico-auricularis Interıus }\end{array}\right.$
Parotido-auricularis
Mastoido-auricularis.

2d. Palpebral Region. No. 2.
Levator Palpebre Super. Externus, vel Corrugator Supereilii
\} Fronto-superciliaris
Musculus Ciliaris, vel Orbicularis Palpebrarum
\} Orbicularis Palpebrarun.
3d. Oeular Region. No. 8.

Levator Palpebre Super. (Internus) Attollens vel Levator Oculi Deprimens vel Depressor Oculi Abdunces vel Abductor Oculi Adducens vel Adductor Oculi Obliqums Superior vel Trochlearis Obliquus Inferior Oculi
M. Septimus Oculi Suspensorius, vel Retractor Oculi

Orbito-palpebral is
Rectus Supcrior Oculi
Rectus Inferior Oculi
Rectus Extcrinus Oculi
Rectus Interinus Oculi
Obliquus Magnus Oculi
Obliquus Parvus Oculi
\}Rectus Postcrior Oculi.

[^5]4.th. Anterior Maxillary Region. No. 12.

English names.
Zygomaticus
Levator Labii Superior. Alæq. Nasi
Dilatator Naris Lateralis
Nasalis Longus Labii Supcr.
Caninus, vel Levator Anguli Oris
Buccinator
Depressor Labii Inferioris
Levator Menti
Dilatator Narium Anterior
Nasalis Brevis Labii Superioris
Depressor Labii Superioris
Orbicularis Oris

French names.
Zygomatico-labialis
Super-naso-labialis
Super-maxillo-nasalis Magıus
Super-maxillo labialis
$\left\{\begin{array}{c}\text { Portion } \\ \text { of the }\end{array}\right\}$ Alvcolo-labialis
Alvcolo-labialis
Maxillo-labialis
Mento-labialis
Nasn-transversalis
Super-maxillo-masalis Parvus
Labialis, Auterior et Posterior.
5th. Posterior Maxillary Region. No. 5.
Temporalis
Masseter
Stylo-maxillaris
Pterygoideus Intcrnus
Pterygoidcus Externus
The remaining Regions of the Head are comprehended within the Submaxillary Space.
6th. Hyoideal Region. No. 6.

Temporo-maxillaris
Zygomatico-maxillaris
Stylo-maxillaris
Spheno-maxillaris.

Digastricus
Mylo-hyoideus
Gcuio-hyoideus
Hyoidcus Magnus
Hyoideus Parvus
Stylo-hyoidcus
$\left\{\begin{array}{c}\text { Portion } \\ \text { of the }\end{array}\right\}$ Stylo-maxillaris
Mylo-hyoidcus
Genio-hyoideus
Kcrato-hyoidcus Magnus
Kcrato-hyoidcus Parvıs
Stylo-liyoidcus.
7th. Glossal Region. No. 4.
Hyo-glossus Longus
Hyo-glussus Brevis
Genio-liyo-glossus
Lingualis
Kerato-glossus
Hyo-glossus
Genio-glossus
Lingualis.
8th. Pharyngeal Region. No. 5.

Hyo-pharyngeus
Palato-pharyngeus
Constrictor Pharyngis Anterior
Constrictor Pharyngis Mcdins
Constrictor Pharyngis Posterior
Kerato-pharyngeus
Pterygo-pharyngcus
Hyo-pharyngeus
Thyro-pharyugeus
Crico-pharyngeus
Aryteno-pharyngeus.
9th. Laryngeal Region. No. 7.
Hyo-thyroideus
Crico-thyroideus
Crico-arytenoideus Posticus
Crico-arytenoideus Lateralis
Thyro-arytenoideus
Arytenoidcus
Hyo-epiglottideus

Hyo-thyroideus
Crico-thyroideus
Crico-arytenoideus Posticus
Crico-arytenoideus Lateralis
Thyro-arytenoideus
Arytchoideus
Hyo-cpiglottideus.

10th.-Palatine Region. No. 2.

English names.
Tensor Palati
Circumflexus Palati

French names.
Stylo-staphylcus Staphyleus.

III.-MUSCLES OF THE TRUNK. No. 113.

a.-MUSCLES OF THE NECK. No. 40.

1st. Humero-Cervical Region. No. 2.
Rhomboideus Longus vel Minor
Levator Humeri
Ccrvico-acromialis
Ccrvico-subscapularis.
2d. Lateral Cervieal Region. No. 4.
Splenius
Complexus Major
Cervico-mastoidcus
Dorso-occipitalis
Trachelo-mastoideus
Dorso-mastoideus
Spinalis Colli
Dorso-spinalis.
3d. Superior Cervieo-oceipital Region. No. 5.

Complexus Minor
Rectus Capitis Posticus Major
Rcctus Capitis Posticus Minor
Obliquus Capitis Superior
Obliquus Capitis Inferior

Axoido-occipitalis Longus Axoido-occipitalis Brevis Atloido-occipitalis Parvus Atloido-mastoideus Axoido-atloideus.

4th. Inferior Cervieal Region. No. 6.
$\left.\begin{array}{c}\text { Portion } \\ \text { of the }\end{array}\right\}$ Levator Humcri
Sterno-maxillaris
Sterno-thyro-hyoideus
Subscapulo-hyoideus
Scalenus
Longus Colli
5th. Inferior Cervieo-oceipital Region. No. 3.
Rectus Capitis Anticus Major
Rectus Capitis Anticus Minor
Obliquus Capitis Anticus

Mastoido-humeralis
Sterno-maxillaris
$\{$ Stcrno-hyoideus
\{Sterno-thyroideus
Subscapulo-hyoidens
Costo-ccrvicalis
Subdorso-atloidcus.

Trachclo-suboccipitalis
Atloido-suboccipitalis
Atloido-styloidcus.
b.-MUSCLES OF THE THORAX. No. 37 .

1st. Dorso-scapular Region. No. 3.

Trapczius
Latissimus Dorsi
Rhomboidcus Brevis vel Major

Dorso-acromialis Dorso-humeralis Dorso-Subscapularis.
2d. Pectoral Region. No. 3.

Pcctoralis Transversus
Pcctoralis Magnus Pcctoralis Parvus
$\left\{\begin{array}{l}\text { Stcrno-aponcuroticus }\end{array}\right.$
Sterno-humeralis
Sterno-troehincus
Stcrno-scapularis.

3ı. Costal Region. No. 3.
English names. French names.
Costo-subscapularis
\{ Dorso-costalis
Lumbo-costalis
Serratus Magnus
Intercostales Externi Intercostales Externi
Intercostales Interni Intercostales Interni.

4th. Sternal Region. No. 3.

Lateralis Sterni
Sterno-costales Externi
Sterno-costales Interni

Costo-sternalis
Steruo-costales.

5th. Dorso-costal Region. No. 3.

Superficialis Costarum
Transversalis Costarum
Levatores Costarum

Dorso-costalis
Trachelo-costalis Transverso-costales.

6th. Dorsal Region. No. 3.
Longissimus Dorsi Ilio-spinalis
Spinalis Dorsi
Semi-spinalis Dorsi
Transverso-spinalis Dorsi.
7th. Diaphragmatic Region. No. 1.
Diaphragma
Diaphragma.
c.-MUSCLES OF THE ABDOMEN. No. $\left\{\begin{array}{l}\text { in the Male } 36 . \\ \text { in the Female } 33 .\end{array}\right.$

1st. Lumbar Region. No. 6.
Semi-spinalis Lumborum
Intertransversales Lumborum
Sacro-lumbalis
Psoas Magnus
Iliacus
Psoas Parvus

Sacro-costalis
Sublumbo-trochantincus
Iliaco-trochantineus
Sublumbo-pubialis.

2d. Abdominal Region. No. 4.
Obliquus Externus Abdominis
Costo-abdominalis
Ilio-abdominalis
$\begin{array}{ll}\text { Transversalis Abdominis } & \text { Lumbo-abdominalis } \\ \text { Rectus Abdominis } & \text { Sterno-pubialis. }\end{array}$
$\begin{array}{ll}\text { Transversalis Abdominis } & \text { Lumbo-abdomin } \\ \text { Rectus Abdominis } & \text { Stcrno-pubialis. }\end{array}$
Rectus Abdominis
3d. Anal Region. No. 2.
Sphincter Ani
Retractor Ani
Sphincter
Ischio-analis
Ischio-perincalis.
4th. Genital Region (in the Male). No. 4.
Cremaster
Erector Penis
Triangularis Penis
Accelerator Urime
tlio-testicularis
Ischio-subpcnialis
Ischio-urcthralis
Perinco-urethralis.

Genital Region (in the Female). No. 2.

English names.
Erector Clitoridis
Sphincter Vaginæ

French mames.
$\{$ Ischio-elitorideus
$\{$ Sacro-clitorideus Perinco-clitoridens.

5th. Coceygeal Region. No. 4.
Erector Coccygis
Depressor Coceygis
Curvator Coceygis
Compressur Coceygis
Sacro-coceygeus Superior Saero-coceygeus Inferior Sacro-coccygeus Latcralis Ischio-coceygcus.

IV.-MUSCLES OF IHE EXTREMITIES. No. 106.

Anterior Extremities. No. 48
a.-MUSCLES OF THE SHOULDER. No. 12.

1st. External Seapular Region. No. 2.

Artea-spinatus	Super-acromio-trochitereus
Postea-spinatus	Sub-acromio-trochitcreus.

2d. Internal Seapular Region. No. 1.
Subscapularis Subseapulo-trochincus.
3d. Posterior Scapular Region. No. 2.

Teres Major
Teres Minor
4th. Anterior Humeral Region. No. 3.
Coraco-humeralis
Flexor Brachii
Humeralis Externus

Subseapulo-humeralis
Superseapulo-trochitcrius Mininus.

Coraco-humeralis
Coraco-radialis
Humero-radialis Obliquus.

5th. Posterior Humeral Region. No. 4.

Anconcus

Scapulo-olccranius
Huncro-olceranius Externus Humero-olecranius Internus Epicondylo-olecranius.
b.-MUSCLES OF THE ARM AND FORE-LEG. No. 12.

1st. Anterior Braehio-Crural Region. No. 4.

Extensor Metacarpi Magnus
Extensor Pedis
Extensor Suffraginis
Extensor Metaearpi $\left\{\begin{array}{c}\text { Obliquus vel } \\ \text { Parvus. }\end{array}\right\}$ Radialis-metacarpcus Obliquus.

2d. Superficial Posterior Braehio-erural Region. No. 4.

English names.
Flexor Metacarpi Externus Flexor Metacarpi Medius Flexor Metacarpi Internus Flexor Accessorius Sublimis

Fiench names.
Epitrochlo-carpeus
Epicondylo-carpeus
Epicondylo-metacarpous
Ulnaris (Accessorius).

3d. Deep Posterior Braehio-erural Region. No. 4.

Flexor Pedis Perforatus ${ }^{3}$.
Flexor Pedis Perforans
Flexor Accessorius Profundus
Lumbrici, Anterior ct Posterior
\} Epicondylo-phalangcus
Radialis (Accessorius)
Lumbricales.

Posterior Extremities. No. 58.

a.-MUSCLES OF THE HAUNCH. No. 20.

1st. Gluteal Region. No. 3.

Gluteus Externus Gluteus Maximus Glutcus Minimus

Ilio-trochanterius Medius
Ilio-trochanterius Magnus
Ilio-trochanterius Parvus.
2d. , Pelvi-troehanterian Region. No. 5.

Pyriformis
Obturator Extcrnus
Obturator Internus
Gemini

Sacro-trochantcreus Subpubio-trochantercus Externus Subpubio-trochantcreus Internus Ischio-trochantercus.
3. Anterior Ilio-femoral Region. No. 4.

Tensor Vaginæ
Rectus
Vastus Externus
Vastus Interius
Crurcus
Rectus Parvus
4th. Internal Ilio-femoral Region. No. 6.
Sartorius
Gracilis
Pectincus
會苞 $\left\{\begin{array}{l}\text { Adductor Brevis } \\ \text { Adductor Longus } \\ \text { Adductor Magnus }\end{array}\right.$
5th. Posterior Ilio-femoral Region. No. 2.
Biceps Abductor Ischio-tibialis Medius vel Posterior
Semitendinosus \quad Adductor
Semimembranosus $\{$ Tibialis

Ilio-aponeuroticus
Ilio-rotuleus

Ilio-femoralis.
sumbotibialis
Subpubio-tibialis
Superpubio-femoralis
\} Subpubio-femoralis
Ischio-tibialis Externus.
\} Ischio-tibialis Internus.
b.—MUSCLES OF THE THIGH AND HIND LEG. No. 9.

1st. Anterior Femoro-crural Region. No. 3.
Extensor Pedis
Peroncus
Flexor Mctatarsi

Femoro prephalangeus
Peronco-prephalangeus
Tibio-prematarscus.

2d. Superficial Posterior Femoro-crural Region. No. 3.

Enylish names.

Gastrocnemius Externus
Gastroenemius Internus
Plantaris

Poplitcus
Flexor Pedis
Flexor Pedis Aecessorius

French names.
Bifemoro-calcaneus
Femoro-phalangeus
Peronco-calcancus.

3d. Deep Posterior Femoro-crural Region. No. 3.

I.-CUTANEOUS MUSCLES.

Panniculdes Caryosus.-Musculus Subcutaneus.

A muscle peculiar to quadrupeds.
Situation. Subeutancous; and so uniformly and generally spread over the surfaee of the body, that it has been regarded as one of the common teguments. It not only clothes the broad sides of the trunk, but it extends forward upon the shoulder, neek, face; and, backwards, upon the haunch and stiffe.

Division. On account of its extensiveness, into three por-tions:- cervieal, thoracic, and abdominal.

The Cervical Portion originates in some pale disgregated fascienli, descending upon the side of the head; one parcel coming from the lateral parts of the mouth, another from the root of the ear and parotid gland, a third and larger one from the aponeurosis of the masseter ; all running to the angle of the jaw, and there eollecting themselves into a fleshy band, which, after deseending a little way lower down, again becomes resolved into separate fasciculi, and dispersed and spread over the side of the neek. The fleshy fibres, however, are principally confined to the infero-lateral regions : the superior portion consisting principally of an aponcurosis, partly cellular and partly tendinous, which is extended and fixed to the ligamentum nuchæ. At the bottom of the neek some fasciculi are found rumning and attaching themselves to the spine of the seapula; others, paler and less distinet, take a downward course, passing over the shoulderjoint, where many become intermingled with and lost in the adipose membrane thereabouts; while others, again, continue still lower, and vanish upon the fasehia of the arm.

The 'Thoracic Portion consists of a broad layer of ficshy fibres, extending from a little abore the middle of the seapula in a direct line down upon the arm, into the faschia of which it is (together with the ecrvical portion) inserted; while, ahove, by means of an aponemrotic expansion, it is continued to be attached to the spine.

The Abdominal. Portion forms a broad fleshy expansion;
abstraetedly viewed, oroid in outline ; elothing the false ribs and lateral parts of the abdomen ; whose fibres, gencrally, rum in a longitudinal plane, from before baekwards, from the shoulder to the Hank: as they approach this latter part, they converge, and finally become colleeted into a broad, thiek, muscular band, whieh is ineluded within the fold of skin forming the border of the flank, and ends upon the front of the hauneh, interwoven with the faschia eovering that part, by whieh it is fixed to the patella. Anteriorly, the abdominal is comeeted with the thoraeic portion by an aponeurotie intervention; along its superior border, the faschia eovering the baek and loins attaches the musele to the spine; inferiorly, it beeomes gradually indistinguishable from the fasehia superfieialis abdominis, with whieh it is blended, and through which it gets an attaehment to the pubes. The spur-vein is seen ramifying, superfieially, upon this portion of the musele.

Relations. The strongest fibres of the pannieulus are exhibited by its abdominal portion: the palest and weakest are seen upon the face. Its eervieal portion is in many places intimately blended with the levator humeri ; and also with the pectoral museles. The thoraeie part envelops the trapezius, rhomboidei, latissimus dorsi, and spinati museles; the abdominal portion covers the external oblique muscle and its aponcurosis.

Attachments. Besides those already mentioned, it is loosely and partially eonneeted, by eellular substance, with the several museles and bones and ligaments whieh it immediately eovers ; but everywhere intimately and generally with the skin.

Direction. Upon the head its fibres ramify in an arboreseent form ; upon the neek they take an oblique eourse ; upon the shoulder they run in a perpendicular direetion; upon the abdomen, in a horizontal line.

Action. The contractions of the pannieulus throw the skin into folds or corrugations, transversely in the direction of its fibres; so that the one form right angles with the other. The chicf points from which it aets, are the lower jaw, the seapula and head of the humerus, the patella, and the pribes. By suddenly and repeatedly wrinkling his skin, the horse (minprovided with hands for the purpose) effects the dislodgement of insects whieh amoy him, and likewise of any irritating or noxions substanee, sueh as thorns or prickles, dirt, haysecds, \&e. This power also enables him to resist, to a ecrtain degrec, the gripe or bite of an adversary. And so habitual does this eutaneous aetion beeome, that, although perfeetly and fully at the command of the will, it often appears to take place involuntarily, or at least unheeded by the animal : this is partieularly remarkable at the time that a
horse is grazing or feeding, and is the while annoyed by flics. M. Girard conceives that it must give additional power of action to many muscles by operating as a brace or bandage to them ; his words are-"Il concourt ì augmenter la foree des muscles sur lesquclles il exeree une pression un peu fortc."

It.-Muscles of the head. 1.-AURICULAR REGION.

We shall eonsider these muscles in four classes-the Attollentes, the Mueuli Proprii Conehre, the Retrahentes, and the Abdueentes.

1. attollentes et adducentes aurem.

attollens maximus.-Temporö-auricularis Externus.

Situation. Subcutaneous, upon the temple, at the inner side of the car.

Figure. Broad, very thin, triangular.
Attachment. By cellular membranc to the temporal fasehia; to a white tendinous (divisional or median) line extending in the direetion of the sagittal suture ; and to the superior and posterior parts of the triangular cartilage, reaching from the vertex to the pit behind the orbit.

Direction. From within outward ; convergent in approaeling the ear.

Structure. Fleshy and cellular; fibres pale and slender; and in their disposition aponeurotie.
attollens anterior.-Zyyomatico-auricularis.
Situation. Subeutancous; in front and to the other side of the former.

Attuchment. Antcriorly, to the postcrior cxtremity of the zygoma ; along its middle, to the temporal muscle ; postcriorly, to the front of the triangular cartilage.

Relutions. Externally, the skin ; internally, the temporalis. attollens postririor.-Temporo-auricularis Internus.
Situation. Underncatl the attollens maximus.
Form. Thin, triangular ; mueh smaller than the maximus.
Attuchments. Inwardly, to the sagittal suture or ridge ; internally, to the temporalis, ly eellular tissue ; outwardly, to the posterior part of the concha.

Relations. Externally, the maximus; internally, the temporalis.

Structure. Prineipally fleshy ; in part aponeurotic, postcriorly.
Action of the Attollentes.-These muscles all co-operate in the ereetion or cocking of the cars. Acting in pairs, the maximi will
approximate ; the anteriores will depress them ; the posteriores elevate them. But, as the triangular cartilage is more partieularly their seat of action, in order to produce the same effeets on the eoncha, the aid of others will be required, next to be described.

2. MUSCULI PROPRII CONCHE.

These muscles attach the triangular cartilage to the concha.

ANTERIOR CONCHE.-Scuto-auricularis Externus.

Situation. Antero-internal side of the root of the ear.
Form. Two short, thin, narrow fleshy slips.
Attachment. To the outer side and posterior angle of the triangular cartilage, and to the antero-internal part of the eoneha.

Relations. Externally, skin; internally, cartilage of the ear.
Direction. From behind, forwards; and fromwithin, outwards.

posterior conche.-Scuto-auricularis Internus.

Situation. Deep-seated, at the imer side of the root of the ear.
Form. Two fleshy bands, thicker than the last deseribed.
Attachment. To the inner side of the triangular cartilage ; to the superior angle of the same ; and to the posterior part of the root of the eoneha. .

Direction. Downwards, baekwards, and outwards.
Structure. Fleshy ; the larger slip only possessing a few tendinous fibres at its eonehal attaehment.

Action of the Musculi Concha.-The anterior muscle will assist in the ereetion of the ear' ; and present the aperture forwards, by drawing round the concha and maintaining it against the triangular eartilage. The posterior musele will have directly the reverse operation : it will rotate the ear the contrary way; sn that the aperture may look backwards and collect sounds from the rear.

3. Retirahentes aurem.

Cervico-auriculares, Externus et Internus.

Situation. Behind the ear, upon the side of the poll.
Form. Broad, thin, membraniform.
Attachment. Posteriorly, to the vertex, ligamentum nuche, and obliquus capitis superior. Antcriorly, the external portion is attaehed to the dorsum conehr, about one third of its extent, upwards : the internal portion, to the root of the eoncha, and to the annular cartilage.

Action. To retract the ear; to draw it down upon the poll : also to rotate the ear, turning the hollow part backwards.

4. abducens vel deprimens aurem.
 Parotido-auricularis.

Situation. Below, and to the outer side of the root of the ear. Form. Broad, thin, membraniform.
Attuchment. To the surface of the parotid gland by dense cellular membrane ; and to the outer and fore part of the concha, just below its orifice.

Relations. Externally, with the panniculus and skin; internally, with the parotid gland.

Direction. From below upwards ; inclining a little forwards.
Structure. Fleshy, and more substantial than the attollentes.
Action. To abduct the car, and assist in depressing it.

2.-PALPEBRAL REGION.

LEVATOR PALPEBRE SUPERIORIS-CORRUGATOR SUPERCILI.

Fronto-superciliaris.

Situation. Above the orbit.
Fiyure. Short, thin, narrow, pyramidal.
Attachment. Blended with the aponeurotic expansion upon the forehead, above the orbital areh; and inserted into the superior part of the upper eyclid, nearer to its imer than outer angle.

Relations. Internally, with the skin; externally, with the orbital areh; inferiorly, blended with the next musele.

Direction. Oblique : from above downwards, and from within outwards.

Structure. Superiorly, aponcurotic ; inferiorly, pale and dclicatcly fleshy.

Action. To draw up the upper eyelid, and particularly the inner part of it.

orbicularis palpebrarum.-Musculus ciliutis.

Situation. Within the cyelids: in front of the base of the orbit.

Figure. Obliquely oval ; slit in its long diameter.
Attachment. To the orbital portion of the ossa mguis et frontis; to the palpebral ligament; and to the skin of both lids.

Relations. Extcrnally, with the skin; internally, with the membrana conjunctiva; superiorly, with the former musele ; inferiorly, with the levator labii ; towards the margins of the lids, with the tarsi ; at the imner canthus, with the lachrymal sac.

Structure. Fleshy; disposed in little packets or fasciculi.
Action. 'To approximate or shut the eyelids.
3.-ocular region. LEVATOR PALPEBRE SUPERIORIS INTERNUS.

Orbito-palpebralis.

Situated-Superiorly, between the eyeball and the orbit.
Form. Flat, thin, fan-shapcd: broad and expanded in front; narrow and tapering behind.

Attachment. To the inner and upper part of the parieties of the optie foramen; and whole breadth of the border of the upper lid.

Relations. Superiorly, with the fibrous lining of the orbit, and the lachrymal gland : inferiorly, with the levator oeuli and selerotiea.

Direction. Oblique: from behind, forwards; from below, upwards; and from within, outwards.

Structure. Posterior attaehment, tendinous : anterior, aponeurotie; intermediate part, fleshy, pale, and delieate.

Action. To raise the upper eyelid.

$$
\left\{\begin{array}{l}
\text { Levator oculi.-rectus superior oculi. } \\
\text { Depressor oculi.-RECTUS inferior oculi. } \\
\text { Abductor oculi.-rectus externus oculi. } \\
\text { Adductor oculi.-rectus internus oculi. }
\end{array}\right\}
$$

Situation. Within the orbit, at respeetive and equal distances one from another, along the superior, inferior, and lateral parts of the eyeball.

Form. Elongated, curved, conoid : broad parts turned forwards.

Attachment. To the eireumferent parts of the optie foramen ; and to four opposite points, equidistant one from another, of the selerotie, where it covers the front of the eyeball.

Relations. Externally, with the fibrous lining of the orbit; internally, with the selerotic eoat ; in the middle, with the retractor oeuli. The levator oculi has also, above it, the levator palpebree internus.

Direction. Oblique: from within outwards, in the direetion of the visual axis ; the levator, at the same time, winding upwards ; the depressor, downwards; the abduetor, to the outer side ; the adduetor, to the inner side.

Structure. Posterior attaehments tendinous and fleshy; anterior, aponeurotie ; intermediate parts, fleshy.

Action. The levator will turn the sight of the cyeball upwards ; the depressor, downwards ; the abduetor, outwards ; the adduetor, inwards. All four muscles acting simultancously will
draw the globe backwards, within the orbit. The eombincd aetion of any two of them, will give the sight an oblique or intermediate direction.
obliqués superior vel magus oculi-trochlearis.
Situation. Inner and upper part of the eavity of the orbit.
Form. Elongated, cylindroid; somewhat narrowed, posteriorly; anteriorly, curved at an aeute angle towards the opposite side.

Attachment. To the border of the optie foramen, and to the upper and outer part of the sclerotic, near to the attachment of the abductor.

Relations. Superiorly, with the orbital parictes and pathetic nerve; inferiorly, with the adductor and supra-orbital branch of the ophthalmic nerve.

Direction. Horizontal, but somewhat eurved ; inclining from within outwards until it reaches the fore part of the eavity, where it becomes reflected outwards and downwards, with an inelination backwards.

Structure. Posterior attachment tendinous and fleshy ; anterior, aponcurotie; middle part, fleshy. At the imer canthus, the fleshy part passes through a broad fibro-cartilaginous loop or pulley, which is fixed to the posterior part of the frontal orbital process.

OBLIQUUS INFERIOR vel PARVUS OCULI.

Situation. Under the cyeball; antero-inferior part of the orbit.
Fiynue. Broad, thick, cylindroid: ocular attachment broadest.
Attackement. To a little depression in the os unguis, behind the lachrymal opening; and to the inferior and outer side of the selerotic, close to the junction of the white with the transparent part of the globe.

Relations. Inferiorly, with the floor of the orbit ; superiorly, with the aponcurotic tendon of the depressor; internally, with the lachrymal sac.

Structure. Fleshy, included within a fibrous sheath.

retractor vel rectus posterior oculi.

Situation. Behind the cychall.
Figure. That of a hollow eone, with its basc turned forwards.
Attuchment. T's the edge immediately surromading the optic foramen ; and to the posteriar third of the entire superficies of the globe of the eye.

Relutions. Around its sides are the four straight muscles of the eye, and in the interspaces a quantity of adipose matter: throngh its middle runs the optic nerve.

Direction. Radiated : the fibres diverging from the optic foramen as a centre, and spreading upou the surfaee of the globe.

Structure. Posterior attachment, tendinous and fleshy: remainder, fleshy.

4.-ANTERIOR MAXILLARY REGION. zygomaticus.-Zygomatico-labialis.

Situation. Along the middle of the side of the faee.
Figure. Very thin, flattened, clongated.
Altachment. Posteriorly, to the anterior part of the zygoma, and cellular tissue clothing the masseter ; antcriorly, its fibres grow faint and vanish imperceptibly in approaching the angle of the mouth.
Relations. Externally, with the skin; internally, with the caninus; inferiorly, with the panniculus carnosus.

Direction. Horizontal, from behind forwards.
Structure. Fleshy, exeept at its posterior attachment.
Action. To assist in retracting the angle of the mouth.

LEVATOR LABII SUPERIORIS ALEQUE NASI.

Super-naso-labialis.
Situation. Upon the side of the face, above the preecding muscle.

Figure. Broad, thin, elongated, bifurcated anteriorly.
Attuchments. Posteriorly, to the subcutaneous surfaces of the nasal and frontal bones, reaching as far backward as the level between the orbital arches; anteriorly, by one division to the lateral parts of the skin of the nose and the false nostrils; by the other division, to the side of the upper lip and angle of the mouth.

Relations. Externally, with the skin; the superior division, with the dilatator naris lateralis : internally, with the nasalis longus labii superioris, pes anserinus, and the superior labial artery.

Direction. Rather oblique, from behind forwards, inclining downwards.

Structure. Posteriorly, a broad and extended aponeurosis; anteriorly, fleshy.

Action. To assist in the retraction of the upper lip and angle of the moutl, and in the dilatation of both the truc and false nostrils.

Remark. Stubbs describes the aponenrotic expansion of this muscle under the name of "epicranius."

di latator naris lateralis.- Super-maxillo-masalis maynue

Situation. Upon the side of the face.
Fiyure. Flat, pyramidal, base presented forwards.

Attachments. Posteriorly, to the fore end of the zygoma, and to the superior maxilla for a short space in front of it ; anteriorly, it spreads upon the side of the nostril and the supero-lateral parts of the upper lip.

Relations. Externally, with the skin and the inferior division of the preceding muscle; internally, with the superior division of the same muscle, the eaninus, the superior maxillary bone, and the superior labial blood-vessels and nerves.

Direction. Horizontal, diverging as it proceeds forwards.
Structure. A slender tendon attaches it to the bone, below which it is fleshy.

Action. To dilate the nostril and retract the upper lip.

nasalis longus labii superioris.-Super-maxillo-labialis.

Situation. Upon the upper part of the side of the face.

Figure. Elongated, pyramidal, base turned backwards: external surface, eonvex ; internal, flat.

Attachments. Posteriorly, to a slight bony depression at the junetion of the superior maxillary and malar bones, a short distance from the lower margin of the orbit; anteriorly, along the middle of the anterior part of the upper lip.

Relations. Externally, with the skin and the levator labii superioris alæque nasi, and the angular vein; internally, with the superior maxilla, pes anserimus, and false nostrils : the united teudon erosses, in front, the dilatator naris anterior, and at the border of the lip enters the substance of the labial gland.

Direction. Horizontal, the fleshy fibres gradually converging from their origin to their termination in the tendon.

Structure. It has a few tendinous fibres at its origin ; otherwise, it is fleshy as far forward as the false nostrils, where it ends in a eylindroid tendon, and which here passes through a sort of cellular sheath, by whieh it is retained in its proper place. In turning over the front of the nose it grows flat, and at the peak formed by the apices of the nasal bones forms a junetion with its fellow coming from the opposite side. The two unite and form a single flat tendon, whieh expands a little in deseending, and ultimately disappears in the fleshy substance of the lip.

Action. To raise and eorrugate the upper lip, and in some degree assist in the dilatation of the false nostrils.

caninus vel levator anguli oris.

Portion of the alveolo-maxillaris.

Situation. Fore part of the side of the face.
Figure. Broad, flat, triangular.

Attachments. Superiorly, to the broad depression upon the side of the fore angle of the superior maxillary bone ; inferionly, to the alveolar proeesses of the lower jaw, and the bone in front of them ; internally, to the buccal membrane ; anteriorly, to the side of the lip and angle of the mouth.

Relations. Externally, with the zygomatieus, inferior division of the levator labii superioris alæque nasi, dilatator naris lateralis, pammiculus carnosus, and skin; internally, with the masseter, buccal membrane, and two anterior upper molar teeth.
Direction. Transverse and penmiform ; the superior fibres diverge from their maxillary attaehment; those below run obliquely, forwards and downwards.

Structure. Fleshy.
Action. To render the buecal membrane tense, and also to assist in clevating the angle of the mouth and side of the lip.

buccinator.-Alveolo-labialis.

Situation. In the space between the jaws.
Fiyure. Broad, flat, approaching the triangular.
Attachments. Posteriorly, to the border of the lower jaw in the space between the last molar tooth and the root of the coronoid proeess, and to the tuberosity of the superior maxilla; superiorly and inferiorly, to the outer walls of the alveolar cavities for the molar teeth; anteriorly, to the angle of the mouth; and internally, to the buceal membrane.

Relations. Extervally, with the masseter, caninus, panniculus, and skin, and with the facial artery and vein and parotid duct ; internally, with the buccal membrane ; postero-inferiorly, with the buccal nerve, artery, and varieose vein; antero-inferiorly, with the depressor labii inferioris and inferior labial blood-vessels ; postero-superiorly, with the temporal vein.

Direction. Longitudinal, from behind forwards.
Structure. With the exception of its posterior or narrow extremity, which contains some slips of tendon, and a few tendinous fibres which are visible about the angle of the mouth, it is entirely fleshy.

Action. To aid in tightening the buccal membrane, and retract the angle of the mouth.

depressor labil inferioris.-Maxillo-labialis.

Situation. Along the side of the lower jaw.
Figure. Elongated, flattened, pyramidal, base turned baekwards.

Attachments. Posteriorly, blended with the bueeinator, to the tuberosity of the superior maxilla, and the superior border of the inferior maxilla, behind it salveoli ; anteriorly, infero-lateral part of the interior of the lower lip.

Relations. Externally, with the panniculus and skin, crossed also by the facial artery and vein and parotid duct; internally, with the inferior maxilla and buccinator ; also with the inferior labial blood-vessels, which run between it and the buceinator.

Direction. Horizontal, the fibres very gradually converging.
Structure. Two slender tendons attach it to the jaws, and another conneets it with the lip, in the glandular substance of which the latter expands, splits, and disperses its fibres.

Levator menti.-Mento-labialis.

Situation. Under the chin.
Figure. Broad and (though rather irregularly) quadrilateral.
Attachments. Superiorly, to the alveolar processes, and the antero-inferior and lateral parts of the inferior maxilla; inferiorly, its fibres are lost sight of amid the adipose and glandular substance forming the prominence of the chin.

Relutions. Superiorly, with the bone; inferiorly, with the membrane lining the lip; anteriorly, with the teeth; posteriorly, with the prominence of the ehin.

Direction. Oblique, from before backwards, and from above downwards; the lateral fibres making a eurvature forwards.

Structure. Fleshy.
Action. To draw forward and raisc the prominenec of the ehin, and with it the under lip.

dilatator nalris anterior.-Naso-transversalis.

Situation. In front of and between the nostrils.
Figure. Transverse parallelogram.
Attachments. In the middle, to the bony peak formed by the apices of the ossa nasi ; on the side, to the anterior surface of the alre or broad cartilages of the nose.

Relations. Externally, with the skin and the united tendon belonging to the nasales longi labii superioris; internally, to the broad and also to the narrow eartilages of the nose, and to the triangular space between them ; superiorly, with the ossa nasi; infcriorly, with the glandular substanee of the lip.

Direction. Transverse.
Structure. Fleshy, except at its attachment to the os nasi.

NASALIS bREVIS LABII SUPERIORIS.

Super-maxillo-nasalis parvus.

Situation. Behind the external nares.
Figure. Narrow, thin, forming two sides of a triangle.
Attachments. Inferiorly, to the superior and anterior maxillary bones, and to the suture uniting them; superiorly, to the os nasi; in the middle to the horn or cornet of the nose and the skin of the false nostrils : it forms, in fact, a flesly investment to the angular bony boundary of the false nostrils.

Relations. Externally, with the levator labii supcrioris alæque nasi, the tendon of the nasalis longus labii superioris, and the skin; internally, with the membrane of the nose.

Direction. Transverse, inelining forwards.
Structure. Fleshy.

DEPRESSOR LABII SUPERIORIS.

Situation. Side of the upper jaw.
Figure. Broad, thin, irregular.
Attachment. Inferiorly to the alvcoli of the lateral and middle incisores, extending thence along the side of the jaw as far as the tusk ; superiorly, it is confounded with the glandular substance of the upper lip, and is also connceted with the inferior nasal eartilages.

Relations. Anteriorly, with the labial gland, and at the side, with the nerves descending from the pes anserinus; posteriorly, with the front of the jaw ; superiorly, with the cartilages of the nose ; inferiorly, with the ineisor tecth.

Direction. Oblique, from before backwards, and from below upwards.

Structure. Fleshy.
Action. To draw down the side of the lip, and with it the nasal eartilage, and thercby have some effeet in dilating the nostril.

orbicularis oris.-Labialis.

Situation. Within the border of the lips, of which it constitutes the principal thickness.

Figure. It forms two semi-ovals, directed backwards, united at the commissures of the lips.

Attuchments. To the glandular substance and skin of the lips, and more particularly at the commissures, where the fibres coming from both lips cross one another, and become confounded with those of other museles inserted thereabouts.

Relations. Externally, with the skin; internally, with adipose tissue, the labial glands, and the membrane of the mouth.

Direction. Semi-circular, in the horizontal line.
Structure. Consists of two bands of ficsly fibres, the upper one of which is broader, thicker, redder, and stronger than the lower.

Action. To approximate the lips and retain them in eontact; also to assist in the dilatation of the nostrils.

5.-POSTERIOR MAXILLARY REGION,

Comprising the muscles whose office it is to move the lower jaw.

temporalis.-Temporo-maxillaris.

Situation. Upon the parictal and temporal bones.
Form. Convex, externally ; coneave, internally: broad, above ; narrow and convergent, below.

Attachment. Superiorly, to the vertex and the antcrior occipital hone; to the convex surfaee of the parietal ; to the squamous plate and zygomatic process of the temporal bone; and to a small portion of the frontal : inferiorly, to the eoronoid proecss of the inferior maxilla.

Relutions. Externally, with the attollentes aurem and the zygoma ; internally, with the cranial bones ; postero-externally, with the ear; anteriorly, with a volume of fatty substance lodged at the back of the orbit.

Direction. From behind, forwards; and from above, downwards: the fibres taking a curvilincar course.

Structure. Covered by a dense aponcurotic expansion, denominated the temporal faschia; the broad part of the musele is fleshy, but is intersected horizontally through its middle by a layer of tendon. Below, it is tendinous in its attachments to the sharp edges of the coronoid proecss; but fleshy around the sides of it.

Action. To raise the lower against the upper jaw; and, thereby, when the mouth is opened, to shut it again. It is one of the prineipal agents in mandueation.

masseter.-Zygomatico-maxillavis.

Situation. It forms the prominenee of the cheek.
Form. Broad, thick, scmi-oval: superior and anterior sides, rectilinear ; postero-inferior border, curvilincar.

Attarimuent. Superiorly, to the whole of the zygomatie ridge, and lower border of the arch, reaching as far back as the mastoid process; inferiorly, to the coughened border surrounding the angle of the jaw, and to the contiguons parts of the external surface.

Relations. Externally, with the panniculus carnosus, cellular tissuc, and branehes of the portio dura; internally, with parts of the superior and inferior maxillæ, buccinator, mass of yellow fat filling the intermaxillary vacuity, posterior and anterior masseter arteries and veins; superiorly, with the temporal artery and vein; posteriorly, with the parotid gland ; anteriorly, with the parotid duct, anterior maxillary artery and vein.

Direction. Oblique: from above, downwards ; and from before, backwards.

Structure. Of its exterior, the superior two thirds is aponeurotic; internally, it is composed of several distinct fleshy layers, separated by aponeurotic intersectious.

Action. In co-operation with the former muscle, to elevate the lower jaw, and maintain it in approximation against the upper.

STYLO-MAXILLARIS.

Situation. Behind the lower jaw.
Figure. Pyramidal : has turned downwards and forwards.
Attachment. Superiorly and posteriorly, to the styloid process of the oecipital bone: inferiorly and anteriorly, to the angle of the lower jaw.

Relation. Externally, with the parotid gland, temporal and oecipital branches of the jugular vein, and the arteries piercing the gland ; internally, with the membrane bounding the guttural cavities; superiorly, with the stylo-hyoideus.

Direction. Oblique : from behind, forwards ; and from above, downwards.

Structure. Tendinous, at its occipital attachment; remainder fleshy, intersected with layers of tendon, and having aponeurotic stripes along its surfaces. The posterior division of the digastricus is inseparably united with the inferior border.

Action. To draw the jaw backward, and at the same time to depress it : it therefore assists in opening the mouth, and so far is an antagonist to the two former muscles.

pterygoideus internus-Spheno-maxillaris.

Situation. The same relative position upon the iuner side of the jaw to what the masseter has upon the outer, filling up the exeavation there in the bone.

Form. Broad and flat; terminating, inferiorly, in a semicireular horder, from which it narrows, upwards.

Attachment. Superiorly, to the ptcrygoid process, and crus of the sphenoid bone, to the palatc bone, and to the tuberosity of the superior maxillary bone; inferiorly, to the fossa which it oceupies, and around the angle of the jaw.

Relation. Rxternally, with the branch of the jaw, and posterior maxillary nerve and blood-vessels; internally, with the digastricus, hyoidcus, stylo-pharyngeus, the os lyooides, the larynx, the anterior portion of the parotid gland, the submaxillary vessels, and the ninth and recurrent nerves: anteriorly, with the mylohyoidcus and gustatory nerve; posteriorly, with the parotid gland, guttural cavitics, and the next muscle: superiorly, with the base of the cranium ; inferiorly, with the stylo-maxillaris and the skin.

Direction. Divergent, from above, downwards.
Structure. Fleshy, plentcously intersected with tendon.
Action. To raise the jaw. If one act alone, the jaw, in being closed, will be drawn to one side ; the alternate action of the two produces the lateral movement of the jaw which is so effectual in comminuting the food.

PTERYGOIDEUS EXTERNUS.

Situation. Above and behind the former.
Form. Short, thick, cylindrical.
Attachment. Antcriorly, to the ala and crus of the sphenoid; posteriorly, to the roughened depression upon the imner side of the jaw, at the root of the condyle.

Relation. Antcriorly, infcriorly, and intcrnally, with the preceding musele, and the postcrior maxillary nerve; superiorly, with the orbit ; posteriorly, with the articulation of the jaws; extcrnally, with the neck of the jaw.

Direction. Oblique: from bchind, forwards; and from without, inwards.

Structure. Fleshy, with slight tendinous intersections.
Action. To assist in the clevation of the jaw; and, at the same time, to draw it forwards : it is the antagonist, in particular, of the stylo-maxillaris.

6.-HYOIDEAL REGION.

The museles in this region, and those remaining to be described, belonging to the head, are comprehended within the intermaxillary space--between the branches of the lower jaw.

digastricus.-Portion of the Stylo-maxillaris.

Situation. Along the inner side of the lower jaw.
Form. Broad and flattened at the extremities; cordiform in the middle.

Attachment. Posteriorly, to the styloid process of the occipital bone; anteriorly, to the side of the jaw, midway between the angle and the symphysis.

Relation. Externally, with the jaw and pterygoidei ; inter-
nally, with the larynx, os hyoides, and submaxillary gland: inferiorly, with the submaxillary vessels and the skin.

Direction. Oblique : from behind, forwards and downwards; from before, upwards and baekwards.

Structure. It eonsists of two fleshy bellies united by an intermediate tendon, whieh passes and plays through a sort of pulley formed by the tendon of the hyoideus.

Action. Not very apparent ; implieated, seemingly, with that of the hyoideus.

MYLO-HYOIDEUS.

Situation. Spreading along the side of the jaw.
Figure. Broad, thin, half-penniform.
Attuchment. Outwardly, to the roots of the alveolar proeesses and the side of the jaw, extending forwards to the symphysis : inwardly, to the body of the os hyoides.

Relation. Outwardly, with the jaw ; inwardly, with the sublingual gland, genio-hyoideus, and gustatory and minth pair of nerves.

Direction. Oblique: from above downwards, inelining outwards.

Structure. Fleshy: united to its fellow (of the opposite side) through the medium of a tendinous line, whieh extends from the end of the spur proeess of the os hyoides to the symphysis of the jaw.

Action. To draw the os hyoides forwards and upwards; and, thereby, raise the tongue within the mouth.

GENIO-HYOIDEUS.

Situation. Above the preeeding musele.
Figure. Half-penniform : extremities, narrow ; middle part, broad.

Attachment. Anteriorly, to the jaw, near the symphysis; posteriorly, to the spur proeess of the os hyoides.

Relation. Inferiorly and externally, with the mylo-hyoideus; superiorly, with the genio-hyo-glossus; internally, with its fellow.

Direction. Oblique: from before, baekwards; and from without, inwards.

Structure. Tendinous at the extremities: intermediate part, fleshy.

hyoideus magnus. - Kerato-hyoideus Magmus.

Situation. Antero-superior part of the neek.
Form. Fusiform : flattened upon its sides.
Attachment. Posteriorly, to the postero-inferior part or angle of the eorner of the os hyoides; anteriorly, to a little tuberele
arising from the middle and inferiur part of the semieireular portion of the same bonc.

Direction. Oblique : from behind, forwards ; and from abore, downwards.

Relation. Below, with the stylo-maxillaris, digastrieus, and parotid gland ; above, with the corner of the os hyoides, ninth pair of nerves, and lingual vessels : externally, with the pterygoideus internus; internally with the larynx and reeurrent nerve.

Structure. Tendinous and fleshy at its posterior attachment; ending in a slender tendon, anteriorly.

Action. To draw the body of the os hyoides still nearer to the side of the jaw, and thereby assist in the dilatation of the glottis.

hyoideus parvus.-Kerato-hyoideus Parvus.

Situation. Above and rather before the preeeding musele.
Form. Small, flat, triangular.
Attachment. To the body and appendix of the os hyoides, filling up the triangular spaec between them.

Action. To approximate these parts.

STYLO-HYOIDEUS.

Situation. Infero-anterior part of the neek.
Figure. Quadrilatcral.
Attachment. Posteriorly, to the front of the styloid process of the oeeipital bone; anteriorly, to the angle of the hyoideal cornu.

Relation. Externally, with the parotid gland; internally, with the guttural membrane: inferiorly, with the stylo-maxillaris; posteriorly, with the obliquus eapitis supcrior.

Structure. Fleshy, with tendinous intersections.
Action. To retraet, and at the same time elevatc, the cormu of the os hyoides.

7.-GLOSSAL REGION.

The museles of this region form, eolleetively, the substanee of the tongue : their number and variety account for the wellknown mobility of that organ.
hyo-glossus longus.-Kerato-glossus.

Situation. Along the base and side of the tongue.
Form. Long, narrow : flattened upon its sides.
Attachment. Posteriorly, to the cornu of the os hyoides, a short distance from its junction with the appendix ; anteriorly, infero-lateral parts of the tongue.

Relations. Externally, with the mylo-hyoidcus; internally, with the hyo-glossus brevis : infcriorly, with the gustatory nerves.

Structure. Thin, wcak, aponcurotic, at its postcrior attachment: remainder, fleshy.

Action. To draw the tongue within the mouth; and at the same time, dcpress it.

hyo-glossus brevis.-Hyo-glossus.

Situation. Similar to the preceding muscle.
Form. Broad, flat, thin, quadrilateral, half-penniform.
Attachment. Externally, to the side of the body of the os hyoides; internally, to the base of the tongue.

Relations. Externally, with the mylo-hyoideus and hyoglossus longus ; internally, with the genio-hyo-glossus.

Direction. Obliquely transverse.
Structure. Entirely fleshy.
Action. To assist the former muscle in the retraction of the tongue ; and to depress, in particular, the base of it.
genio-hyo-glossus.-Genio-glossus.
Situation. Inferior part of the tongue.
Form. Broad, thin, half-penniform.
Attuchment. Inferiorly, to the inner part of the jaw, near its symphysis: superiorly, to the under part of the tongue ; and also to the appendix of the os hyoides.

Relutions. Externally, with the genio-hyoideus, hyo-glossus, sublingual gland, and branches of the gustatory nerve ; internally, with its fellow ; inferiorly, with the genio-hyoideus; superiorly, with the tongue.

Direction. From below, upwards; and from beforc, backwards.

Structure. Fleshy; with the exception of the anterior half of its infcrior border, where it is hemmed by a slender tendon which connects it more firmly to the jaw. Its surfaces are in part covered with adipose substance.

Action. To project the tonguc within the mouth, and draw it down: if one muscle act alone, the organ will be drawn to one side.

LlNGUALIS.

The internal substance of the tongue consists of masses of fleshy fibres, taking various directions, and having interworen with them a considerable quantity of yellow adipose tissue: anatomists consider these as a distinct pair of muscles. They take their attachments at the root of the tongue, from the body and appendices of the os hyoides, where they are separable and distinct portions ; and proeced downwards, between the hyoglossi longi, and above the genio-hyo-glossi, to be buried and
consumed in the substanee of that organ. They reeeive the insertions of all the other glossal museles.

Action. To eontract the tongue lengthwise, and to draw it within the mouth.

8.-PHARYNGEAL REGION. hyo-pharyngeus.-Kerato-pharyngeus.

Situation. Infero-lateral and posterior part of the pharynx.
Form. Flat, thin, quadrilateral.
Attachment. Infero-posteriorly, to the superior border of the eornu of the os hyoides; supero-anteriorly, to the side of the pharynx.

Relations. Externally, with the pterygoideus internus; internally, with the larynx.

Action. To dilate the bag to receive the food.
palato-pharyngeus.-Pterygo-pharyngeus.
Situation. Upon the side of the pharynx.
Form. Broad and thin : irregular in figure.
Attachment. Superiorly, to the pterygoid process of the sphenoid, and to the palate bone: infcriorly, to the pharynxits fibres intermixing and eonfounding themselves with those of the hyo-pharyngeus and stylo-pharyngeus.

Direction. The reverse of the former musele: viz., from above, downwards ; and from before, baekwards.

Action. To assist in the dilatation of the pharynx.

STYLO-PHARYNGEUS.

Situation. Postero-lateral part of the pharynx.
Attachment. Posteriorly, to the styloid process of the temporal bone, and outer side of the eartilage of the Eustaehian tube: anteriorly, to the side of the pharynx.

Structure. 'T'endinous at its origin: remainder, fleshy.
Action. To assist in dilatation, by drawing the side of the bag in a direetion upwards and baekwards.
constrictor pharyngis antertor.-Hyo-pharyngeus.
Situation. Antero-superior part of the pharynx.
Alluchment. Infriorly, antero-internal part of the eornu of the os hyoides; superiorly, to a tendinous line uniting it with its fellow along the mesio-anterior part of the pharynx.
constrictor pharyngis medius.-Thyro-pharyngeus.
Situation. Behind the former musele.
Attuchment. Inferiorly, lateral parts of the thyroid eartilage :
superionly, to a tendinous line running along the superior part of the pharyux.
constrictor pilaryngis posterior.-Crico-phatyngeus.
Situation. Postero-smperior part of the pharyn.
Attachinent. Inferiorly, its fibres are eonfounded with those of the muscular eoat of the œesophagus: superiorly, to the lateral parts of the cricoid cartilage.

Relations of the three Constrictors. Superiorly, with the guttural pouches ; inferiorly, with the membranous parietes of the pharynx, with the os hyoides, and the thyroid and cricoid cartilages; laterally, with the anterior portions of the parotid gland.

Structure of them. Fleshy.
Action of them. To constrict or contract the cavity of the pharynx in the act of deglutition.

> 9.-LARYNGEAL REGION.

Comprehending eight pairs and one single musele.

HYO-THYROIDEUS.

Situation. Upon the side of the larynx.
Form. Quadrilateral: flat and thin.
Attachment. To the inferior border of the semi-eireular portion of the os hyoides; and to a broad eminence upon the posteroinferior part of the side of the thyroid cartilage.

Action. To elevate the thyroid eartilage, and with it the laryux altogether; or, to depress the os hyoides.

CRICO-THYROIDEUS.

Situation. Upon the postero-lateral part of the laryn.
Form. Flat; triangular.
Attachment. To the borders and side of the ericoid eartilage ; and to the posterior border of the thyroid, filling up the vacuity between the two cartilages.

Action. To approximate the two eartilages.

CRICO-ARYTENOIDEUS POSTICUS.

Situation. Upon the upper part of the larynx.
Attachment. To the entire upper surface of the cricoid cartilage, and to the posterior angle of the arytenoid eartilage.

Structure. Fleshy; and furnished with two small tendons, which are fixed to the arytenoid.

Action. To draw the arytenoid cartilage baekwards.

CRICO-ARYTENOIDEUS LATERALIS.

Situation. Postero-lateral and superior parts of the larynx, between the thyroid and ericoid cartilages.

Attachment. To the anterior border of the cricoid cartilage; and to the side of the posterior angle of the arytenoid.

Action. To draw the arytenoid eartilages assunder, and thus dilate the glottis.

THYRO-ARYTENOIDEUS.

Situation. Upon the side of the larynx, between the thyroid cartilage and the lining membrane.

Attachment. To the imner surfaee of the thyroid, and the triangular ligament; and to the side of the arytenoid eartilage.

Action. To enlarge the glottis by separating the arytenoid eartilages.

ARYTENOIDEUS.

Situation. Upon the superior part of the larynx.
Attachment. To the superior or exeavated parts of the two arytenoid eartilages; running across from one to the other.

Action. To contract the glottis, by approximating these eartilages.

HYO-EPIGLOTTIDEUS.

Situation. Between the epiglottis and semi-eireular part of the os hyoides.

Figure. Fusiform. A single musele.
Attachment. To the hollow part opposite to the neek of the os hyoides; and to the broadest part of the epiglottis : enveloped within a doubling of the laryngeal membrane, and elothed in adipose matter.

Structure. Pale fleshy fibres, mingled with fatty matter at its hyoideal attaehment, and fixed to the epiglottis by a very small tendon.

Action. To retract the epiglottis still further from the aperture, and thus inerease the dimensions of the latter.
10.-PALATINE REGION.

Ineluding one pair, and a single musele.

tensor palati.-Stylo-staphyleus.

Situation. Upon the supero-lateral part of the pharynx.
Form. Slender, elongated; tapering towards either extremity.
Attachment. Postcriorly, to the styloid process of the temporal bone, by means of a tendon common to it and the stylopharyngeus; anteriorly, by means of a cartilaginous loop (acting as a pulley), through which its tendon passes, to the styloid process of the palate bone : and, making a sudden turn outward,
around this process, it beeomes ultimately fixed to the posterolateral part of the soft palate.

Direction. From behind, forwards.
Relations. Inwardly, with the stylo-pharyngeus and palatopharyngeus ; outwardly, with the pterygoideus internus.

Structure. Fleshy, in the middle; aponeurotic externally: terminating, anteriorly, in a long, flat, sleuder tendon, whieh plays within a eartilaginous pulley.

Action. To streteh or dilate the palate.

circumplexus palati.-Staplyleus.

Situation. Infolded within the vellum palati.
Form. Collected into fascieuli, posteriorly : broad, thin, and expanded, anteriorly.

Attachment. Anteriorly, to the semi-oval border formed by the union of the palate bones; posteriorly, to the palate; within the substanee of whieh its fibres are intermingled with those of the stylo-pharyngeus and tensor palati.

Structure. Fleshy, posteriorly; aponeurotie, anteriorly. A single musele.

III. MUSCLES OF THE TRUNK.

The trunk eomprises the neck, the thorax, and the abdomen.

> a.-MUSCLES OF THE NECK.

1.--HUMERO-CERYICAL REGION.

rhomboideus longus.- Cervico-acromialis.

Situation. Supero-lateral part of the neek.
Form. That of an elongated flattened pyramid, having its apex turned forwards.
Attuchment. Superiorly and anteriorly, to the entire length of the side of the ligamentum eolli, reaching as far forward as the second eervieal vertebra: posteriorly and inferiorly, to the superior costa and eartilage of the scapula.

Relutions. Externally, with the pannieulus ; iuternally, with the ligamentum eolli ; inferiorly, with the splenius; posteriorly, it passes under the anterior angle of the scapula, uniting its fibres with those of the rhomboideus brevis.

Direction. Longitudinal ; following the eurve of the neck.
Structure. Anterior end tendinous: remainder, fleshy.
Action. To assist in raising the seapula, and at the same time to draw the bone forwards.

levator humeri.-Cervico-subscapularis.

Situation. Antero-inferior and lateral parts of the neek.
Form. Flattened, elongated: broadest and thiekest at its posterior and inferior parts.

Attachment. Supcriorly and antcriorly, to the tubercle of the occiput, to the mastoid process of the temporal bone, to the transverse process of the atlas, and those of the second, third, and fourth cervical vertebre; laterally, from the ligamentum nuehæ and fasehia covering the side of the neck ; inferiorly and posteriorly, loosely to the head of the humerus, to the scapular faschia, to the muscles about the point of the shoulder, and ultimatcly to a ridge upon the borly of the humerus, which arises from its grcater tubercle.

Relutions. The jugular vein runs along its antero-inferior border, and is covered by it for three fourths of its length downwards. The subcutancous branches of the ecrvical nerves pieree its substance and ramify upon its surface. Superiorly and posteriorly, it is opposed to the splenius; inferiorly and antcriorly, to the sterno-maxillaris; on its outer side, to the pannieulus; on its inner side, to the reetus capitis anticus major, and to the scalenus. Its antero-inferior margin is thin and expanded, and elips inward, forming a thin fleshy partition between the carotid artery and jugular vein.

Direction. Longitudinal : sloping with the neek.
Structure. Anteriorly it is split into two portions, both thin and aponeurotic at their extremitics. Its middle part is thiek and entirely fleshy, but upon the arm becomes aponeurotic.

Action. To raise the shoulder and arm, and at the same time draw them forwards: or, these parts being fixed, to turn the neck, and head also, to one side; or, should both aet, under such cireumstances, the head will be depressed.

Remark. Professor Girard considers the fleshy expansion between the artcry and vein as a distinet muscle, and names it the subscapulo-hyoideus: and so it would seem most natural to regard it.

2.-LA'teral CERVICAL REGION. splenius.-Cervico-mastoideus.

Situation. Oeeupying the whole of the superior and lateral parts of the neek.

Form. Irregularly quadrangular' the supero-lateral portion being aeute and extended : thick in substance and flattened upon the sirles.

Attuchment. Superiorly, to the ligamentum colli, reaehing as
far forward as the occiput, and as far backward as the fourth or fifth dorsal spine: iufcriorly, to the transicrse processes of all the cervical vertcbre, and to the mastoid process of the temporal bone.

Relations. Internally, with the aponeurosis of the panniculus upon the side of the neck, with part of the levator humcri near the head, and with part of the scrratus magnus near the shoulder ; along its inferior border runs the levator humeri ; and internally, with the complexus major, obliquus capitis inferior, and transversalis colli : which last-mentioncd muscle is in places inscparably embodied with it.

Structure. Supcrior attachments, tendinous and ficshy; infcrior ones, fleshy ; cxcepting that scparate flattened tendons fix it to the atlas and head: the intermediate parts are thick and substantial, and fleshy.

Direction. Oblique ; downwards and forwards : the anterior fibres incline more to a longitudinal coursc.

Action. Both muscles acting simultaneously, they will firmly erect the head and neck : onc acting by itself, will incline these parts to one side.

complexus major.-Dorso-occipitalis.

Situation. Decp-scated; underneath the former muscle.
Form. An extended triangle: broad, posteriorly; narrow, anteriorly ; flattened; thick in substance, in the middle.

Attachments. Posteriorly, to the spines of the four or five anterior dorsal vertcbre ; also to the transverse processes of the same: antcriorly, to the tubercle of the occiput.

Relations. On the outer side with the splenius ; on the inner sidc, with the ligamentum colli, with the complexus minor, and also with the posterior cervical artcry and vein, and the 3d, 4th, and 5 th cervical nerves. Its posterior or aponeurotic part is included between the longissimus and spinalis dorsi : its tendon fixed to the occiput is subcutancous.

Direction. Longitudinal : the fasciculi coming from the cervical vertcbre inclining upwards and forwards.

Structure. The dorsal portion is aponcurotic. Its flcshy belly is intersected by narrow slips of tendou; and near the liead ends in a flat tendon.

Action. This muscle will forcibly erect the head, and have the effect of protruding the nose ; or, going beyoud this, it will conduce to that appearance called the ewe neck; in which (latter) operation it co-acts with the splenius.

machelo-mastoideus.-Dorso-mastoideus.

Situation. Deep-seated: underncath the rertebral attachments of the splenius.

Figure. Long; cylindroid; bifid.
Attuchments. Posteriorly, to the transverse processes of the two foremost vertebre of the back; to the oblique processes of the six hindermost cervical : anteriorly, in union with the tendon of the splenius, into the mastoid process of the temporal bone.

Relations. Extcrnally, with the splenius; internally, with the spinalis colli ; posteriorly, it is included between the spinalis and longissimus dorsi ; anteriorly, it is inscparably united with the splenius.

Direction. Along the neek.
Structure. Tendinous, where it is attached to the back; flesly from thence to its union with the splenius, where it ends in the tendon common to it and that muscle.

Action. To erect the head, or to draw it on one side.

> spinalis colli.-Dorso.spinalis.

Situation. Decpest seated upon the side of the neck, lying within the interval between the oblique and spinous processes.

Figure. A near approach to a parallelogram.
Attachment. Inferiorly, to the oblique processes of all the cervical vertebre, exeept the first and sccond; also to that of the first dorsal: superiorly, to the spines of all the cervical vertebrex, excepting that of the atlas.

Relations. On the outer side, with the complexus and trachelo mastoidcus; on the inner, with the ligamentum colli and the vertebre of the neck.

Structure. More tendinous than fleshy at its attachments; intersected with layers of tendon elsewhere.

Action. To aid in the ercetion of the head, but more particularly in the constrained flexion of the neek backwards.

3.-SUPERIOR CERVICO-OCCIPITAL REGION.
 complexus minor.-Axoido-occipitalis Longus.

Situation. Upon the poll.
Figure. Long, slender, fusiform.
Altachment. To the spinous process of the vertebra dentata; and at the other end inseparably united with the tendon of the complexus major.

Relations. Superiorly, with the complexus major; inferiorly, with the next muscle: on the inner side, with the ligamentum colli.

Structure. The posterior part consists of pale delicate fasciculi : the anterior is tendinous.

Action. To assist the complexus major in its operation.
rectus capitis posticus major.-Axoido-occipitalis Brevis.
Situation. Underneath, and rather to the outer side of the former muscle.

Attachment. To the spine of the vertebra dentata: and to a scabreus depression in the occiput, bclow its tubcrele.

Relations. Superiorly, with the complexus minor ; inferiorly, with the next muscle: to the outer side, with the obliquus capitis superior.

Action. To pull the head backwards ; in doing which, it will assist in the protrusion of the nose.

rectus capitis posticus minor.-Atloido-occipitalis Parvus.

Situation. Underneath the preceding muscle.
Figure. Quadrilatcral.
Attachment. To the superior part of the atlas, and to the occiput.

Relations. Supcriorly, with the preceding muscle ; inferiorly, with the capsular ligament of the occipital joint; on the outer sidc, with the obliquus supcrior ; on the inner, with the ligamentum colli.

Structure. Entirely fleshy ; consisting of pale delicate fibres. Action. To chuek up the head suddenly; and, at the same time, to save the eapsular ligament from being pinched between the occiput and atlas.

obliquUs CAPITIS SUPERIOR.-Atloido-mastoideus.

Situation. Upon the side of the poll.
Figure. Nearly square.
Attachment. To the superior border of the transverse process of the atlas: and to a ridge extending, laterally, from the tubercle of the occiput to the mastoid process of the temporal bone.

Relations. Externally, with the tendon of the splenius; internally, with the capsular ligament of the axoido-occipital articulation; and on the iuner side, with the rectus major and ligamentum colli.

Structure. Fleshy, with one or two tendinous intersections.
Direction. Oblique ; upwards and forwards.
Action. Both muscles operating, they will draw back the head, and at the same time elevate it: one alone acting, will turn the head to one side.

obliqu Us capiths inferior.-Axoido-atloideus.

Situation. Deep-seated; upon the supero-anterior and lateral parts of the neck,

Figure. A near approaeh to a parallelogram.
Aitachment. To the side of the spine of the vertebra dentata; and to the supero-posterior part of the body of the atlas.

Relations. On the outer side, with the tendon of the splenius: on the inner, with the ligamentum colli and complexus minor: superiorly, with the eomplexus major; inferioply, with the eapsular ligament of the artieulation formed between the first and seeond vertebre.

Structure. Thick, and almost entirely fleshy.
Action. When both muscles act, the atlas (and the head along with it) will be elevated. But their alternate action, a sort of rotatory motion is given to the head.

4.--INEERIOR CERVICAL REGION.

STERNO-MAXILLARIS.

Situation. Infcrior part of the neek.
Form. Elongated ; cylindroid ; flattened above and below.
Attachment. Posteriorly, to the eariniform cartilage of the sternum : anteriorly, to the angle of the lower jaw.

Relutions. Externally, with the cellular faschia of the neek, panniculus and levator humeri ; internally, with the next musele, trachea, and carotid artery ; along its superior margin, with the jugular vein ; along its inferior border (the posterior half) with its fellow; from which it gradually diverges to the head, leaving the trachea and next musele exposed in the interspace formed by the divergenee. Its tendon passes between the parotid and submaxillary glands.

Direction. Longitudinal : eurving with the ncek.
Structure. Tendinous and fleshy at the sternal end, and intimately united with its fellow. About three fourths of the extent of the neek upwards, it terminates in a flat tendon.

Action. To inflex the head towards the breast. If one musele aet alone, it will, at the time of this inflection, incline the head to one side. The pair will also assist in opening the mouth

$$
\text { STERNO-THYRO-HYOIDEUS }\left\{\begin{array}{l}
\text { Sterno-hyoideus. } \\
\text { Sterno-thyroideus. }
\end{array}\right.
$$

Situation. Above the preecding musele.
Form. Elongated, slender, eylindroid ; flattened above and helow ; trigastric ; but unequal in its divisions.

Altuchment. Posteriorly, to the cariniform cartilage of the
sternum, above the preeeding musele: anteriorly, to the spur proeess of the os hyoides: also, by a detaehed slender tendon, to the lower border of the thyroid eartilage.

Relations. Inferiorly, with the sterno-maxillaris; superiorly, with the trachea, and on the left side with the œsophagus likewise : along its outer border, with the reeurrent nerve; along its inner, or mesian line, with its fellow.

Structure. Sternal end, tendinous and fleshy, and united in one belly ; at the other end, there are two fleshy bellies; and the three are comneeted eontiguous to the trachea, about the middle of the neek, by an intermediate, short, and slender tendon.

Action. To draw the os hyoides, and along with it, the larynx, downwards and baekwards.

SUBSCAPULO-HYOIDEUS.

Situation. Continued from the levator humeri, and spread over the antero-superior parts of the neek.

Form. A broad, thin, elongated band; thieker and broader anteriorly than posteriorly.

Attachment. In conncetion with the levator humeri, to the inner surfaee of the seapula; anteriorly, to the middle of the body of the os hyoides.

Relations. Its course lies between the earotid artery and the jugular vein, between which it forms a fleshy partition; having on its outer side, the sterno-maxillaris ; on its inner, the sterno-thyro-hyoideus; and at its anterior termination, beeoming embedded between the submaxillary glands.

Structure. The seapular end cousists of a thin flattened tendon: the remaining part is fleshy. It forms altogether a sort of fleshy involuerum for the next musele.

Action. It will draw the os hyoides downwards and backwards.

scalenus.-Costo-cervicalis.

Situation. Postcro-inferior part of the neek.
Form. Pyramidal: base cut slantwise and turned downwards.

Attuchment. Posteriorly, to the middle of the first rib; anteriorly, to the bodics and transverse proeesses of the 5th and 6 th cervieal vertebres.

Relations. Along its upper margin, with the transversalis eolli; along its lower, with the sterno-maxillaris: on the outer side, with the levator humeri; on the inner, with the traehea; and on the left side, also with the œesophagus. In the interspaee between one sealenus and the other, run the earotid artery, par
vagum, great sympathetic nerve, and, lower down, the jugular vein. The cervieal nerves going to form the axillary plexus eross the sealcnus in their descent; and the axillary artery and vein turn round the first rib immediately beneath its posteroinferior extremity.

Structure. Constituted of two or three cylindroid divisions, lying one upon the other : its base is tendinous as well as fleshy: its cervieal attaehments are mostly fleshy.

Action. It will aid in the depression of the neek; and may also have some effect, the neek being fixed, in inspiration, by having a tendency to draw the rib forwards.

longus colli.-Subdorso-atloideus.

Structure. Deep-seated: extending along the inferior part of the neck, and thence for some distanee along the back.

Form. Complicated : made up of many semi-cylindroid fascieuli rumning obliquely one into the other: altogether, broad in the middle and tapering at cither extremity.

Attachment. Postcriorly, to the bodies of the six anteriormost dorsal vertebræ : anteriorly, to the bodies, transverse processes and inferior spincs, of all the cervical vertebræ, excepting those of the first ; it being fixed by a strong tendon to the body only of the atlas.

Relations. On the outer side it has, posteriorly, the sealenus; anteriorly, the rectus antieus major: below it, lies the traehea; above it, the vertebre.

Structure. The dorsal portion is pretty uniform, and is principally fleshy; the cervical part is convoluted, and the fibres are intersected with alternate layers of tendon. The anterior end is entirely tendinous; the other part has also a tendon fixing it to the 6 th cervical vertebra. The faseiculi run from one cervical transverse proeess to the other.

Action. Its many and extensive attaehments, and the proximity of the points on which it aets, render it a muscle of considerable power and effect in the flexion of the neek: the rainbow eurve, and the eonstrained inflexion of the head towards the breast, are chicfly attributable to its full and foreible contraetions.

5.-INFERIOR CERVICO-OCCIPITAL REGION.

rectus capitis anticus major.-Trachelo-suboccipitalis.
Situation. Deep-seated: antero-lateral part of the neck. Form. Pyramidal: base turned forwards.
Attachment. Posteriorly, to the transverse processes of the
$2 \mathrm{~d}, 3 \mathrm{~d}, 4$ th, 5 th, and 6 th eervical rertebre: anteriorly, to the euneiform proeess of the oeeipital bone.

Relations. Superiorly, with the vertebre longus colli, and following musele : inferiorly, with the œesophagus on the left side, and with the traehea and larynx on the right, and also with the membrane of the fauces. The earotid artery russ along its inferior border.

Structure. Posteriorly, eonsisting of slender fleshy fasciculi, ineluding two or three long slips of tendon: anteriorly, it is fleshy, interseeted by a broad flat tendon.

Action. To bend the head: one aeting only, will incline it, at the time of depression, to one side.
rectus capitis anticus minor.-Atloido-suboccipitalis.
Situation. Deep-seated : at the baek of the eavity of the fauees.

Form. Short, slender, eylindroid.
Attachment. Posteriorly, to the lower part of the body of the atlas: anteriorly, the same as the foregoing musele.

Relations. Inferiorly, with the preceding musele : superiorly, with the eapsular ligament of the oecipital joint.

Structure. Pale and entirely fleshy.
Action. To assist the major.
obliques Capitis anticus.-Atloido-styloideus.
Situation. 'To one side, at the back of the fauces.
Attachment. Posteriorly, elose to the reetus minor, to the body of the atlas : anteriorly, to the postero-inferior par't of the coronoid process of the oeeipital bone.

Relations. Above, with the oeeipital artieulation; below and to the inner side, with the reetus major antieus; to the outer side, with the parotid gland.

Action. The same as that of the former musele.

MUSCLES OF THE THORAX.

1.-DORSO-SCAPULAR REGION.

The museles included in this region form three of the prineipal agents eonecrned in the motions of the scapula.

rrapezaus. - Dorso-acromialis.

Situation. Upon the side of the withers.
Figure. A right-angled triangle; with the base turned upwards, and the right side forwards, in a parallel line with the spine of the seapula.

Attachment. Superiorly, to the spinous proeesses of the 3 d , 4 th, 5 th, and 6 th dorsal vertebree, and to the ligament and fasehia
investing them ; inferiorly, to a small tubercle upon the spine of the scapula.

Relations. Superiorly, it covers the rhomboideus brevis; in its course, downward, it passes over the posterior costa of the scapula; and also the postero-superior angle of the latissimus dorsi: inferiorly, it lies upon the aponeurosis enveloping the dorsum scapulæ.

Direction. Perpendicular ; excepting the posterior fasciculi, and they slant forward, in their course downward.

Structure. Superior attachments, aponeurotic ; below, it ends in a flat triangular tendon; the intermediate parts are entirely fleshy.

Action. To elevate the scapula: and, when the posterior fasciculi prevail, to incline the bone at the same time, backwards.

latissines dorsi.-Dorso-humeralis.

Situation. Upon the supero-lateral part of the chest, behind the scapula.

Form. Flat, thick : an extended triangle, presenting its base towards the spine.

Attachment. Superiorly, to the spinous processes of the dorsal vertebræ, and to the ligamentum colli (vel potius, dorsi) investing them ; stretching as far forwards as the highest point in the withers, and as far backwards as the lumbar spines, to some of which it is also connected: inferiorly, to the inner and upper part of the body of the humerus.

Relutions. Superiorly, with the trapezius, rhomboideus, brevis, and posterior angle of the scapula ; inferiorly, with the triceps extensor brachii: externally, with the panniculus; internally, with the ribs and serratus magnus.

Direction. Oblique: downwards and forwards; the fibres converging in their course.

Structure. Superior part, a broad and extended aponeurosis; inferiorly, it ends in a long, flattened, thin tendon : the intermediate parts are entirely fleshy.

Action. To flex the humerus, by drawing it backwards and elevating its inferior extremity.

rhombordeus brevis.-Dorso-subscapularis.

Situation. Upon the side of the withers: deeply seated.
Form. Flat and square. Thin, superiorly; thick, inferiorly. Attachment. Superiorly, to the four or five anterior dorsal spinous processes, and to the ligament clothing their summits: inferiorly, to the inner part of the superior costa of the scapula, and of the cartilage surmounting it.

Relations. Externally, with the trapczius and cartilage of the scapula; internally, with the vertcbræ and ribs : anteriorly, it is connected with the rhomboideus longus ; posteriorly, it is crosscd by the latissimus dorsi.

Structure. Fleshy : enveloped in a cellular expansion.
Action. To elcvate the scapula.

2.-PECTORAL REGION.

These muscles form the breast, or what is vulgarly and absurdly called the bosom.

pectoralis transversus.- $\left\{\begin{array}{l}\text { Sterno-aponeuroticus. } \\ \text { Ster }\end{array}\right.$ S Sterno-humeralis.

Situation. Lateral, anterior, and inferior parts of the breast. The pair form the fleshy prominences seen directly from the front.

Form. An approach to a triangle whose apex has been cut off : broad and thick, superiorly ; narrow, infcriorly.

Attachment. On the inner side, to a white tendinous line, and through the medium of that, to its fellow of the opposite side; also to the first four bones of the sternum : on the outer side, to the anterior part of the body of the humerus, and to the faschia covering the arm.

Relations. Superiorly, it is connceted with the major and minor pectoral muscles; externally, it is covered by the skin; internally, opposed to the front of the elbow joint ; anteriorly, to the levator humeri.

Direction. Transverse ; incurvating downwards.
Structure. Inner attachments, tendinous as well as fleshy; outer, wholly aponeurotic: intermediate part, fleshy.

Action. To adduct the arm ; also to keep it close to the chest during its flexion and extension: this muscle has, probably, more to do in cnabling the arm to support weight than to give it motion.

pectoralis magnus.-Sterno-trochineus.

Situation. Infero-lateral part of the thorax.
Figure. Trapezoid; flattened and thick in substance.
Attachment. Inwardly, to the 4th, 5th, and 6th pieces of the sternum, and to the cartilages connecting them; also to the ensiform cartilage, where, through the intervention of a white tendinous line, it becomes united with its fellow ; still more posteriorly, to the aponeurosis of the external oblique muscle, and the cartilages of the falsc ribs: outwardly, it is attached to the lesser tubercle of the humerus and the inner part of the lower end of the scapula.

Relutions. Extermally, with the panniculus and triceps museles; internally, with the aponeurosis of the external oblique, the scrratus magms, and the ribs: inferiorly, with its fellow, and in part concealed by the next muscle.

Direction. Longitudinal : incliuing upwards.
Structure. Fleshy: only that its anterior end is in part aponeurotic.

Action. To draw the head of the humerus, and along with it the lower end of the scapula, backwards, throwing the latter more into the upright position.

PEETORALIS PARVUS.

Situation. Below the former musele.
Attachment. Inwardly, to the side of the anterior half of the sternum, and to the cartilages of the first four ribs: outwardly, to the faselia covering the museles in front of the scapula and shoulder-joint, extending nearly as high up as the place of origin of the autea-spinatus.

Relutions. Superiorly and externally, with the preceding musele; inferiorly, with the pectoralis transversus; internally, with the eartilages of the ribs; anteriorly, with the levator humeri.

Structure. Fleshy ; exeepting its inferior termination, which is aponcurotic. Its fleshy parts are formed into layers, one orerlapping another.

Action. To assist the peetoralis magnus.

3.-COSTAL REGION.

Comprehending muscles which have, all of them, extensive attachments to the ribs.

$$
\text { SERRATUs magnus.- }\left\{\begin{array}{l}
\text { Costo-subscapularis. } \\
\text { Dorso-costalis. } \\
\text { Lambo-costalis. }
\end{array}\right.
$$

Situation. Between the shoulder and the side of the ehest.
Figure. In outline,semi-cireular: fibres radiating from a centre, and forming an indentated or serrated cireumferent border.

Attachement. Anteriorly, to the bodies and transverse proeesses of the 4th, 5 th, 6 th, and 7 th ecrvical vertebres; posteriorly, to the cight anterior ribs, as low down as their cartilages, by as many fleshy digitations: outwardly, to the upper and iuner part of the scapula, occupying the space between the origin of the subseapularis and the insertion of the rhomboidei.

Relutions. Externally, with the seapula; internally, with the cervical portion of the longissimus dorsi, the ecrvical verte-
bre, and the ribs; inferiorly, with the peetoral muscles ; anteriorly, with the splenius: and superiorly, with the latissimus dorsi.

Direction. The fibres eonverge from their varions cireumferent attachments, like the leaves of a fan, to one common foeal point, whieh is its insertion into the seapula.

Structure. It is covered by a thin aponeurosis which is attaehed around, prineipally, to the ribs. The costal portion is fleshy and digitated; the cervical portion is also fleshy; but the part fixed to the seapula is mostly tendinous. The musele is considerably thieker in the middle than around the eireumferenee.

Action. It forms the prineipal agent of suppor't to the trunk, maintaining it and the shoulder in elose apposition. This pair of museles are more or less coneerned in all the motions of the scapula; and will beeome dilators of the ehest whenever they are exerted while the limbs remain fixed points.

INTERCOSTALAS EXTERNI.

Number. Seventeen on each side.
Situation. Filling up the intereostal spaces, outwardly: reaching from the artieulations of the ribs with the transverse processes as far as the commencement of their eartilages.

Attachment. Anteriorly, to the external edge of the posterior border of one rib; posteriorly, to the internal edge of the anterior border of the rib immediately behind the former.

Relations. On the outer side, with the serratus, peetoral museles, obliquus externus, and transversalis and superfieialis costarum; on the inner side, with the intercostales interni ; superiorly, with the levatores eostarum.

Direction. Oblique; from before, backward; and from above, downward.

Structure. Thiek layers of mited fleshy fibres ineluded between broad aponcurotic slips of tendon, and in places displaying tendinous intersections.

INTERCOSTALES INTERNI.

Number. The same as the preeeding.
Situation. Underneath the externi ; within the intercostal spaces reaching from the angles of the ribs to the sternum.

Attachment. To the antcro-internal edge of the border of one rib; to the postero-internal edge of the rib immediately before it.

Relations. On the outer side, with the preeeding museles, and with the intereostal vessels and nerves; on the inner side, with the pleura.

MUSCULAR SYSTEM.

Direction. Oblique : but the reverse of that of the former museles ; viz. from behind, forwards ; and from below, upwards : in fact, their fibres decussate each other, like the strokes of an X.

Structure. They are thinner than the external intercostals; but are thicker in substanee, themselves, near the sternum than in the vicinity of the spine : the reverse being the ease with the external museles. They are covered with very thin aponeuroses, which separate them from the externi. They are entirely fleshy in substance; but paler and more delicate in their texture than the former.

Action. The intercostal muscles (both external and internal) act upon the ribs to which they are attached, posteriorly' they pull the costal arches forwards, whieh has a tendeney to throw them at the same time outwards; and thus beeomes enlarged the ealiber of the eavity of the chest.

4.-STERNAL REGION.

Comprising some small muscular slips in the vicinity of and attaehed to the sternum.

LATERALIS STERNI.-Costo-sternalis.

Situation. Upon the antero-inferior part of the outer surface of the thorax, bordering upon the sternum.

Figure. Long, flat, thin: trapezoid.
Attachment. Anteriorly, to the postero-inferior half of the first rib: posteriorly, to the superior three fourths of the eartilage of the third rib; whenee its aponeurosis is extended to the cartilages of the fourth and fifth, and also to the sternum.

Relations. Externally and inferiorly, with the pectoral museles; superiorly, with the serratus; internally, with the second rib and intercostal muscles.

Direction. Oblique ; from above downwards, and from before backwards.

Structure. Its anterior attachment is by means of a short, flat tendon ; its posterior is entirely aponeurotic. Both its surfaees are partially interspersed with tendinous expansions.

Action. To operate in the contraction of the chest by approximating the eartilages of the anterior ribs, and elevating, in some measure, the sternum.

sterno-costales.-(Externi et Interni.)

Several fleshy digitations, interspersed with slips of tendon, running from the cartilages of all the true ribs, excepting the first, to the sternum. Their fibres are taking the same course, and are continuous (in the intervals between the cartilages) with the intercostales.

Action. They scem to be for the purpose of contracting the dimensions of the thoracic cavity.

5.-DORSO-COSTAL REGION.

 superficialis-costarum.-Dorso-costalis.Situation. Spread over the back.
Figure. Broad, thin, digitated, irregular.
Attachment. Superiorly, to the ligamentum nuchæ in its extension through the back and loins : inferiorly, to the posterior bordcrs, below their angles, of the sixth and all the ribs behind it.
.Relations. Externally, with the panniculus; anteriorly, with the serratus; intcrnally, with the transversalis costarum, and longissimus et spinalis dorsi ; infero-postcriorly, with the obliquus extcrnus abdominis.

Structure. Consisting of a thin aponeurosis, superiorly ; from which originates eleven or twelve broad fleshy digitations : most of them (all the postcrior ones) possessing thin tendinous coverings. The aponeurosis itself serves as a faschia to the muscles underneath it.

Direction. Downwards ; with a slight inclination forwards. transversalis costarum.-Trachelo-costalis.
Situation. Upon the supero-lateral parts of the thorax.
Form. Elongated; half-penniform: broad in the middle, narrowing towards either extremity.

Attachment. Posteriorly, to the anterior borders of the ribs, near to the spinc; and to the posterior edges of their angles: anteriorly, to the transversc process of the last cervical vertebra.

Relations. Externally and inferiorly, with the last muscle; internally, with the costal arches ; supcriorly, with the longissimus dorsi.

Direction. Longitudinal : inclining downwards.
Structure. Complicated. Consisting of two sets of tendons : one set embedded in fleshy fibres, and scrving to strengthen its attachment supcriorly; the others are external, distinct from the fleshy parts, are flat and elongated, broad in the middle, growing longer and more slender as they approach the extremities, and are fixed to the costal arches. A scparate tendon extends to the cervical vertebra in front.

Action. To elevate thic ribs, and thus produce some enlargement of the cavity of the thorax.
levatores costarum.-Transverso-costales.
Number. About fiftecn.
Situation. Deep-seated; upon the back.

Figure. Flattened; conoid : base turned downwards.
Attachment. Superiorly, to the transverse processes of the dorsal vertebræ: inferiorly, to the anterior borders of the ribs, in the spaees between their tubereles and angles.

Relations. Externally, with the longissimus dorsi ; internally, with the ribs.

Direction. Oblique : from before baekwards, and from above downwards.

Structure. Consisting of bundles of fleshy and tendinous fibres, laving a similar arrangement to, and looking like the heads or beginnings of, the external intercostals. Their superior ends are intcrwoven with small compaet tendons, whence proceed tendinous slips, which interseet their fleshy bellies. Their inferior parts are enveloped in aponeuroses, whiel become thin and vanish upon their surfaces. The middle bundles are thiekest and longest: the anterior ones are but seanty ; and the three or four foremost ribs are entirely destitute of them.

Action. To assist in the elevation of the ribs.

6.-DORSAL REGION.

Ineluding museles eonneeted with the vertebræ of the baek.

longissimus dorsi.-Ilio-spinalis.

Situation. Upon the supero-lateral parts of the back and loins.
Figure. Broad, thiek, and elongated.
Attachment. Posteriorly, to the crista of the ileum, to the side of the sacrum, to the spinous and transverse processes of all the lumbar vertebre, and to the spinous proeesses of the six posterior dorsal : anteriorly, to the angles of the twelve posterior ribs, to the transverse proeesses of all the dorsal vertebræ, and to those of the three or four hindermost eervical.

Relations. Externally and inferiorly, with the superfieialis costarum; internally, with the ribs and vertebre; superiorly, with the spinalis dorsi.

Direction. Longitudinal ; inclining downwards, as well as forwards.

Structure. This musele (one of the longest and, at the same time, most bulky muscles in the body) is eonstituted of a dense and strong aponeurosis ; a thick, long, and uniform fleshy belly; and several broad and flat tendons intimately conneeted with the fleshy parts. The aponcurosis completely invests the lumbar portion of the fleshy belly; with the fibres of whieh it is so intimately adherent, that the two are inscparable by the knife from one another. From this, the apoueurosis is continued upwards, to be fixed to the spines of the vertebre ; and forwards,
to be spread over the dorsal division of the musele, upon which it grows thin and less expansive, and, about opposite to the withers, altogether vanishes. The fleshy part (whieh in its course adheres eloscly to the artieulations of the vertebre with the ribs) is pretty uniform in its breadth until it arrives at the withers, opposite to where it divides into three tails or portions, of a flattened pyramidal form, and so disposed that one, more or less, ovcrlaps another. Of these, the inferior division is the direct eontinuation of the common fleshy belly: from it proeeed six or seven flat tendons, whieh go to be fixed to the ribs at their artieulations with the transrcrse proeesses. The middle division sends off three broad thin tendons, to be fixed to the three last transverse proeesses of the neck. The superior division is a small eonical slip, ending in a slender tendon, whieh is attaehed to the same process of the fourth eervical vertcbra. These tendons are all embedded in, and intermediately conneeted by, continuous fleshy parts, which adhere to the eostal articulations at the withers, and to the oblique processes and sides of the bodies of the threc posteriormost vertebre of the neck.

Action. It will incline to a state of flexion the fore quarters upon the hind ; or the hind upon the fore; according as the one or the other are made the fixed points. It is a prineipal agent in the aets of kicking, and rearing, and lcaping. If one aet by itself, the forc or hind parts of the body will be inelined to one sidc. The pair will also assist in the erection of the neek.

SPINALIS DORSI.

Situation. Dcep-scatcd upon the withers.
Form. Thiek, elongated, pyramidal : base turned downwards.
Attachment. Postcriorly, through the medium of the aponeurosis of the longissinus dorsi, to the spinous proeesses of several of the posterior dorsal vertcbre : anteriorly, to the spines of the six or seven anterior dorsal vertebre, and to those of the three or four posterior cervieal.

Relations. Extcrnally and superiorly, with the trapezius, bchind, and complexus major, in front; internally, with the ligamentum nuehæ; and, infcriorly, it is inseparably united with the last muscle.

Direction. Longitudinal.
Structure. The broad and thiek part is covered by a broad patch of inseparably adherent aponeurosis, which grows thin and less apparent posteriorly ; but, anteriorly, ends in a broad tendon, which pierees the flesliy termination of the belly, and becomes fixed to the spine of the last cervical vetcbra.

Action. To flex or writhe the baek upon the withers ; and to aid in the erection of the neck.

SEMI~SPINALIS DORSI.

Situation. Deep-seated, upon the back.
Form. Half-penniform : clongated; curving with the spine.
Attachment. Posteriorly, to the saerum, underncath the posterior spine of the ilcum; to the articular processes of the lumbar vertebræ, and the transversc of the dorsal: anteriorly, to the lumbar spines, and those of the back: extending forwards to the withers.

Relations. Deeply buricd underneath the longissimus et spinalis dorsi, and lying elose upon the lateral parts of the spine of the back and loins.

Direction. Oblique, from bclow upwards, and from behind forwards: the obliquity of the packets increasing from behind to the front.

Structure. Consisting of a rcgular series of small fleshy packets, intersected with broad thin portions of tendon, which inercasc in length with the dorsal spines. The posterior packets are mostly fleshy in substance; but the antcrior present scveral long flat tendons, distinct from the other parts, which are fixed to the spines of the withers.

Action. To co-opcrate with the longissimus dorsi in producing a more complete flexion of the baek.

DIAPHRAGMATIC REGION.

Containing only the single muscle from which it takes its name.

DIAPHRAGMA.

Situation. It forms the fleshy and tendinous partition dividing the eavity of the chest from that of the abdomen.

Form. Broad, circular; flattencd from before baekwards; anterior surfaec, convex ; postcrior, coneave: bifurcatc, superiorly; having two clongations or appendices extended backwards, and terminating in pointed extremities.

Division. The broad eircular portion is sometimes distinguished as the greater muscle; while the appendices or crura are said to form the lesser.

Attachment. The greater musele is attaehed by flcshy digitations to the eartilages of the cighth pair of ribs, and to those of all the posterior ribs, with the execption of the last two ; also to the ensiform eartilage. Of the appendices, the right, the longer one, is attached to the bodics of all the lumbar vertebre ; the left,
or shorter one, has separate tendinous attachments to the first and second of these vertcbre. The two appendices form a union and decussation opposite to the scventeenth dorsal vertebra; and afterwards, again bifurcatc. The greater and lesser muscles form a conjunction through the medium of the cordiform tendon.

Relations. The anterior or convex surface is covered by the pleura; is opposed to the bases of the lungs, and in part to the sides of the chest ; and is connected, next to the spine, with the superior mediastinum and its important contents; next to the sternum, with the pericardium and inferior mediastinum. The posterior or concave surface is covered by peritoneum; and is, together with the crura, connected, supcriorly, with the psoæ muscles and quadratus lumborum ; infero-postcriorly, with the kidneys, renal capsules, pancreas and duodenum ; on the right side, with the liver; on the left, with the stomach and spleen.

Direction. The fibres of the larger muscle all converge in radii, and run to the cordiform tendon, as to a common centre : those of the appendices run longitudinally.

Structure. It is madc up of fleshy and tendinous parts. The fleshy parts arc those forming the circumferent portions of the large muscle, and the principal bulk of the crura or appendiees. The tendinous parts consist of a thin circular expansion occupying the middle of the larger muscle, and uniting that with the lesscr. Through the muscle are to be seen three remarkable openings : a superior one, in the interspace between the crura, for the aorta; one, a little lower, formed by the decussation of the crura, for the œesophagus ; and a third, or lower one, perforating the cordiform tendon, for the vena cava postcrior.

Action. The diaphragm is the principal if not the solc agent in inspiration: it acts in opposition to the abdominal muscles, which are the chief expiratory powcrs. By the contraction of its radiated fibres, aided by that of the crura, the cordiform tendon is transformed to a plane surface, and the dimensions of the chest from before backwards thereby considerably augmented. Its capacity, however, is again contracted in consequence of the musele resuming its concavo-convex form, from the reaction of the abdominal muscles and consequent pressure against it of the abdominal viscera. There arc oceasions, however, in which these opponent respiratory agents co-operate to one and the same effect; sueh is the case of the expulsion of urinary and fæcal matters; and also in the act of parturition.

MUSCLES OF THE ABDOMEN. LUMBAR REGION.

The museles included within this region constitute the fleshy parts of the loins. They are six pairs in number, altogether ; and two of them are placed externally; the other four, internally'.

SEMI-SPINALIS LUMBORUM.

Consisting of regular layers of fleshy fibres, similarly distributed in the loins to what those of the semi-spinalis dorsi are in the baek; and continued along the sacrum. They are eovered by thin tendinous faschiæ, extended from transverse to spinous process.

INTER-TRANSVERSALES LUMBORUM.

Small museular slips running from the sharp oorder of one transverse process to that of the next to it ; and ineluded between two strong and tense inter-transverse ligaments.

Action. To approximate those processes.
sacro-lumbalis.-Sacro-costalis.
Situation. Deep-seated, in the loins: above the psor.
Form. Flat, thin ; border, semicircular.
Attachment. Posteriorly, to the transverse process of the last lumbar vertebra, and to the body of the sacrum; anteriorly, to the other transverse processes of the loins; and to the last rib.

Relations. Superiorly, it is opposed to the transverse proeesses of the loins ; inferiorly, to the psoas magnus.

Structure. A strong and flattened tendon attaehes it to the sacrum, which eurves forwards, but disappears before it reaehes the last rib: the other parts eonsist of pale disgregated fibres, intermixed with thin, eurvilinear slips of tendon.

Action. To eo-operate with the inter-transversales lumborum in approaching the transverse processes ; and, at the same time, to draw back and render fixed the last rib.

psoas magnus.-Sub-lumbo-trochantineus.

Situation. Postero-lateral parts of the spine; and superior part of the inlet of the pelvis.

Form. Elongated ; fusiform; thicker in the middle than at the extremities; anterior extremity, flattened, extended and pointed.

Altuchment. Anteriorly, to the inner surfaees of the last two ribs, close to their vertebral articulations; to the body and transverse process of the last dorsal vertebra, and to the same of all
the lumbar vertebre : posteriorly, to the small internal trochanter of the os femoris.

Relations. Antcriorly and externally, with the diaphragm ; posteriorly and cxterually, with the iliacus; inferiorly, with the kidncy and peritoneum ; on the inucr side, with the psoas magnus and lumbar vertcbre; bchind, with the quadratus lumborum.

Structure. Anterior attachments, fleshy. The postcrior end is included within au aponeurosis, which itself terminates in a flat tendon, into which are concentrated and inscrted the fibres of the iliacus.

Action. To bend the haunch upon the pelvis, by drawing it forward, as in progression: Supposing it to act while the hind quarters remain stationary and fixed points, it will produce that appearance, by flexing the spine, called "roach-back," or "sticking up the back."

iliacus.-Ileo-trochantineus.

Situation. Occupying the iliac fossa, and thence extended along the internal part of the haunch.

Form. Thick ; triangular; base turned forwards.
Attachment. Anteriorly and supcriorly, to that part of the crista of the ileum which has no bearing upon the sacrum; and to the antcrior spinous process, venter, and inferior edge of the bone: posteriorly and infcriorly, to the small internal trochanter, along with the psoas magnus.

Relations. Inferiorly, with the crural arch; superiorly, with the psoas magnus and sartorius ; on the outer side, with the iliac fossa, tensor vaginæ, rectus, and ilco-femoral articulation ; on the inncr, with the iliac faschia and peritoncum. The anterior crural ncrve and profunda artery and vein cross its lower termination.

Structure. Enveloped cntirely intcrually, and in part externally, by a faschia derived from the crural arch. It is altogether fleshy excepting its lower part, which joins in inseparable union with the tendon of the psoas magnus.

Action. To flex or advance the haunch.

psoas parves.-Sub-lumbo-pubialis.

Situation. Along the inncr side of the preceding muscle.
Figure. Elongated, slender, fusiform.
Attuchment. Anteriorly, to the heads of the 16 th, 17 th, and 18th ribs ; to the bodies of the three posterior dorsal, and to those of all the lumbar vertcbre; posteriorly, to the brim of the pelvis, midway between the antcrior spine and the symphysis pubis.

Relations. Anteriorly, with the diaphragm and the renal vessels ; on the inner side, with the crus of the diaphragm, ante-
rior aorta, and vena eava, and the iliae vessels; on the outer side, with the iliaeus.

Direction. Longitudinal.
Structure. Anterior attaehments, fleshy; with tendinous ehords intermixed: posterior half, a long flattened tendon, which arises out of the middle of the fleshy parts and broadens in its passage baekwards.

Action. To draw the pelvis forwards. When one aets by itself, the same part will be inelined to one side. Or, the pelvis being made a fixture, it will have effeet in arehing or flexing the spine.

2.-ABDOMINAL REGION.

An intervening stratum of eellular substance attaches the abdominal portion of the pannieulus earnosus to a glistening expansion of tendon, situated underneath it, whieh is the aponeurosis of the external oblique musele. This eellular substance being removed, several white lines, marked upon the subjaeent tendon, eome into view. The prineipal of these is one which runs along the middle of the belly, extending from the ensiform eartilage to the pubes: it takes the name of linea alba; and denotes the line of junetion and demareation between the abdominal museles on one side and those of the other. About midway between its two terminations, this line has a perforation, the umbilicus or navel, through whieh passes the umbilical ehord. At some short distanee from the sides of the linea alba are two eurved or waving lines, ealled the linea semilunares: they mark the line of union between the fleshy and tendinous fibres of the external oblique musele. Traversing the interspaces between the linea alba and lineæ semilunares, at short intervals from one another, are several transverse lines, named the linece transversales: they are produced (as will hereafter be diseovered) by the tendinous intersections aeross the straight museles; and are, in some subjeets, but obseurely marked.

There are four pairs of abdominal muscles:--two pairs of oblique museles; one pair of transverse; and one pair of straight museles. Three of these pairs are ranged in strata, one upon another, and have sheets of tendon eonneeted with them, which take the name of aponeuroses.

obliques externus abdominis. (Costo-abdominalis.)

Situation. Upon the inferior and lateral parts of the belly. Figure. Broad, thin; quadrilateral.
Attucliment. Anteriorly, by fleshy digitations, to the posterior borders of the fourteen hinder ribs, below their middles; posteri-
orly, by tendinous fibres, to the two anterior thirds of the erista ilei, and to the anterior spinous process; superiorly, to the faschia lumborum ; and inwardly, through the medium of its tendon, to the linea alba, throughout its entire extent.

Relations. Externally, with the pannieulus carnosus and peetoralis magnus : internally, with the hinder ribs and their eartilages, and with the obliquus internus and reetus; anteriorly, it digitates with the serratus magnus.

Direction. Oblique: from before, baekward; and from above, downward. The anterior fibres deviate but little from the horizontal line; in regard to the others, their obliquity inereases from before backwards.
Structure. The entire musele is covered by a dense tendinous expansion, named the aponeurosis of the external oblique muscle, which adheres to the fleshy parts through the eonneetion of a delieate cellular tissue, intereepted in places by small slips of tendon. At the linea semilunaris, however, where the tendon eommenees, the aponeurosis contraets an almost inseparable adhesion to it, accompanying it, thus intimately united, to its termination. Towards the flank, the aponeurosis seems to degenerate into cellular texture.

The superior and outer parts of the musele itself are fleshy and digitated; the inferior and inner parts are tendinous and aponeurotie. The fleshy part grows broader, but beeomes thinner in substanee, posteriorly.

Remarks. In the flank, the tendon splits into two portions, which separate, leaving a triangular space or opening between them, whose eavity is obseured by fat and cellnlar substance. One division of the tendon forms a strong band, whieh is extended and expended upon the inner side of the thigh; the other portion runs to the ileum, and thenee is continued aeross to the pubes: corresponding in its arrangement and strueture to the part ealled Poupart's ligament in human anatomy, though by no means well defined in the horse. The triangular aperture between these divisions of tendon, whieh opens into a sort of poueh, elosed by the union of these tendons on the outer side, but open towards the pubes, is the abdominal ring: through it, in the male, passes the spermatie chord, from the abdomen into the pelvis; in the female, the round ligament passes through it. The aponeurosis is considerably strengthened at this part by some additional tendinous fibres, which run transversely, from the linea alba towards the ileum.

Action. This pair of museles, in eontributing largely to the formation of the abdominal parietes, laterally and inferiorly, give great support to the contained viscera. In aetion, they compress
the bowels; and, in that manner, assist both in the evacuation of the fæces and urine, and also in the expulsion of the fœetus. At the same time, they will have the effeet of diminishing the eavity of the chest, in the longitudinal clirection, by forcing the abdominal viseera against the diaphragm, and driving that musele forwards into the form of a convexity ; and in the transverse as well, though not in the same degree, by compressing and retraeting the ribs. But, in almost all their operations, they are concerned with the diaphragm ; and, together with it, produce effeets that can only be understood by studying their separate and combined actions.

obliques internus abdominis.-(Ilio-abdominalis.)

Situation. Postero-lateral and inferior parts of the abdomen. Form. Broad; thin ; fan-shaped.
Attachment. Outwardly and posteriorly, to the spine of the ileum, from which the flesliy fibres radiate: inwardly, at the linea semilunaris, it becomes tendinous, and inseparably unites with the aponeurosis of the external oblique; along with whieh it is continued to the linea alba.

Relutions. Externally, with the former musele; internally, with the transversalis and reetus.

Direction. Radiated: the superior faseiculi being direeted towards the eartilages of the ribs; the inferior, towards the linea alba: both deeussating those of the external oblique.

Structure. Fleshy, from the ileum to the linea semilunaris : afterwards, to its termination, an expanded and loose-textured tendon.

Action. These museles will aid the former in sustaining the weight of the viscera, as well as in compressing them : they will have a more partial effect in the expulsion of the fecees and urine, in consequence of being placed farther baek than the preceding. In any effeet the oblique museles may have in turning the body to one side, the right internal oblique will eo-operate with the left external oblique, and vice versí.

transversalis abdominis.-(Lumbo-abdominalis.)

Situation. Inferior and lateral parts of the abdomen.
Figure. Broad ; flat: quadrilateral ; broader posteriorly than anteriorly.

Attachment. Anteriorly, to the inner surfaces of the eartilages of all the false ribs; superiorly, to the transverse processes of the lumbar vertebre; posteriorly, to the anterior spinous process of the ileum: inwardly, to the entire linea alba.

Relations. On the outer side, with the internal oblique and straight muscles: on the inner side, with the fasehia transversalis and peritoneum.

Direction. 'l'ransverse, directly across the abdomen.
Structure. Partly fieshy; partly tendinous: the two substanees divided by the semilunar linc, which leaves the tendinous part broad, posteriorly; the fleshy, anteriorly.

Action. These muscles will assist the oblique in supporting the burden of the viscera, and are more advantageously placed to effectually compress them: they are consequently doing more in the ultimate cvacuation of the bowels.

rectus abdominis.-(Sterno-pubialis.)

Situation. Infero-median part of the abdomen.
Form. Elongated; flattened from above downwards : broader in the middle than at either extremity.

Attachment. Anteriorly, to the cartilages of the six or seven posterior true ribs : and to the sternum : posteriorly to the pubes, near its symphysis.

Relations. Anteriorly, it is plaeed between the peetoralis major and the cartilages of the ribs; externally, it has the united tendons of the external and internal oblique; internally, that of the transversalis : also, the internal pectoral and epigastric arteries; and the faschia transversalis and peritoneum.

Structure. Tendinous at its attachments: the anterior one is aponeurotic. The intermediate length is fleshy, but divided into portions by about a dozen transverse tendinous interlacements or intersections. Each muscle, by itself, is inclosed within a sheath, formed of the united tendons of the external and internal oblique museles, inferiorly; and of that of the transverse muscle, superiorly. At the plaees where the tendinous bands exist, the sheath contracts firm adhesion to the musele: and it is this union and structure that gives rise to the existenee of the linea transversalis. The recti oecupy about one third of the abdominal superfieies.

Action. Their prineipal use appears to be that of bracing the middle parts of the belly; and, thereby, eounteracting that tendency to relaxation which must cxistfrom the constant dependence of the bowels. They can have but little effect in compressing the bowels; though they will take some part in contracting the cavity of the thorax, by drawing the stcrnum upwards and backwards.

Remark. A carcful incision through some of the posterior fibres of the transversalis will disclose to riew an cxpansion of faschia of considerable density and firmness of texture, whieh corresponds to a part in the human subject first described by Sir A. Cooper, and by him named the fuschiu transversulis. It may
be traced as an entire lining to the museles of the abdomen ; and is, from the resistance it opposes (whiel is by no means ineonsiderable), of essential serviee in sustaining the burden of the dependent viseera, in effeeting whieh it reduces the demand for museular aetion. Though it is an opening (removed a short distanee, inwardly, from the external ring), ealled the internal abdominal ring.

3.-ANAL REGION.

Comprehends a pair of museles, and a single one.

retractor ani.-(Ischio-analis.)

Situation. On the side of the reetum, near its termination.
Figure. Long, slender, eylindroid.
Attachment. Inferiorly and anteriorly, to the saero-seiatie ligament, and to the os innominatum, below and behind the aeetabulum ; superiorly and posteriorly, to the lateral parts of the reetum, elose to its termination.

Relations. Externally, with the saero-seiatie ligament; internally, with the sphineter ani.

Direction. Curving obliquely around the gut.
Structure. Its posterior attachment is aponeurotic: at the mesian line, inferiorly, where it meets its fellow, it terminates in a small flat tendon.

Action. To retraet the anus ; to withdraw it within the pelvis.

SPHINCTER ANI.

Situation. Eneireling the termination of the reetum.
Figure. Oval ; open in the middle.
Attachment. Superiorly, to the eoeeyx, whenee it deseends in two divisions ; these diverge to inelude the gut between them, around whieh they proeeed, and again meet and unite inferiorly.

Relations. Posteriorly with the skin; internally, with the intestine ; anteriorly, with the retractor.

Direction. Cireular.
Structure. Pale and fleshy: conneeted, superiorly, with a broad tendinous expansion, whieh attaehes it to the eoceyx.

Action. To elose the anus, after the expulsion of the fæees, and to retain it elosed.

4.-MALE GENITAL REGION.
 cremaster.-(Ilio-testicularis.)

Continued from the fasehia supurficialis aldominis upon the spermatie ehord, and thenee into the fibrous texture of the scro-
tum is a thin, cellular, fibrous expansion ; and, underneath this, a layer of fleshy substance, whieh has, when contrasted with the surrounding white parts, a remarkably red aspect. This is the cremaster. Supcriorly, at the internal ring, it has a tendinous origin from the internal oblique and transverse muscles; from which its fibres pass obliquely backward upon the chord, become reflected along with it through the external ring, and terminate, slantwise, in a digitated margin, just before the chord joins the testicle. From its digitations, sereral slender flattened tendons descend and expand upon the inferior surface of the tumica vaginalis, with the substance of which they become so interlaced and intermixed, that all further trace of them becomes lost.

Action. To retract the testicle (it has the power of withdrawing it as ligh as the abdominal ring), and to aid in its susp ension

ERECTOR PENIS.-Ischio-sub-penialis.

Situation. Upon the ramus ischii, and crus of the eorpus cavernosum.

Figure. Short, thick, eonoid.
Attuchment. Inferiorly, to the inner side of the infero-postcrior part of the tuberosity of the ischium; superiorly, to the crus penis, enveloping a considerable portion of it.

Relations. On the outer side, with the flexors of the thigh; on the inner side, with the accelcrator urine: internally, with the corpus cavcrnosum.

Direction. Oblique ; from above, downwards ; and from without, inwards.

Structure. Tendinous and fleshy at its ischial attachments; fleshy in other parts, exeepting that its surfaces are in part aponeurotic.

Action. To promote the influx of blood into the penis at the time of ereetion, by clevating and protruding the organ, and to aid in retaining it in the state of ercetion.

triangularis penis.-Ischio-urethralis.

Situation. Across the floor of the eavity of the pelvis, in front of the ischial arch.

Figure. Thin and expanded.
Attachment. On cither side, to the ischial portion of the os innominatum; in the middle, to the prostate gland.

Relations. Inferiorly, with the ischium and pubes; superiorly, with the prostates, membranous part of the urethra, and bladder.

Structure. It eonsists of a broad expansion of pale fleshy
fibres (looscly connected by celhular tissuc), clothing the membranous portion of the urethra and the prostates.

Action. It will contract this part of the urethra; and, probably, have some effect in discharging fluids from the prostates.

accelerator urine.-Perineo-urethralis.

Situation. Upon the bulb of the urethra, and around the under parts of the penis.

Form. Elongated; penniform.
Attachment. Incorporated with, and (may be considered as) forming part of the penis itself. Posteriorly, it springs from the middle and posterior part of the bulb of the urethra, where it is joined by other (scattered) fasciculi, arising on cach side of the bulb from the perincum. It takes its course along the under part of the penis, and may be followed for some short distance upon the glans; the entire muscle, throughout its cxtent, forming a complete fleshy investment to the urethra.

Action. To compress the urcthral canal, thereby aiding in the forcible discharge of the urine; but more particularly, it would secm , in the cjection of the seminal fluid.

FEMALE GENITAL REGION.

$$
\text { erector clitoridis. }-\left\{\begin{array}{l}
\text { Ischio-clitorideus. } \\
\text { Sacro-clitorideus. }
\end{array}\right.
$$

This pair of muscles spring from the perincum, at which place their fibres are mingled with those of the sphineter ani. They run to be attached to the upper and hack parts of the elitoris.

Action. To crect the clitoris, and thercby protrude it into the vagina, in the act of coition.

sphincter vagina.-Perimeo-clitoridens.

Consists of a broad bank of strong, red, fleshy fasciculi, encircling and clothing the orifice of the vagina; and spreading around the adjoining parts of the canal.

In action, the splincter will contract (and has the power to close) the mouth of the canal.

COCCYGEAL REGION.

An anatomical knowledge of the muscles composing the tail is indispensable to the scientific performance of the operation of nicking.

In denuding them (in dissection) the skin will be found to grow soft and thin upon the under part of the tail, where there is no hair ; but thick again and coarse as it approaches the tip, at
whieh part it is also more closcly adlicrent to the musele, in consequence of the ecllular substanee there is interposed.

Thesc muscles arc divisible into four pairs; and most eompletely so at their origins at the root of the tail: in the course of their progress their nearest fibres unite together, and beeome blended one with another.

ERECTOR COCCYGIS.-Sacro-coccygeus superior.

Situation. Supero-lateral part of the tail.
Form. Elongated ; pyramirlal.
Attachment. Antcriorly and superiorly, to the transverse processes and spines of the saerum; posteriorly and inferiorly, to the bodies and spines of the bones of the eoeeyx.

Relations. The musele lies in the hollow formed by the saerum on the inner side, and the ileum and saero-seiatic ligament on the outer side.

Structure. Superior attaehments, tendinous and fleshy ; inferior, ehicfly fleshy; though, here and there, slips of tendon pierec its belly and take root in the bonc. The muselc, altogether, is remarkable for its tendinous appearanee cxtcrnally, and for being somewhat eomplex in its eomposition : eonsisting, exteriorly, of a flat tendon, from whiel slips are detaehed in its eourse along the tail, after a penniform manner, aeross its fleshy belly; while the interior part is flesly, and grows pale and narrow in its course, and is everywhere elosely adhercnt to the eoeeygeal bones. Towards the extremity of the doek, the tendons so predominate over the fleshy fibres, that it is through them alone that the musele ean be distinetly traeed to its termination.

Action. To erect the tail. If one musele aet by itsclf, the tail at the time of elevation will be earried to one side. Some horses have such power of action with these muscles, that they ean reflex the tail over the croup, or eurve it to cither side, around the quartcr.

depressor coccyals.-Sacro-coccygeus inferior.

Situation. Infero-lateral part of the tail.
Form. Similar to that of the preeerling musele.
Attachment. Anteriorly and superiorly, within the pelvis, to the saero-seiatie ligament, and to the body of the sacrum ; posteriorly and inferiorly, to the inferior parts of the bodies of the eoeeygeal bones.

Relations. Superiorly, with the ercetor; inferiorly and cxternally, with the skin ; internally, with the eoeeyx.

Structure. Like the preceding muscle, it has, exteriorly, a flattened tendon; but it is a much smaller one, and does not,
detach any lateral slips, until it has descended to near the middle of the coceyx. Its flesliy belly, on the whole, is more bulky than that of the crector; it grows contracted in passing out of the pelvis, but afterwards forms a rounded prominence along the under part of the tail. Its posterior attachments are made by strong and detached tendons, issuing from the broad one traversing its middle, whieh are concealed within the fleshy belly. Its tendous increase in number, but diminish in size, as the muscle proceeds hackward: near the tip of the tail, they surpass in strength those of the erector. It is the principal one of these tendons which commouly project within the section made in the operation of nicking, and requires excision.

Action. To depress the tail and retain it against the rump. If one musele act alone, it will at the same time incline the tail to one side; in which case it may co-operate with the crector of the same side. The power of action possessed by the depressors may be roughly estimated, by the foree it requires with the hand to raise the docks of horses that are said to be "shy about the tail."

curvator coccygis.-Sacro-coccygeus lateralis.

Situation. Upon the side of the dock, between the two former.
Form. Smaller than cither of the afore-described muscles; thongh it bears close similarity to them in the appearance and disposition of its fibres.

Attaciment. Anteriorly, within the pelvis, to the lateral parts of the sacrum ; and, commonly, to the fourth and fifth lumbar vertebree ; posteriorly, to the transverse processes of all the bones of the coccyx.

Relations. Superiorly, with the erector; inferiorly, with the depressor ; cxternally, with the skin ; interually, with the coccyx.

Structure. Anteriorly, it consists of two parts, which have been regarded as separate museles : one portion accompanies the erector; the other the depressor. Posteriorly, it consists of tendinous and fleshy parts intimately and inseparably interwoven with each other.

Action. To curve or flex the tail laterally around the quarter. In switching off flies from the hind parts, these muscles are the principal ones called into action.

COMPRESSOR coccygis.-Ischio-coccygeus.

Situation. At the side of the root of the tail.
Form. Broad and flattened.

- Altachment. Anteriorly, to the sacro-sciatic ligament and to
the ischium ; posteriorly, to the transverse proeesses of the four or five uppermost bones of the coccyx.

Action. To assist in the depression of the tail ; but, principally, to maintain it forcibly eompressed against the rump.

MUSCLES OF THE EXTREMITIES.

Of the three hundred and odd museles reekoned in the whole body, upwards of one hundred are to be fomnd in the four extremities.

MUSCLES OF THE FORE EXTREMITIES.

In number, forty-eight; and they admit of being classed into two general divisions-those of the shoulder, and those belonging to the arm and leg. Both divisions are, more or less, invested by the seapular and humeral portions of muscles coming from the trunk; most of which give origin to aponeurotic expansions that descend and subsequently form the humeral and brachial faschice. Upon the outer and posterior sides we find the panniculus; upon the fore parts, the levator humeri, peetoralis parvus et magnus; upon the hind and inner parts, the pectoralis transversus; upon the internal side, the latissimus dorsi. Upon the shoulder the faschia is thin, weak, and transparent; and has (besides its connections with the various museles mentioned) attachments to the superior costa and spine of the seapula, to the tubercles and projections of the humerus, and to the olecranon.

MUSCLES OF THE SHOULDER

Arc twelve in number.

1.-EXTERNAL SCAPULAR REGION

Comprehends two muscles occupying the dorsum scapulce. These are enveloped in distinct portions of dense fasehia, from which scpta are sent down between them, and to the inner surfaces of which, in many plaees, the fleshy fibres are inseparably adherent.

ANTEA-SPINATUS.-Super-acromio trochiterius.

Situation. Ocenpying the fossa antea spinata scapula.
Figure. Approaching that of an extended triangle; having its base thiek and turned downwards, its apex thin and rounded off.

Altachment. Superiorly, to the surface of the fossa antea spinata; also to the spine and anterior costa of the seapula: inferiorly, to the summits of the greater and lesser tubercles of the humerus, and to the eapsular ligament of the shonlder joint.

Relations. Externally, with the pannicnlus and skin; internally, with the bone: antcriorly and supcriorly, with the levator humeri and pectoralis parvis; postcriorly and inferiorly, with the next musele: below, with the shoulder joint.

Direction. Oblique ; from above downward, and from behind forward.

Structure. Surface aponcurotic, with a tendinous intersection through its middle.

Attuchment. Tcndinous and fleshy : infcriorly, the fleshy part presents two terminations, united by an intervening expansion of tendon, which fills up the interspace betwcen them. At the point of the shoulder is sent off a tendinous expansion, between which and the tendon of the biceps is interposed a bursa mucosa.

Action. To extend the humerus upon the scapula; at least, to approach that bone to the straight line.

postea-spinatus.-Sub-acromio-trochiterius.

Situation. Occupying the fossa postea spinata.
Figure. Triangular; flattened: broader, but not so thick in substance as the preceding musele.

Attuchment. Superiorly, to the surface of the fossa postea spinata, and to the spine of the bone; inferiorly, to the outer side of the greater tubercle of the humerus, to a bony ridge extending down from it, and to the capsular ligament of the shoulder joint.

Relations. On the outer side, with the panniculus and skin, and also (supcriorly) with the trapezius; anteriorly, with the forcgoing muscle; posteriorly, with the teres minor and triceps; inferiorly, with the shoulder joint.

Structure. Supcrior attachments, aponeurotic as well as fleshy. Its middle presents several broad tendinous intersections, from the principal of which originates a flattened tendon, fixing the muscle to the tuberele. Below the tendon, is the tendinons and fleshy portion fixed to the ridge ; and still lower is a distinct and scparate fasciculus, procecding to a small tuberele upon the same ridge, which both Bourgelat and Girard regard as another musele.

Action. To assist in the flexion of the humerus; and, at the same time, to roll it outwards.

> 2.-INTERNAL SCAPULAR REGION

Contains but one musele.
sub-scapularis.-Sub-scapulo-trochineus.
Situation. Occupying the venter scapula.
Form. 'Triangular' broad, flattened, thin in substance.

Attachment. Superiorly, to the surface of the venter seapulx, and to the anterior and posterior eostr ; inferiorly, to the lesser tubercle of the humerus, and to the eapsular ligament of the shoulder joint.

Relations. Externally, with the bone; internally, with the serratus; anteriorly, with the pectoralis parrus; posteriorly, with the teres major.

Direction. Fan-like; the fibres eonverging from above to one and the same point below.

Structure. Superior attachments partly tendinous, but mostly fleshy; surface, partly aponeurotie ; middle interseeted by tendinous septa: its flesliy fibres, inferiorly, everywhere invest the capsular ligament, there being interposed between these parts a bursa mueosa.

Action. To assist in the extension of the shoulder joint, and to turn the os humeri inwards.

3.-POSTERIOR SCAPULAIR REGION. teres major.-Subscapulo-humeralis.

Situation. Behind and below the subseapularis.
Form. Elongated; flattened: about two inches in breadth.
Attachment. Superiorly, to the posterior angle of the seapula, and also to the posterior eosta : inferiorly, to the inner and upper part of the body of the humerus.

Relations. Externally and posteriorly, with the trieeps; anteriorly, with the subseapularis and posterior eosta of the seapula; internally, with the peetoralis magnus and latissimus dorsi.

Structure. Seapular attachment, fleshy and tendinous; belly, fleshy ; surfaces, in part aponcurotic; inferior termination, an aponcurotie tendon.

Action. To assist in flexing the shoulder joint; and to incline the humerus inwards.

teres minor. - Superscapulo-trochiterius.

Situation. Upon the outer and posterior part of the shoulder, below and behind the postea-spinatus.

Form. Elongated; trilateral ; flattened.
Attachment. Superiorly, to the posterior costa of the seapula: inferiorly, to the ridge deseending from the tuberele of the humerus; and to the fasehia a little above and to the outer side of the end of the arm.

Relations. Antcriorly and snperiorly, with the postea-spinatus; posteriorly and inferiorly, with the trieeps: above with the scapula; below, with the humerus: externally, with the pannieulus.

Structure. Mostly eovered by a dense aponeurosis. Below, it is entirely aponcurotic, and spreads over the infero-external part of the shoulder.

Action. It will co-operate with the postea-spinatus.

4.-ANTERIOR HUMERAL REGION.

CORACO-HUMERALIS.

Situation. Infero-internal part of the shoulder.
Form. Pyramidal: base turned downwards; flattened from without inwards.

Attachment. Superiorly, to the coracoid process of the seapula : inferiorly, to the middle third of the antero-internal part of the body of the humerus.

Relutions. Externally, with the peetoralis transversus and the ribs, also with the humeral blood-vessels and nerves; internally, with the body of the humerus; antero-inferiorly, with the flexor brachii ; postero-superiorly, with the teres major and latissimus dorsi ; superiorly, its tendon runs between the subseapularis and antea-spinatus.

Structure. A flattened tendon, about three inches in length, forms its superior attachment; from which extends a fleshy belly, partly aponeurotic upon its surfaces, and interseeted in places through its substanee by tendinous divisions. Its lower attachment is prineipally (but not entirely) fleshy.

Action. To extend the shoulder joint; and to incline the humerus inwards.

plexor brachit.-Coraco-rudialis.

Situation. Antero-inferior part of the shoulder.
Form. Cylindroid: flattened, superiorly, from before baekwards ; inferiorly, from side to side.

Attachment. Superiorly, to the coracoid process of the seapula; inferiorly, to the imer parts of the head and neek of the rarlius, to the eapsular ligament of the elbow joint, and to the braehial faschia.

Relations. Anteriorly, with the faschia and skin; posteriorly, with the elbow joint and the humerus; externally, with the peetoralis transversus; intemally, with the coraco-humeralis. Its tendon, superiorly, issues from the space between the terminating portions of the antea-spinatus; and the superfieial braehial vein ascends to the outer side of it.

Structure. The muscle is fixed to the seapula by a broad, short, thick tendon, which runs within the groove between the tubercles of the humerus; its posterior surface (which much re-
sembles eartilage in its texture) being hollowed and adapted to a eartilaginous eminence in the middle of that groove. At this part the tendon pierees the eapsular ligament of the shoulder joint, from the internal eavity of whieh it is separated only by a reflection of synovial membrane. The anterior surface of the tendon exhibits a few pale fleshy fibres running upon it. The fleshy belly of the musele is invested by an aponeurotie sheath, and appears as if it were made up of several very small eylindrieal museles, similarly invested, and afterwards joined together into one body. Its inferior attachments are wholly tendinous in one plaee, aponeurotie in another.

Action. To bend the arm, by earrying it forwards and upwards.

humeralis externus.-(Humero-radialis obliquus.)

Situation. Deep-seated upon the infero-external side of the shoulder.

Form. Oblong; twisted.
Attachment. Superiorly, to the entire postero-external parts of the neek and body of the humerus: inferiorly, to the superoanterior part of the body of the radius, immediately below the attaehment of the flexor brachii.

Relations. Externally, with the middle head of the trieeps; internally and posteriorly, with the humerus; anteriorly, with the flexor brachii.

Direction. Curvilinear and oblique.
Structure. Fleshy; excepting a single tendinous interseetion through its inferior part, whieh proeeeds to its termination.

Action. To assist in the flexion of the arm.

5.-POSTERIOR HUMERAL REIGON,

Comprehends a mass of musele, at the baek of the humerus, of considerable bulk, and partially divisible into three portions; on whieh aceounts, and from its having different attachments, it is found most eonvenient, and indeed is most usual, to consider the muscle (whieh altogether has the name of Thiceps Extensor Brachif) under three distinet heads or divisions. These heads are distinguished by epithets eorrespondent to their magnitude aud importance.

TRICEPS EXTENSOR BRACHII.

Having three divisions or lheads: the first is the

> caput magum--Scapulo-olecranius.

Situation. Infero-posterior part of the shoulder: oeeupying the angular interspace between the seapula and humerus.

Form. Broad; thiek; triangular; flattened.

Attachment. Superiorly, to the whole of the posterior costa of the scapula: inferiorly, to the superior and posterior parts of the olecranon, and postero-internal part of the brachial fasehia, immediately below that process.

Direction. Downwards and baekwards; eonverging towards the oleeranon.

Relations. Externally, with the fasehia and skin, teres minor, and postea spinatus; internally, with the peetorales, magnus et parvus, and the teres major: anteriorly and inferiorly, with the eaput medium and humerus; superiorly and posteriorly with the seapula, and the fasehia and skin.

Structure. Even this large head itself may be dissected into two portions (to whieh Bourgelat and Girard have given distinct names) : one is long, thin, and flattened, and aponeurotic at its attaehments, but fleshy in its middle, and lies along the postero-internal border of the other, which eonstitutes the ehief bulk of the entire musele.

The scapular attaehments are fleshy upon the outer side, tendinous upon the inner. The surfaces are in places aponeurotie. The belly or middle part is fleshy, with the exeeption of a thiek tendinous intersection, whieh, together with the aponeurosis, ends in a broad, thick, flattened tendon, that is implanted into the olecranon.

caput medium.-Humero-olecranius Extermus.

Situation. - Infero-external part of the shoulder.

Form. Oblong: flattened.
Attachenent. Superiorly, to the outer side of the neek, and to the ridge extending from the outer tuberele upon the body of the humerus: inferiorly, to the postero-outer parts of the olecranon.

Direction. From above, downwards ; and from before backwards.

Relutions. Externally, with the postea-spinatus, teres minor, and fasehia and skin; internally, with the humeralis extermus and outer condyle of the humerus : anteriorly, with the faschia and skin; posteriorly, with the caput magnum.

Structure. Superior attachment, both fleshy and tendinous. Middle part, fleshy. Inferior attachment, fleshy and tendinous, and inseparably united in one common tendon with the caput magnum.

caput parvum.-Humero-olecrenius Internus.

Situation. Infero-internal part of the shoulder.
Form. Long and slender; and flattened.

Attachment. Superiorly, to the inner side of the body of the humerus, just above its middle : inferiorly, to the inner part of the apex of the olecranon.

Relations. Externally, with the eaput magnum, teres major, and latissimus dorsi ; internally, with the humerus.

Structure. Superior attaehments, tendinous and fleshy ; surfaees, slightly aponeurotie ; inferior attaehment by a thin flattened tendon.

Action of the Three Heads (eonsidered as a single musele)To extend the arm.

anconeus.-Epicondylo-olecranius.

Situation. Oceupying the hollow spaee behind, between the eondyles of the humerus.

Form. Short, thiek, triangular: base turned downward.
Attachement. Superiorly, to the infero-posterior parts of the body of the humerus: inferiorly, to the antero-exterual part of the olecranon and to the eapsular ligament of the elbow joint.

Relations. Posteriorly, with the trieeps; anteriorly, with the humerus and the elbow joint.

Action. To assist the triecps in the extension of the elbow joint; and to prevent the eapsular ligament from being pinehed between the bones during that aetion.

MUSCLES OF THE ARM AND FORE LEG.

These museles may be elassed into two sets : those whiel extend the leg; viz., the Extensors ; and those that bend it ; viz., the Flexors. They are both ineluded within and firmly bound by the braehial faschia; from whieh some fibres belonging to the superfieial museles derive their origin.

1.-ANTERIOR BRACHIO-CRURAL REGION.

This region ineludes all the extensors. The mass of them forms the prominenee so pereeptible upon the front of a wellformed arm. Colleetively considered, they possess mueh less power than the flexors.

extensor metacarpi magnus.-Epitrochlo-premetacarpeus.

Situation. Fore part of the arm.
Figure. Pyramidal: rounded superiorly; flattened infcriorly.
Attacliment. Superiorly, to the outer and fore parts of the external condyle of the humerus; and also to the eapsular ligament: inferiorly, to the antero-superior part of the os metaearpi magnum.

Relations. Anteriorly, with the faschia and skin ; posteriorly, with the radius : externally, with the extensores pedis et obliquus; internally, with the flexor brachii and the skin. The superficial brachial rein aseends along its inner side.

Structure. Its superior attachment is principally flesly; though it possesses some tendinous fibres which are inseparably united with the tendon of the next (to be described) muscle. The middle part has but few tendinous interscetions. The surfaces are partly aponeurotic. Below the middle of its length arises a tendon, round at its origin, but gradually growing flat, and cxpanding in breadth towards its termination : it passes, at the knce, under the anterior annular ligament, within a synovial sheath, furnished with a bursa mucosa.

Action. To extend the leg.

extensor pedis.--Epitrochlo-prephalangeus.

Situation. Fore and outer part of the arm.
Form. Elongated ; pyramidal: more flattened than, but not so thick as, the preceding musclc.

Attachment. Superiorly, to the fore part of the extcrnal eondyle of the humcrus, to the outer part of the head and superior external pare of the body of the radius, and also to the capsular ligament of the clbow joint: inferiorly, to the front parts of the lower end of the os suffraginis, the os coronæ, and the coronal process of the os pedis; adhering in its course to the capsular ligament of the fetlock joint.

Relations. Anteriorly, with the faschia and skin : posteriorly, with the extensor obliquus and the radins: internally, with the preceding musele: postero-externally, with the extensor suffiaginis. Behind it, between the bone and it, run branches from the spiral artery and nerve.

Structure. The superior attachment is both tendinous and fleshy: that portion which is attached to the radius consists of a broad, thin, palc, fleslyy fasciculus, running to unite itself to the main body of the muscle. It has but one or two, and those but partial, tendinous intersections. Its surfaces are aponcurotic. It becomes a single tendon nearly about the same place as the former muscle; but the tendon is smaller. It pursues its eourse under the amular ligament, through a eellular sheath furnished with a bursa; and continues down the leg, closely attached by eellular membrane to the cannon bone, broadening somewhat in its eoursc, but widely expanding after it has passed over the fetlock; and in its expansion so completely covering and adhering to the pastern joints, that it scems to them, in front, to serve the purpose of eapsular ligament.

Action. To extend the foot and pasterns; and at the same time to assist in the extension of the knee.

extensor surfraginis.-Radialis-prephalangeus.

Situation. Postero-external part of the arm.
Form. Narrow; thin ; elongated.
Attachment. Superiorly, to the postero-external and superior parts of the radius, and to the posterior (sharpened) border of the ulna : inferiorly, to the supero-anterior part of the os suffraginis, adhering to the eapsular ligament of the fetlock joint.

Relations. Anteriorly, with the preeeding muscle and the extensor obliquus; posteriorly, with the flexores, perforans et perforatus; internally, with the ulna and radius; externally, with the fasehia and skin.

Direction. Half-penniform: from above downwards, and from behind forwards.

Structure. It may be denominated a muscular slip, whose superior attachments are tendinous and fleshy ; anterior part aponeurotie ; and posterior partly tendinous, but mostly fleshy. A little higher than the knee, it detaehes a slender flattened tendon, which passes through a sheath, under the external lateral ligament, and then inelines forwards, and unites about half-way down the leg with the long extensor ligament:

Action. To assist in extending the fetloek, and also, in some degree, the knee ; and to tighten the extensor ligament.

extensor metacarpi obliques vel parvus.-Radialismetacarpeus obliquus.

Situation. Deep-seated : infero-anterior parts of the arm.
Figure. Triangular; fiattened; somewhat curved.
Attachment. Superiorly, to the outer and infero-anterior parts of the body of the radius : inferiorly, to the supero-anterior part of the os metacarpi internum.

Relutions. Anteriorly, with the extensor pedis, fasehia and skin; posteriorly, with the radius, extensor metacarpi, and knee joint : to the outer side, with the preceding musele ; to the inner, with the extensor metaearpi.

Direction. Oblique and inelined to a curre, from above downwards, and from behind forwards.

Structure. It consists of a small fleshy slip beginning in a pyramidal point, but growing broader as it descends, and ending in a tendon whieh erosses mader the extensor pedis, but over the extensor metaearpi. Its superior attachments are prineipally fleshy ; its belly is palish, and aponeurotic upon its front surface.

Its tendon is slender and flattencd, arising about midway down the arm, crosses just above the knee within a sheath to the inner side, and at its termination expands and becomes confounded with the gencral fibrous covering of the knee joint.

Action. To maintain the tendon of the extensor metacarpi in its place during action : it will also have some effect in extending the leg.

SUPERFICIAL POSTERIOR BRACHIO-CRURAL REGION.

flexor metacarpi externus.-Epitrochlo-carpeus.
Situation. Postero-external side of the arm.
Form. Elongated ; and flattened from without inward.
Attachment. Superiorly, to the postcro-inferior part of the external condyle : inferiorly (by onc division of its tendon), to the os trapezium ; (by the other) to the head of the outer small metacarpal bonc.

Relutions. Externally, with aponcurosis and skin ; internally, with the flexor perforans : postero-internally, with the flexor accessorius sublimis, and next musele ; antero-externally, with the flexor accessorius profundus.

Structure. The supcrior attachment is mostly tendinous. The surfaces are partially aponcurotic. The fleshy belly has two wide tendinous intersections uniting below the middle of the arm to form a broad, flat, thick tendon, which at the knec bifurcates into a broad flattencd division, and a long narrow round one: the latter is continued down at the back of the knee, in contact with the capsular ligament, enyeloper within a tendinous sheath.

Action. To bend the leg.
flexor metacarpi medius.-Epicondylo-carpeus.
Situation. Postcrior part of the arm.
Form. Elongated; flattened.
Attachment. Superiorly, to the external condyle of the humerus; also to the olecranon: inferiorly, to the trapezium.

Relations. Posteriorly, with the faschia and skin ; anteriorly, with the flexor perforans: externally, with the preceding musele and flexor accessorius sublimis ; internally, with the following musclc.

Structure. Superior attachment, tendinous; surfaces partially aponcurotic. Its belly has a single broad tendinous intersection, which terminates below in a thick flattened tendon, having its under surface slightly covered with fleshy fibres. The part attached to the olecranon is but a narrow thin flesly slip.

Action. To bend the leg.

flexor metacarpi internus.-Epicondylo-metacarpeus.

Situation. Postero-internal side of the arm.
Form. Longer, but not so broad as the preceding musele.
Attachment. Superiorly, to the internal condyle of the humerus; adhering to the capsular ligament of the clbow joint. Inferiorly, to the head of the internal metacarpal bonc.

Relations. Posteriorly and internally, with the faschia and skin ; internally, with the last muscle ; anteriorly, with the radius, and humeral blood-vessels and nerves.

Structure. Superior attachment, tendinous; in part, fleshy. Surfaces aponeurotic. Just above the knce it sends off a narrow flattened tendon, which passes through a tendinous theca.

Action. To bend the leg.
Flexor accessorius sublimis.-Ulnaris accessorius.
Situation. Posterior part of the arm.
Form. Elongated; thick; fusiform.
Attachment. Superiorly, to the postcro-internal part of the ulna, below the olccranon : inferiorly, to the tendon of the flexor perforans.

Direction. Oblique: from above downwards; and from without inwards.

Structure. Superior attachment tendinous in part, but mostly fleshy. Inferior surface, aponeurotic. A little above the middle of the arm it sends off a tendon which passes under the posterior annular ligament of the knee, and there unites itself to the tendon of the perforans.

DEEP POSTERIOR BRACHIO-CRURAL REGION.

The following muscles constitute the deep-seated flexors: they lic antcriorly to and are concealed by the superfieial.
flexor pedis perforatus.-Epicondylo-phalangeus.
Situation. Dcep-seated in the posterior part of the arm.
Form. This and the flexor perforans form one thick, compact, cylindroid fleshy mass; the tendons issuing from which are long and flattened, and adapted by convexity and concavity of surface to each other.

Attuchment. Superiorly (and in common union with the following muscle), to the lower side of the internal condyle: inferiorly, to the upper and back part of the os coronse.

Relations. Postcriorly, to the three flexores metaearpi and flexor sublimis; anteriorly, to the radius and flexor profindus. Along the antero-internal border rum the radial blood-vessels and nerves.

Structure. The superior attachments of the mass of muscle (eommon to this and the perforans) are in part fleshy, but principally tendinous: the tendinous part being underneath and applied to the trochlea of the condyle, which in the motions of the joint it plays over. The mass is divisible (more or less completely) into three or four or more distinct portions, whose surfaces are partly aponcurotic, and whose interiors (with the exception of the one next the radius, which is commonly the most completcly scparable) are intersected with layers of tendon. Jnst above the knec it contracts its substance and becomes tendinous, forming two flattened tendons which pass down under the posterior annular ligaments. The posterior of these tendons, the tendo perforatus, is neither so broad nor so flat as the other ; it presents a concave surface anteriorly, to embrace its companion in front. At the back of the fetlock joint, it expands so as more completely to cover the perforans, and sends off a crescentic process which surrounds that tendon. At this part also a tendinous theea includes both. tendons, having attachments on cach side to the sesamoids. Opposite to the small pastern joint, the perforatus splits into two divisions, having the perforans passing between them : the triangular interval left is occupied by a portion of membrane which is so attached as to form a circumseribed synovial bag.

Action. To bend the fetlock and pastern joints; and also to assist in the flexion of the knce.

flexor pedis perforans.-Epicondylo-phalangeus.

Situation, form, and superior attachment. The same as the preceding.

Inferior attachment, to the posterior concavity of the os perlis.
Structure. The fleshy origins and bellies of this musele are confounded with those of the perforatus. As they approach the knee, however, they separate ; and then the perforans runs immediately behind the perforatus. At the knec, like its fellow, it is wholly tendinous, and here indeed partakes somewhat of the nature of cartilage, as it passes through the same synovial bag as encloses its companion. Below the knec, these tendons assume different shapes; the perforans being cylindroid, the other flattened; and this admits of the adaptation of their surfaces to each other. In their passage down the leg, they are comnected together and invested by ecllular tissue : a loose cellular substance also connects them to the suspensory ligament and cannon bones. The perforans tendon at the back of the fetlock spreads again in breadth, and reassumes a cartilaginons texture, and is likewise (the same as at the knee) surrounded by a syno-
vial sheath, formed principally by the tendo perforatus; from whieh it only emerges at the division of the latter. Opposite to the os coronr it is destitute of any tendinous covering, and is invested by cellular membrane only. It next sinks into the substance of the frog, passing over the navicular bone, where it becomes cartilaginous, and adapted in shape to the posterior articular surface of that bone, a bursa or eircumseribed synovial cavity existing between them. Finally, it ends in an expanded termination which is broadly implanted into the posterior concavity of the os pedis.

Action. To bend the foot. It will also assist in the flexion of the pastern, fetloek, and leg.

radialis accessorius.-Flexor accessorius.

Situation. Deep-seated, along the infero-posterior side of the arm.

Figure. Irregular ; short; flattened: upper part, bifurcate.
Attuchment. Superiorly, mesio-posterior part of the radius: inferiorly, its tendon joins that of the perforans.

Relations. Anteriorly, with the radius: posteriorly, with the bellies of the perforatus and perforans : internally, with the radial blood-vessels and nerves.

Direction. From above downwards, inclining in a sort of curve from without inwards.

Structure. It las two beginnings. One is pyramidal, elongated, and tendinous, and extends high up the radius: the other is triangular and fleshy, and is attached lower down. They both unite to form one fleshy belly, which is intermixed with slips of tendon, and finally ends in a single narrow flattened tendon.

Action. To assist the perforans.

Lumbrici, anterior et posterior.-Lumbricales.

Consist of two pairs of pale, delieate, small museles, having long sleuder tendons.

The lumbrici posteriores are to be found invested in adipose membrane, adhering to the inner side of the tendo perforans, about one third of its length upwards from the fetlock. Hereabouts they are broad; but they grow narrow as they descend, assuming altogether a pyramidal figure; and they give off at the fetloek slender flattened tendons, which appear to unite to form the crescentic horder of the cellular and tendinous sheath at that part inclosing the tendo perforans.

The humbrici anteriores lie within the spaces left, between the small metaearpal bones and the suspensory ligament, under
cover of the flexor tendons. They are longer but thinner than the former, and may be elassed among the half-penniform museles. They adthere for some way down the leg to the small metacarpal bones, become tendinous about the middle of the cannon, turn round the tubereulous terminations of the small metacarpals, and vanish in the ardipose substance in front of the limb connected with the extensor tendons.

Action. The use of these small museles seems not to bee known; at least, it is by no means well defined.

MUSCLES OF THE HIND EXTREMITIES.

The muscles of the hind extremity are invested and elosely compaeted together by a subeutancous covering, in part tendinous and in part cellular in texture (aecording to the different struetures in the vieinity from which we find it to be derived), to which we may give the name (analogically) of faschia lata. In front of the haunch it is derived from the pannicuhs and erural arch, and is both fibrous and cellular in composition; on the outer side of the haunch it is eontinued from the tensor vagine, a musele that may be said to belong or have an exclusive relation to it; on the imner side, it is continuous with the faschia superficialis abdominis, faschia seroti et pubis, and is entirely cellular in structure; and posteriorly, it is conneeted with the fasehia lumborum. The principal fixed points of attachment of this faschia are, the anterior spine of the ileum, the pubes, the coceyx, the trochanter minor externus, and the patella. Inferiorly, it spreads upon the museles of the leg, giving them a compact investment, which portion of it may be denominated the crural or tibial faschia: it derives varions fibrous additions from the tendons of the gracilis, sartorius, semi-tendinosus, triceps, \&ce., and finaliy ranishes ini expansion over the hook. The external surface of the faschia is adherent to the skin, through the intervention of a delicate cellular tissue; there being inehuded between them, besides more or less adipose matter, the subeutaneous blood-vessels, nerves, and lymphaties. Its internal surface is applied to the museles themselves, and between several of them it sends down processes which take root in the bonc. From the faselia itself in some plaees the muscular fibres appear to arise.

The use of the faselia lata appears to be, to give both power and effect to the museles during the time of their aetion, hy retaining them in their respective places and relative positions and keeping them closely and compactly braced together.

MUSCLES OF THE HAUNCH.

1.-GLUTEAL REGION.

Comprehending the three gluteal muscles, which compose the superior part of the hauneh or quarter.

gluteus externus:-Mio-trochanterius Medius.

Situation. Mesio-external part of the haunel.
Figure. Triangular: base presented upwards.

- Attachment. Superiorly, to the antero-superior and inferior spines of the ileum, to the spine of the sacrum, and to the fasehia lumborum ; inferiorly, to the troehanter minor externus.

Relations. Externally, with the faschia and skin; internally, with the gluteus maximus ; anteriorly, with the tensor vagine; posteriorly, with the biceps adductor.

Direction. Convergent, from the several superior attaehments to the trochanter.

Structure. It is constituted of two fleshy divisions, having a broad interval between them filled by aponeurosis. The anterior or smaller division is tendinous superiorly, and internally its fibres are interlaced with those of the gluteus maximus. Inferiorly, both portions unite into one common, triangular, fleshy belly, which ends in an aponeurotic tendon; and from this are sent down processes to the tibial fasehia.

Action. The same as the other glutei.

Gluteus maximus.-Ilio-trochanterius Magnus.

Situation. Anterior, middle, and external parts of the haunch.

Figure. Pentagonal; sides unequal : angles rounded; lowermost angle extended.

Attachment. Superiorly, to the spinous and transrerse processes of the two or three last lumbar vertebre, to those of the two or three uppermost sacral, and to the fasehia lumborum ; also to the crista of the ileum, its dorsum and posterior spine; lastly, to the saero-sciatie ligaments. Inferiorly, to the trochanter major.

Relations. Externally, with the gluteus externus and skin; internally, with the dorsum ilei and gluteus internus; anteriorly with the tensor vagine ; posteriorly, with the lumbar and saeral spines and bieeps adduetor.

Structure. This is a bulky muscle, coarse and dark-coloured in its texture; wholly fleshy, exeepting some broad tendiuons
interseetions, which, at the trochanter, bccome formed into a broad flat tendon, surrounded by fleshy fibres.

Action. The same as that of the next muscle.

gluteus internus.- Ilio-trochanterius Parvus.

Situation. Deeply placed, underneath the preceding musele.
Figure. Fan-shaped; its fibres deseribing two eontrary eurves.

Attachment. Superiorly, to the dorsum ilei, as high up as where the gluteus maximus ceases to be attached, and as far baek as the border to whieh the sacro-seiatie ligament is fixed ; inferiorly, to the (anterior protuberance upon the) troehanter major.

Relutions. Externally, with the gluteus maximus : internally, with the ilio-femoral articulation.

Structure. Prineipally fleshy: inferior portion intersceted at regular distances by layers of tendon, whieh at the troehanter beeome united together into one broad flat tendon, curiously grooved (in radii) upon its external surface.

Action of the Glutei. These muscles are extensors cither of the os femoris upon the pelvis, or of the pelvis and loins upon the hind quarter. When the limb has been earried in advance under the body by the museles of the anterior femoral region, and the toe firmly set down upon the ground, the glutei, by extending the hameh, will earry the trunk forward; thus, beeoming potent agents in progression; and of them the maximus is by far the most powerful. In the aets both of rearing and kicking these muscles are thrown into violent and foreible eontraction: in the former aetion, the limbs beeome the fixed points; in the latter, the trunk.

2.-PELVI-TROCHANTERIAN REGION.

These museles are but small, and are all attaehed to the trochanter major.

PYRIFORMIS.-Sacro-trochanterius.

Situction. Supero-lateral parts of the pelvic eavity.
Figure. Conieal: base turned forwards.
Attuchments. Within the pelvis, to the transverse processes of the saerum, and infero-internal part of the ilcum: withont the pelvis, to the hollow behind the trochanter major.

Relutions. Superiorly and externally, with the pelvis; inferiorly and internally, with the peritoncum: along its inferior border rum the obturator blood-vessels and nerves.

Structure. Composed of a fleshy belly, having its superior border tendinous; which border, after the musele has passed through the seiatie noteh, gives origin to a slender tendon that insinuates itself between the gemini to gain the trochanter.

Action. To assist in the extension of the hauneh.
obturator externus.-Subpubio trochanterius Externus.
Situation. Deep-seated, in the supero-internal part of the thigh.

Form. Quadrilateral, and putting on the appearanee of a clouble musele.

Attachments. Internally, to the external border of the obturator foramen, and to the external surface of the obturator ligament: externally, to the eavity behind the troehanter major, and to the upper portion of the ridge extending from the larger to the lessor troehanter.

Relations. Posteriorly, with the bieeps abduetor ; superiorly, with the gemini and obturator internus; internally, with the adduetor magnus.

Direction. Outward.
Structure. Attachments, both tendinous and fleshy; surfaees, striped with aponeurotic tendon.

Action. To assist in the extension of the haunch; and at the same time to rotate it outwards.
obturator internus.-Subpubio-trochanterius Internus.
Situation. Upon the lower side of the pelvie earity.
Form. Cireular border, having radiating fibres converging towards one common eentre.

Attachments. Internally, to the internal border of the obturator foramen, and to the inner surfaee of the obturator ligament: externally, to the root of the troehanter major.

Relations. Superiorly, with the peritoneum ; inferiorly, with the obturator ligament.

Structure. From the foramen the fleshy fibres converge and form a belly whieh passes between the tuberosity and spine of the isehium, and then makes its appearanee without the pelvis, in the vieinity of the hip joint.

Action. To approach the trochanter to the pelvis ; the effeet of whieh will be to turn the hauneh outwards.
gemini--Ischio-trochanterius.
Situation. Without the pelvis, at its postero-inferior part.
Form. Thin : flat; quadrilateral.

Attachenents. Internally, to the supero-posterior part of the ischium ; externally, to the root of the trochanter major.

Relations. Posteriorly, with the biceps and obturator internus; superiorly, with the gluteus internus: inferiorly, with the obturator cxtcrnus ; anteriorly, with the hip joint. The seiatic nerve crosses this and the other muscles entering the trochanterian hollow.

Structure. This is a palc, delieate musele, tendinous as well as fleshy at its attaehments : in the middle, fleshy altogether.

3.-ANTERIOR ILIO-FEMORAL REGION.

The muscles in this region form the fore and prominent part of the haunch.

tensor vagine.-Ilio-aponeuroticus.

Situation. Antero-external part of the hauneh.
Figure. Broad; triangular; flattened.
Attachents. Superiorly, to the anterior spine of the ileum : inferiorly, to the faschia lata.

Relations. Anteriorly and externally, with the skin ; internally, with the posterior end of the panniculus, with the adipose matter enveloped in the flank, and with the iliacus, reetus and yastus externus; posteriorly, with the glutei-maximus et externus.

Structure. Tendinous and fleshy at its superior attaeliment, from which it expands into a broad fleshy belly. About midway between the pelvis and stifle, it sends off a thin expansion of tendon, which becomes eontinued into and eonfounded with the faschia lata, largely eontributing to it.

Action. To draw up and render tense the faschia lata; through whose interposition and connection it will also aid in the adrancement and elevation of the hauneh, and seemingly in the extension of the thigh.

rectus.-Ilio-rotuleus.

Situation. Forming the anterior prominence of the haunch.
Form. Elongated ; cylindroid; fusiform ; broader and thieker in the middle than at either extremity.

Attachments. Superiorly and anteriorly, to the dorsum of the ilcum, above and rather in front of the acetabulum ; inferiorly and posteriorly, to the supero-anterior part of the patella.

Relations. Its upper part lies between the iliacus and tensor yaginse. The hody of the muscle is bounded laterally by the two rasti ; posteriorly, by the femoral bone ; and anteriorly, by
the faschia lata. It has also relations to the anterior crural nerve, and the femoral blood-vessels.

Structure. The superior attachment consists of a broad, flat, bifureated tendon. The chicf bulk is flesly. The antero-inferior and lateral parts are covered by aponcurosis, whieh ends in a thiek flattened tendon running to the patella.

Action. Similar to that of the vasti and erureus.

TRI-FEMORO ROTULEUS.

The three following museles may either be considered under this name, as forming altogether a triceps musele, or they may be viewed as three distinet museles. The Frenel anatomists prefer the former plan; but our English sehools, the latter ; and in accordance with their rules, I shall here consider them separately.

vastus-externus.--(Outer Division of the Tri-femoro-rotuleus.)

Situation. Antero-external side of the haunch.
Form. Semi-oval : internal side, flattened ; external, convex ; thickest in the middle.

Attachment. Superiorly and antcriorly, to the root of the trochanter major, to the trochanter minor externus, and to the whole outward surface of the body of the femoral bone. Inferiorly and posteriorly, to the supero-external part of the patella.

Relations. On the imner side, with the preceding musele; on the outer side, with the tensor vaginæ and faschia lata ; posteriorly, with the femoral bone and bieeps femoris.

Structure. Superior attachment, tendinous and flesly: the other parts are fleshy, with the exception of a thin aponcurosis spread over its postcro-external side.

vastus internus.- (Internal Division of the Tri-femororotuleus.)

Situation. Antero-internal part of the haunch.
Form. Semi-ovoid : thicker in substance than the last musele.
Attachment. Superiorly and anteriorly, to the neek of the femoral bone, to the root of the troehanter minor internus, and to the entire inner part of the body of the bone. Inferiorly and posteriorly, to the supero-internal part of the patella.

Relations. On one side with the rectus; on the other with the sartorius : posteriorly, with the femoral bone ; anteriorly, with the faschia lata.

Structure. Covered by a thin aponcurosis ; otherwise, fleshy. The aponcuroses procceding from the vasti extend downward over the patella to be fixed to the tuberele of the tibia. Inferiorly, an aponeurotic tendon separates it from the crureus.

CRUREUS VEL CRURALIS.

(Middle Division of the Tri-femoro-rotuleus.)

Situation. Decp-seated in the hollow formed by the reetus abore, the vasti on either side, and the femoral bone below.

Form. Fusiform; elongated.
Attachment. Antero-superiorly, to the ileum, just above the acetabulum ; postero-inferiorly, to the body of the femoral bone and to the patella.

Relations. With the museles and bone to which it lies eontiguous.

Structure. Tendinous at its extremities; intermediate parts, Heshy; under part, aponeurotic.

Action of the two Vasti and the Crureus, considered as a Triceps or one entire Muscle.

In eonsequence of their eonnection, through the intervention of the patella and its ligaments, with the tibia, these muscles be-come direet extensors of the thigh; and their power as such is considerably enhaneed by the peeuliar eonstruetion of the stiflejoint, whieh enables them to aet with the eombined mechanical advantages of pulley and lever. In progression, they raise the thigh and advanee it forwards under the body; and in that position, as soon as the limb has become a fixed point, they will assist in progressing the hauneh.

INTERNAL ILIO-FEMORAL REGION,

Comprehends the museles forming the prominent rotundity of the inner part of the hauneh.

> sartonius.-Sub-lumbo-tibialis.

Situation. Antero-internal part of the hauneh.
Form. Long, slender, pyramidal ; anterior part broadest.
Attachment. Antero-superiorly, to the bodies of the posterior lumbar vertebree, and to the brim of the pelvis midway between the symphysis pubis and the anterior spinous process of the ileum; inferiorly, to the supero-internal part of the tibia, and to the internal condyle of the femoral bone.

Relations. On the outer side, with the psoas magnus, vastus internus and gracilis; on the inner, with the fasehia lata and skin. Along its posterior and outer border run branehes of the femoral blood-vessels.

Structure. Fleshy and rather pale: except the extremities, which are aponcurotic. Its anterior aponeurotie end is so in-
timately united with the psoas parvus, as it runs forward side by side with it, that it is somewhat difficult to make out the lumbar attaehments distinetly. The inferior termination consists of a broad, flat, glistening tendon, which (in mion with the teudon of the glaeilis) expands into an aponeurosis, spreading over the entire inner side of the stifle joint.

Action. To assist in bending the leg; and, in the flexed position, to give the limb a rotatory motion inwards.

GRACILIS.-Sub-pubio-tibialis.

Situation. Superfieial, on the internal part of the thigh.
Figure. Quadrilateral, broad, thin, flattened.
Attachent. Superiorly, to the symphysis pubis, extending as low down as the isehium; inferiorly (along with the sartorius), to the supero-internal part of the tibia, and the internal condyle of the femoral bone.

Relations. Along its antero-internal border, with the peetineus and sartorius; on its inner side, with the adduetors; ou its outer side, with the fasehia lata and skin.

Structure. The pubal attaehment is tendinous and fleshy: inferiorly, it ends in a broad aponeurosis, whieh, forming a union with the tendon of the sartorius, expands upon the inner side of the stifle, and is eontinued upon the leg into the tibial fasehia.

Action. To bend the leg, and (when flexed) to rotate it inwards.

pectineus.-Super-pubio-femoralis.

Situation. Inner, upper, and anterior part of the hauneh.
Form. Fusiform: thiekest in the middle; upper extremity flattened.

Attachment. Superiorly, to the brim and anterior surface of the pubes, uear the symphysis; and to the infero-anterior part of the same bone, near the acetabulum. Inferiorly, to a long ridge extending from the troehanter internus.

Relations. On the outer side, with the sartorius; auteriorly and internally, with the glaeilis; posteriorly, with the adduetors.

Structure. The superior attaehment eonsists of a bifureated tendon ; the inferior is both tendinous and fleshy. Its fleshy belly is striped with aponeurosis.

Action. 'To flex the haunel, and at the same time adduet it.

ADDUCTORES FEMORIS.

Different anatomists pursue different modes of treating of these muscles; and all may be proved to be right or wrong, according to the light in which the dissector views the parts, and the artificial divisions which his knife may make of them. One considers the three adductors together, as a triceps musele; another describes them as three scparate muscles; while a third looks upon them as forming a single muscle and a biceps. The last mode of proceeding appears to me to be in the most strict accordance with nature, and therefore shall I adopt it herc.

$\left.\begin{array}{l}\text { ADDUCTOR brevis. } \\ \text { adductor longus. }\end{array}\right\}$ Sub-pubio-femoralis.

Situation. Deep-seated, on the inder part of the thigh.
Attachment. Superiorly (both having one common attachment), to that part of the pubes included between the symphysis and the acetabulum; inferiorly, the short adductor is attached to the middle third of the body of the femoral bone; the long adductor to the lower third of the body of the same bone, and to its internal condyle.

Relations. On the outer side with the gracilis; and on the inner, with the trochanter minor internus. Along their anterior borders run the pectincus and sartorius. Posteriorly, lics the adductor magnus. Between these two adductors pass the femoral artery and vein.

Structure. Onc entire fleshy mass superiorly, split into two portions inferiorly, which at their inscrtions into the bone manifest tendinous fibres. Their surfaces exhibit aponcurotic patches and stripes.

Action. Will be considered with the next musele.

adductor magnus.-Ischio-tibialis.

Situation. Postcro-intcrnal part of the haunch and thigh; forming the prominence behind termed "the point of the quarter."

Figure. Irregular. Superior extremity, narrow, pointed, and curved; from which it becomes broad, thick, and afterwards clongated. The posterior border is thick ; the anterior is thin.

Altachment. Superiorly, to the spine of the sacrum and tuberosity of the ischium; inferiorly, to the lower third of the inner part of the body of the os femoris, to the internal condyle of that bone, and to the inner part of the head of the tibia.

Relations. Posteriorly and externally, with the faschia and skin; internally, with the bieeps abductor and heads of the gastroenemii : anteriorly, with the graeilis.

Direction. Longitudinal; inelining forwards in a eurve.
Structure. Entircly fleshy, with the exception of the extremities. The upper extremity is prolonged as high as the saerum by means of aponeurosis, whieh forms part of the fasehia lata. The inferior extremity is affixed to the condyle by a strong flattened tendon.

Action. That of the three adduetors is to extend the os femoris upon the pelvis; so that they are opponents to the psoas magnus and iliaeus, which flex the haunch: they are also powerful adduetors of the whole limb. The great adduetor will, moreover, assist in bending the thigh, and will rotate it inwards a little.

5.-POSTERIOR ILIO-FEMORAL REGION.

The museles of this region oceupy the outer and posterior side of the haunch.
biceps abductor femoris.-Ischio-tibialis Medius vel Posterior.
Situation. Postero-external side of the hauneh and thigh; where, being superficial, its eourse is well marked in the living animal.

Attachment. Superiorly, to the lateral and posterior parts of the spine of the saerum, and some of the upper pieees of the os eoceygis ; to the sacro-seiatic ligaments; to the tuberosity of the isehium, and to the fasehia lata. Inferiorly, it is split into two portions, one of which is attaehed to the patella and its external ligament; the other (through the intervention of an aponeurotie expansion) to the ridge upon the upper part of the tibia, and to the fasehia covering the leg.

Relations. Externally, with the fasehia and skin; internally and superiorly, with the gluteus maximus; internally and inferiorly, with the gastroenemii; anteriorly, with the external troehanters, major and minor, and with the body of the femoral bone; posteriorly, with the tuberosity of the isehium and semitendinosus.

Structure. Fleshy; surfaecs, aponeurotie. Attaehed by a broad flat tendon to the tuberosity of the ischium; by a more slender one, to the troehanter minor extermus; by a broad, flattened, and thiek tendon, invested ly some few fleshy fibres, to the patclla and its ligament; and to the tibia and tibial faschia
by a broad expanded aponeurosis. The inferior division is, at its upper part, united with the next muscle by intermixture of fleshy fibres.

Action. The two divisions of this muscle will operate differently. The anterior or superior one will assist the rectus and vasti in extending the thigh; but the posterior one will contribute towards its flexion. They will both co-operate in abducting the limb; also in rotating it inwards-the hock at the time turning outwards.

$\left.\begin{array}{l}\text { SEMI-TENDINOSUS. } \\ \text { SEMI-MEMBRANOSUS. }\end{array}\right\}$ ADDUCTOR TLBIALIS.

Ischio-tibialis Internus.

Situation. Posterior side of the haunch and thigh.
Attachment. Superiorly, to the postcro-lateral part of the spine of the sacrum ; to the two or three uppermost bones of the coccyx ; and to the antero-inferior side of the tuberosity of the ischium. Inferiorly, to the superior and antero-internal part of the tibia; directly opposite to the attachment of the lower head of the biceps abductor and tibial aponeurosis.

Relations. Posteriorly, with the faschia and skin; anteriorly, with the tuberosity of the ischium, os femoris, and gastrocnemii ; externally, with the biceps; internally, with the adductor tibialis.

Structure. This is a long cylindroid muscle, composed of two parts, one coming from the sacrum, the other from the ischium ; both of which are united below the tuberosity. The superior attachments are both fleshy and tendinous. From the inferior proceeds an aponeurotic expansion, contributing towards the tibial faschia.

MUSCLES OF THE THIGH AND LEG.

These muscles are invested and confined down in their places by the crural or tibial faschia, which is in part an extension from the faschia lata, and in part a production from those femoral muscles whose tendons or aponcuroses descend upon the leg; such as the adductor magnus, biceps, and adductor tibialis. The muscles themselves (those now under consideration) being collected together into two packets or parcels, separate and distinct from each other, the crural faschia admits of an anterior and a posterior portion; one investing the muscles in the anterior crural region, the other in the correspondent posterior region. The former has for its principal places of attachment the patclla; the upper and lower euds, tubercle, and spine of the tibia; and the anterior amular and lateral ligaments of the
hock; in front of which it is continuous with the tendinous vagine, formed for the passage of the extensor tendons: on the outer side this faschia sends a broad process inward, between the extensor pedis and peroncus, which is fixed to the body of the tibia, inclosing the latter muscle in a complete sheath. Beyond this, the anterior faschia becomes continuous with the posterior.

The chicf attachments of the posterior division of the faschia are, thic condyles, and postcro-inferior part of the body of the femoral bone; the postero-lateral parts of both extremitics of the tibia, and the entire inner side of its body; the lateral ligaments of the hock; and the tendinous point of the os calcis.

1.-ANTERIOR FEMORO-CRURAL REGION.

Of the muscles situated in this region, two are extensors of the leg and foot, and at the same time aiders in the flexion of the hock: the other is a direct flexor of the hock. They are all three bound down to the tibia by a strong tendinous faschia.
extensor pedis.-Femoro-prephalangeus.
Situation. Superficial : anterior part of the leg.
Form. Elongated ; fusiform : flattened from before backwards.

Attuchment. Superiorly, to a roughened depression upon the antero-inferior part of the external condyle of the femoral bone. Inferiorly, to the coronal process of the os pedis, and to the superior edge of the bone in the interval between the lateral cartilages.

Relations. Anteriorly, with the faschia and skin, and the aponcurotic tendon of the biceps; postero-externally, with the peroncus ; postero-internally, with the flexor metacarpi ; posterosuperiorly, with the eapsular ligament of the stifle joint, the tendon passing through a groove npon the front of the tibia.

Structure. The musele commences, superiorly, by a small flat tendon, which is common to it and the flexor metatarsi. Upon the tibia it becomes fleshy, exhibiting two or three thin tendinous interscetions, together with aponcurotic surfaces. A little above the hoek the fleshy belly ends in a flat tendon, which takes its course in front of the hock through a theea prepared for it, and upon the cannon (about one third of its length downard) enters into union with the tendon of the peroneus, and so intimately that the two tendons appear but as one until they have descended as low as the fetlock joint, over which they disunite and again run separately. As it passes the front of this joint, the
extensor tendon expands itself, and continues to do so to its termination.

Action. In consequence of this tendon being bound down upon the hock by the sheath through which it passes, it will have effect in flexing that joint, at the same time that it is performing its own special function, the extension of the foot, as well as the pastern and fctlock joints.
** Immediately bencath the bend of the hock, from the antero-superior part of the metatarsal bone, issues a thin layer of fleshy fibres, enveloped in cellular substance, and eoncealed in part by the tendon of the above musele, with which (about one fourth of the length of the cammon downward) they form a union, and make some addition to its substance. In action, these supplementary fibres will braee the tendon; and are probably furnished to prevent it from being compressed by the flexion of the hock.

peroneus.-Peroneo-prephalanyeus.

Situation. Antero-external side of the limb.
Form. Cordiform; elongated; flattened from before backwards.
Attachment. Superiorly, to the head of the fibula, continuing its attachment for the entire length of that bonc. Inferiorly, the same as the foregoing musele.

Relations. Extcrnally, with the faschia and skin; internally, with the fibula ; anteriorly, with the extensor pedis ; posteriorly, with the flexor pedis.

Structure. Superior attachment, fleshy and tendinous, from which a fleshy helly descends nearly the whole length of the tibia: a slender tendon, in form a flattened cord, then commences, which passes through a distinet tendinous sheath, across the front of the hock, and upon the camnon bone forms a conneetion with the tendon of the flexor pedis.

Action. It will co-operate with the extensor pedis.

flexor metatarsi. Tibio-prematarseus.

Situation. Antero-internal side of the limb.
Fiyure. Bifureate at cither extremity.
Attachment. Superiorly, in common with the extensor pedis, from the external condyle of the os femoris; and from a broad triangular excavation marked upon the superior and antcroexternal part of the tibia. Inferiorly, to the head of the large metatarsal bonc, and to that of the intcrnal small metatarsal bone.

Structure. The tendon by which the flexor pedis is attached, superiorly, enters afterwards into the composition of the present musele, whose fleshy belly, although in intimate conncetion with the tendon, is placed behind it. In front of the hoek, the fleshy part ends in a small cordiform tendon, which is enveloped by a Hattened one that runs in front of it, and indeed forms quite a
sheath for it. Having emerged from its sheath, howerer, it splits into two divisions, which are left with only cellular covcrings.

Action. To flex the hock; in doing which it will have a tendency to turn the joint inwards.

2. SUPERFICIAL POSTERIOR FEMORO-CRURAL REGION.

The muscles contained in this region are all affixed to the os calcis, and thereby become extensors of the hock: one of them is continued afterwards down the leg, to be fixed both to the fetlock and pastern, and hence operates as a flexor of those parts at the samc time.

gastrocnemús externus.-Bifemoro-calcaneus.

Situation. Superficial ; along the postcrior part of the leg.
Figure. Elongated : flattencd from before backwards ; broad, thick, and bifurcated, superiorly; united and cordiform, infcriorly.

Attachment. Supcriorly, to a roughened hollow just above the external condyle of the os femoris, to the inner condyle, and to a ridge extending from it: inferiorly, to the point of the os calcis.

Relations. Postcriorly, with the faschia and skin ; anteriorly, with the condyles of the femur, gastrocnemius and plantaris, muscles of the decp postcrior crural region, and the popliteal blood-ressels and nerves: extcrnally, with the biceps; internally, with the adductor magnus and adductor tibialis.

Direction. Downward and backward.
Structure. The superior and middle parts are bulky, and consist principally of a flcshy belly, bifurcate, whose surfaces arc partially covered by aponcurosis, discovering inferiorly a few tendinous intersections. A little below the back of the stifle, the bifurcations unite and form one entire fleshy belly, glistening in many parts with tendinous fibres. Midway between the hoek and stifle the belly ends in a flattened tendon, partially divisible into two or three portions, and decussates with the tendon of the gastroencmius internus, by which at the hock it is completely cnveloped.

Action. To extend the hock.
gastrocnemius internus.--Femoro-phalangeus.
Situation. Postcro-mesian part of the leg.
Form. Cordiform ; elongated ; thicker in the middle than at the extremities. Its tendon, below the hock, is flattened, and upon the anterior surface excavated.

Attachment. Superiorly, to the upper part of the roughened hollow upon the back of the os femoris, above its external con-
dylc. Inferiorly, it is continued over the hock, down the posterior part of the leg, to be fixed to the os corone.

Relations. Postcriorly, with the gastrocnemius externus and skin : antcriorly, with the stifle joint, the muscles of the posterior deep crural region, tendons of the gastrocnemius externus, and flexor perforans. The first crural nerve runs also along the front sidc.

Peculiarities. Remarkable for the little difference in volume there exists between the fleshy belly and its tendon; and in being entirely tendinous until it has descended to the stifle.

Structure. The belly of this muscle is of considcrably less volume than that of the gastrocnemius externus, but it has more teudon in its composition. About half way down the thigh it becomes entirely tendinous ; and its tendon, which is flattencd, turns round that of the gastrocnemius externus in approaching the hock: so that the relative position of the two museles becomes reversed in their tendons. In passing over the point of the hock the tendon expands into a sort of cap or theca, which is so fixed and closed in around its border, by cellular substance, to the bonc, that a completc ball-and-socket joint is formed between them, circumscribed within the space of about an inch from its centre all the way round, and lined by a thin delicate membrane secreting synovia into the interspace. It constitutes, in fact, altogether, what is denominated a bursa mucosa; but is onc that, from its size and disposition to take on disease, peculiarly morits the attention of the anatomist. From this bursal formation it procceds down the postcrior part of the leg; and from the place at which it leaves the hock takes the name of tendo perforatus. Its subsequent course and attachment, together with its relations to the tendo perforans, answer to the descriptions given of the tendons of the same name in the fore extremity.

Action. To extend the hock; but to flex the fetlock and pastern.

plantaris.-Peroneo-calcaneus.

Situation. Postcro-extcrnal part of the thigh.

Form. Elongated ; thin ; slender.
Attaclement. Superiorly, to the head of the fibula ; inferiorly, (in union with the tendon of the gastrocncmius extermus) to the os calcis.

Relutions. Externally, with the skin ; internally and postcriorly, with the gastrocnemius extcrnus ; anteriorly, with the deep posterior erural muscles. The third popliteal nerve crosses its supcrior extremity.

Structure. This is the most slender musele, in proportion to its length, in the body. Its delieate belly, eomposed of pale fleshy fibres, and eonstituting two thirds of its length, sends off an equally delieate eordiform tendon, whieh unites inseparably, just above the hoek, with the external gastrocnemius tendon.

3.-DEEP POSTERIOR FEMORO-CRURAL REGION.

The museles eontained in this region lie deep-seated, in the interspaee between the tibia and the gastroenemii. They are covered and elosely bound down by a dense firm tendinous fasehia.

popliteus.-Femoro-tibialis Obliyuus.

Situation. At the baek of the stifle-joint.
Form. Short; thiek; triangular.
Attachment. Superiorly, to the postero-external side of the outer condyle of the femur, and to the eapsular ligament of the stifle-joint. Inferiorly to the upper half of the inner side of the body of the tibia.

Relations. Posteriorly, with the gastroenemii internns et externus, the semilunar eartilages, the postero-internal side of the head and the superior part of the body of the tibia: also, with the popliteal artery and vein. Externally, with the internal lateral ligament; internally, with the gastroenemius externus. Superiorly, with the eondyles of the femur ; inferiorly, with the flexor pedis aceessorius.

Direction. Of the superior fibres, nearly transverse; of the inferior, obliquely inward and downward.

Structure. Its supero-external attaehment eonsists of a flattened and partially eleft tendon, which plays over the baek of the outer semilunar eartilage. This tendon is enelosed within a duplieature of the eapsular ligament; but (notwithstanding that) is shut out by the internal fold of that duplieature from the eavity of the stifle joint. This tendon finally sinks into the fleshy part of the musele, whose substanee still in plaees diseovers some seanty tendinous interseetions.

Action. To bend the stifle; and at the same time to turn the tibia inwards. It will also extrieate the eapsular ligament from being pinelied between the bones.

flexor pedis.-Tibio-phalangeus.

Situation. Postero-external side of the limb.
Figure. Fusiform ; elongated: fleshy part, thiek.
Attachment. Superiorly, to the postero-external side of the head of the tibia; to the supero-posterior half of the body of the
bone, and to the postcrior side of the fibula. Inferiorly, the tendon assumes the name of tendo perforans, and is disposed of in a manner so similar to the tendon of the same name iu the fore extremity as to render any description of its lower attachments here quite unneccssary.

Relations. Posteriorly, with the plantaris and the gastrocnemii, and also with the posterior tibial blood-vessels; anteriorly, with the tibia and fibula. Superiorly and internally, with the flexor accessorius ; externally, with the plantaris and the flexor metatarsi.

Structure. Supcrior attachment, both tendinous and fleshy, from which at the back of the hock proeecds a strong cordiform tendon, whieh passes within a groove upon the imner side of the os calcis and runs down the posterior part of the leg, where it becomes comnected with the tendons of the flexor accessorius and gastrocnemius internus. With the former of these it unites, and the two together form a single tendon; but with the lattcr, the union is only one formed by cellular membranc. The tendon is denominated the tendo perforans, in eontra-distinction to that derived from the gastrocnemius internus, which (as was before observed) is styled the tendo perforatus. Both tendons are inclosed within the samc sheath; and are, in fact, disposed of down the leg and foot in a similar manner to what the corresponding tendons are in the fore extremity : on which account any further detail would prove but recapitulatory.

Action. That of the gastrocnemius internus corresponds to that of the externus: it extends the hock. But, as it continues down the leg through the medium of the tendo perforatus, it will also flex the fetloek and pastern joints. The flexor perlis will prove of some effeet in the extension of the hoek: altlrough its principal operation is upon the foot, whieh it alone flexes ; and at the same time it flexes the pastern and the fetlock.

flexor pedis accessorius.-Peroneo-phalangeus.

Situation. Deep seated : postero-internal part of the leg.
Figure. Elongated; fleshy portion pyramidal.
Altachment. Superiorly, to the postero-external part of the head of the tibia: inferiorly, it becomes inseparably united with the tendon of the flexor pedis, about one third of the length of the cannon downwards.

Relations. Posteriorly, with the gastrocnemii; anteriorly, with the body of the tibia, and the posterior tibial artcry and vein. Supcriorly and internally, with the popliteus; inferiorly and externally, with the flexor pedis.

Structure. Superior attachment, fleshy and tendinous; after-
wards entirely flesly, and so it continues until it ends in a tendon whieh has its origin in its very eentre. Its fleshy belly erosses obliquely over to the inner part of the leg, where it terminates, midway between the stifle and hoek, in its eordiform tendon, whieh passes through a theea at the inner side of the hoek. Opposite to the head of the great metatarsal bone it runs in the same sheath with the tendon of the fiexor pedis, with whieh it ultimately forms one common tendon.

Action. It operates as a eoadjutor to the flexor pedis.

SECTION III. CIRCULATORY SYSTEM.

THE CIRCULATORY SYSTEM COMPRISES THE BLOOD, THE BLOOD-VESSELS, AND THE IIEART.

OF THE BLOOD.

BLOOD is the red fluid we see issuing from a fresh wound, and of whieh there is a considerable quantity continually eirenlating through the body of a living animal. So uniform is it, while eireulating, in its appearance, that it looks like a simple, uneompounded, or homogeneous fluid; a eharaeter it does not lose until some time after it has been drawn out of the body, and then it gradually assumes a change from a fluid into a solid mass, resembling jelly. In the fluid state it possesses a faint odour, a saline flavour, has an adhesive unetuous feel, and is some little (specifieally) heavier than water : the latter being equal to 1000 , blood may be estimated at 1090. Also, so long as it eontinues tepid, it is pereeived to emit from its surface a halitus, or vapour; which is nothing more than ordinary steam, exeepting that the evaporation may earry up with it minute partieles of animal matter : a eireumstanee which will aceount for the peeuliar odour it is known to eonvey.

It has been observed that blood, soon after its removal from the body, coneretes into a solid gelatinous mass. This spontaneous change, ealled the eoagulation, proeeeds rery gradually to eompletion, until we diseover the formation of two very different eomponent parts : one solid, denominated the clot, or crassamentum; the other fluid, named the serum. Simple coneretion takes plaee in the blood of the horse in about twenty-five minutes: in that of a man it requires only seven. The relative proportions of the erassamentum and serum when the eoagulation is finally completed) will be found to vary in the blood of different animals, and that even of the same animal at different periods, depending on the state of health and condition of the subject from whieh
it is drawn. In man, the crassamentum may be said to amount to about one third of the weight of the scrum; in the horse, the solid will bear nearly an equal ratio with the fluid portion.

In the more perfect, or, as they have been denominated in contradistinction to the others, the warm-blooded amimals, the blood is everywhere found, while circulating in the living borly, to be of a certain degree of heat; and this it steadiy preserves in its circulation through the inward parts of the body, uninfluenced by the surrounding temperaturc. In all the interior or uncxposed parts, the heat will exceed 100° of Fahrenheit's thermometer ; it has been found, however, by experiment, that this degree is not equally maintained in the more superficial sitnations of the body: what these variations are we have but little to do with, though they may be asccrtaincd by the aid of the thermometer, at any time, with precision. But in the lower orders of animals, or such as are called cold-blooded, the heat of the blood corresponds with that of the medium in which they live. We are not, however, to suppose that the temperature of this fluid is never subject to variation, even in perfect animals, for it is found to be much influenced in them by disease : e. y. in the human subject, in whom the heat of the body is, in health, 98°, it has becn known to rise to 110° during fever; and, in all superficial parts, increased heat is one of the cssential symptoms of inflammation.

The heat of the horse's blood, while flowing into a basin, is 100°. If the bulb of the thermometer be introduced into the wound, the quicksilver will rise to about 101°. The temperature of the more superficial parts of the hody will, in course, vary with that of the surrounding atmosphere. Mr. Hunter found that the thermometer, introduced into a wound two inches deep, made into the gluteal muscles of an ass, indicated 100°; and that the heat of the vagina was the same. The interior of the chest of the dog he ascertained to be 101°.

The colour of the blood is red. Not in all animals, however ; for in such as are called cold-blooded-in most fish, their gills excepted, and in insects-it is colourless and transparent. So, likewise, it is in parts even of such animals as are warm-blooded; as, for cxample, in the common domestic fowl, in which the breast and wings arc delicatcly white, while the legs and body partake of a dusky red huc. I believe the blood of the horse is not so high-coloured as that of a man, and that the latter yields in brightness to that of a dog. All this seems to argue that colour is not an indispensable property.

The quantity of blood contained in an animal body may be made mattcr of speculation, but camot, for many reasons, be
ascertained with any degree of preeision. If we attempt to draw all the blood out of the body, the animal sinks and dies long before its ressels are evacuated; and as we possess no moans of measuring what remains behind, any caleulations we may make from the quantity that has flowed must nceessarily turn out vague, if not altogether ineorrect. The following experiment will serve to illustrate this; at the same time that its result will serve as a datum to guide us in any future computation.

The weight being ascertained to be 79 lb ., a puneture was made with a lancet into the jugular vein, from which the blood, which flowed in a rery free stream, was eolleeted. The vein having ceased to blecd, the carotid artery of the same side was divided but no blood eame from it: in a few seconds afterwards the animal was dead. The weight of the careass was now found to be $73 \frac{1}{1} \mathrm{lb}$. ; consequcntly, it had sustaincd a loss of $5 \frac{1}{2} \frac{1}{2}$., preeisely the measure of the blood drawn. It appears from this experiment that an animal will loose about 1-15th part of its weight of blood before it dies ; though a less quantity may so far debilitate the vital powers as to be, though less suddenly, equally fatal. In the human suljeect the quantity of blood has been computed at about 1-8th part of the weight of the body; and as such an opinion has been broached from the results of experiments on quadrupeds, we may fairly take that to be about the proportion of it in the horse : so that, if we estimate the weight of a common sized horse at about 12 ewt., the whole quantity of blood will amount to 81 qrts., or 1681b., of whieh about 45 qr ts., or 901 b ., will commonly flow from the jugular vein prior to death; though the loss of a mueh less quantity will sometimes deprive the animal of life.* It is well known that young animals possess more blood than old, and that they will, perhaps, on this aecount, sustain greater bodily injuries, and bear larger hemorrhages ; indeed, they are wisely provided with sueh an excess, if we may so term it, in order that their growth may be promoted, and their several organs maintained in a state of vigour: but in old, in whieh the body is gradually deeaying, and the powers of life declining, the quantity of this fluid beeomes reduecd. Mr'. Wilson, in his 'Leetures on the Blood,' \&e., says,

[^6]that "fat animals are found to possess less blood than leaner animals; and tame animals, which are confined, less blood than wild ones."

If we take the erassamentum (the solid elot formed by coagulation) and wash it, we shall, by repeated ablution, deprive it of its red colour, and find that we have still remaining a tough gelatinous substance ; which, when broken, exhibits a fibrous appearance, and on that account has received the appropiate name of

FIBRIN.

Some, however, call it by a name of much older date ; viz. coaguluble lymph. Only let us understand that both mean the same thing. It may be made, artifieially, to assume a more perfeet fibrous aspect, by stirring the blood as it flows from the body during coagulation, or by receiving it into a bottle, and shaking it therein while it is congealing. In either case it will be made to assume a very similar texture to muscular fibre, which it also resembles in its chemical composition : and the resemblance may become so perfect, that it may seem well to merit the appellation given it by the old physiologists of "liquid flesh." The similar toughness of consistence which it aequires will not become manifest for some days after its coagulation; for I have found that the crassamentum will continue to contract, and very gradually become smaller (at the same time squcezing out scrum), even for more than a week from the time of the detraction of the blood.

So singular a phenomenon as the spontaneous coagulation and decomposition of the blood presents, could not fail to attract the attention and consideration of those engaged in physiological pursuits ; accordingly we find various reasons assigned for it by the old writers, and yet no one, even up to the present hour, has been able to solve the vital problem. The two most obvious changes of condition to which it is subjected are rest, and exposure to air or cold. But, as we have just scen, it will congeal though it be kept stirred or shaken in a bottle; at the same time, let it be obscrved, that a very brisk agitation will maintain its fluidity: an effect arising, probably, from the natural attractiveness of the partieles for each other being artificially counteracted until it ceases altogetlicr. Neither is exposure to air or a diminished temperature the cause, for blood will coagulate in vucuo ; and is, likewise, often found in elots in vessels and eavitics of the body, with sufficient evidence of its having been so during life. So that neither of these eauses will account for the coagulation, though experiments constrain us to admit that they both seem somewhat influential.

Other eireumstanees and agents also affeet the coagulation. It will eongeal sooner when drawn from a small orifice, or allowed to trickle down the side of the ressel or the animal's neek, than under opposite eireumstanees. Various ehemieal agents thrown into the vessel will cffeet its eoagulation at once : such are eertain of the neutral salts, aeids, aleohol, and alum.

Of the various eonjeetures and opinions that have been fiamed to aceount for this miraculous ehange in the blood, none seems so well worthy our attention as that left us by the famed John Hunter. He aseribed the eoagulation to the presenee of a vital prineiple in the fluid. To use his own words: "To conecive that blood is endowed with life while it is eirculating, is, perhaps, earrying the imagination as far as it ean go ; but the difficulty arises merely from its being a fluid, the mind not being aceus. tomed to the idea of a living fluid." He next proceeds to show, "that organization and life do not depend in the least on eaeh other ; that organization may arise out of living parts and produee aetion, but that life can never rise out of, or depend on, organization." And, in the third plaee, he evinees, by many ingenious faets and experiments, a striking analogy between the coagulation of the blood and the contraetion of museular fibre. Animals killed by lightning or eleetricity have not their blood eoagulated, nor their muscles eontraeted. Those that are hunted to death, or, in fact, in any way suddenly extinguished, exhibit the same eoineident phenomena ; also their bodies are more disposed to run into putrefaetion. From all which evidenee, Mr. Hunter coneluded that blood in a living body, was possessed of what he termed a materia vitce diffusa.

Dr. Bostoek objeets to the Hunterian doctrine on the score that, even were "the life of the blood fully established, it would not offer any explanation of the eause of its eoagulation ; for the same diffieulty (adds he) still remains, in what manner the presence of life operates, so as to produce either the coagulation of the blood or the eontraction of the museles." But this remark is one that would equally apply to all vital phenomena. The Doetor gives it as his opinion that, "perhaps, the most obvious and consistent view of the subjeet is, that the fibrin has a natural disposition to assume the solid form, when no eirenmstanee (either ehemical or meehanical) prevents it from exercising this inherent tendeney."

red Particles.

It has been obscrved that, by repeated ablution, the crassamentum may be deprived of its red colour, and thereby converted into fibrin alone: the water that has been employed for this pur-
pose will be found to be rendered red-bloody, as it is termed; an efficet arising from the eommixture with it of the part of the erassamentum now under our consideration, viz., the red partieles. The colour of the blood is owing to the presence of innumerable particles or globules, whieh are uniformly diffused through it in the fluid state; and in the coagulated, beeome entangled within the substance of the fibrin. I have already remarked, however, that blood is not red in all animals, nor even in every part of the same animal ; still (aceording to Hewson) this white or colourless blood possessea globules similar in form and structure to the coloured ones. The same author likewise informs us, that the globules are of different magnitude in different animals, but that their volume bears no sort of proportion to the size of the animal ; they being as large in the mouse and eat as in the ass and ox ; larger than either in birds ; and largest of all in the skate.

In making these observations, however, I should remark that no part of the body has afforded a wider field for speculation than these red globules. Being so very minute as only to be diseoverable at all through a powerful mieroseope, their shape and magnitude have become variously reported on aceording to the varying eireumstances under which these mieroseopic examinations have been conducted : to one they have appeared in the form of perfeet spheres; to another, as rings; to a third, as flattened vesieles. Dr. Young (whose aecount is reeent, and pretty nearly coineides with that of Hewson) found the globules in the skate to resemble an almond in form, only to be less pointed and somewhat flattened, and consisting of an external envelope containing a central nueleus ; as represented here below :-

We are further informed by experimenters, that the colouring matter of the globule resides principally or entirely in its external covering, the eentral nueleus itself being without colour; and, also, that it is only the eoloured envelope whieh is soluble in water; the nuelcus still retaining its form while floating, and being obtainable in an entire and separate state.

Their magnitude has given rise to as mueh latitude of opinion as their shape. Dr. Young estimates a globule of human blood at $\frac{1}{50} 0 \overline{0}$ of an ineh in diameter ; and we may as well sit down coutented with this, as spend our time in searching after other evidenee, perhaps, after all, less conclusive.

The colour of the globules is materially affeeted by atmospherie
air. If a elot of blood in a basin be examined, its upper surfaee, which has been exposed to the air, will be found to possess a bright scarlet eolour, while the lower or unexposed part will appear of a dark Modena purplish hue ; only invert the elot, however, and in a short time that part which is dark will turn to a bright red, while the other (now exeluded from the air) will change to a dark purple aspeet. This ehange of colour is wholly ascribable to the action of the oxygenous part of the air. Experiment has fully proved this faet; and also, that the other ingredient of the atmosphere, viz., azote (as well as the earbonie acid gas), has quite the eontrary effeet upon the blood, eonverting its searlet hue into purple.

Notwithstanding the fluetuating and contradictory aceounts of ehemieal inquirers into the composition of theblood, there appears little reason to doubt the existence of iron in it, and in the red globules in partieular the presenee of the metal has been proved: through whose metallie ageney, we may add, it is, that oxygen produees the remarkable eliange above alluded to. For the present, let this mueh suffice. I shall have oceasion to amplify mueh on this part of my subjeet when I eome to speak of respiration.

SERUM.
Is the yellow or straw-eoloured fluid whieh gradually exudes after eoagulation from the erassamentum. It has a saline taste, and is adhesive in its nature, on which account it is found somewhat speeifieally heavier than water.

Superfieial observation and analogical inference have given rise to scrious crror in regard to the proportionate quantities of scrum and erassamentum in the blood of the horse. For some hours after a horse's blood is coagulated, it exhibits one uniform gelatinous mass, whose surfaee is seareely moistened by serous exudation ; whereas that of a man in the same interval of time would diseover the elot aetually swimming in serum. The truth of the matter, however, is, that so far from there being a eomparatively less quantity of serum in horses' blood, there is aetually a larger proportion ; the differenee being that it requires a much longer time for its evolution in the graminivorous than in the earmivorous animal.

Take a pint of blood from a man, and place it in a temperature of 50°, and in the course of three days it will not only have perfeetly resolved itself into its component parts, but will be growing putrid. But draw a pint from a horse, and plaee it in a medium of the same temperature, and serum will eontinue to ooze from it even for a week afterwards.

In fact, the two most essential differences between human and
horses' blood, are,-lst. That the latter much more slowly resolves itself into its component parts; and, secondly, that it possesses greater preservative powers against putrescency.

Scrum itself exposed to the temperature of 160° is converted into a solid, white, opaque mass; also the effect of coagulation. Mincral acids and alcohol will likewise produce this change. It now resembles boiled white of egg; and is found, in fact, to be the same in nature, viz., albumen. If this coagulum be cut or squeczed, a limpid fluid issues from it, that has been termed the serosity.
"The most important chemical properties of albumen," obscrves Dr. Bostock, "while in its liquid form, are its solubility in water, and the precipitates which it forms with the mincral acids, tan, and a varicty of metallic salts. Of the acids, the nuriatic is supposed to combine with it the most readily, and is therefore employed as one of the most delicate tests of its presence in a substance where we expect it to exist. Tan forms with albumen a dense precipitate of tough consistence, and insoluble in water. A rariety of themetallic salts precipitate albumen, and, like the acids, scrve as very delicate tests of its presence ; of these probably the corrosive sublimate, or the bichloride of mercury is the most delicate, and at the same time the most discriminate, as it appears to have no action upon any other of the animal substanees which enter into the composition of the albuminous fluids." When eoagulated, albumen becomes completely insoluble in water.

The serosity exists in a comparatively very small quantity, and can only be obtained by slicing the albuminous coagulum and allowing it to drain, or else by expression, or by washing it in water. It has been particularly examined by Dr. Bostock, and found to contain an animal matter which is not albumen; and whose nature it is difficult to make out, in consequence of its being always found mited with soda, and a varicty of other salts, from which it cannot be separated, without being, at the same time, decomposed. To this substance Dr. Marcet has applied the name of mueo-extractive matter ; while Dr. Bostock prefers styling it the uneoagulable matter of the bloor.

BUFFY COAT-CUPPED BLOOD.

I make the considcration of these points a distinet one, beeause I feel desirous to correct what I conceive to be an important error practitioners have fallen into.

Let the crassamentum be examined at the side, and the upper layer of it will be found to be yellow or buff-colonred; below this, it will appear of a light red hue; lower still, darker and
darker until it becomes a black or dark purple. This is the natural or healthy aspect of horses' blood : but human blood is said nerer to put on such an appearance but as symptomatic of inflammatory, or, at all crents, of increased vascular action. Whetleer it does or not, the simple explanation of this phenomenon is, that, in consequence of the blood taking an unusually long time to coagulate, the red particles, being specifically heavier than the fluid containing them, gradually subside to the bottom until they are arrested by the process of coagulation. And consequently, as the horse's blood takes so much longer to coayulate than the human, it cannot afford amy matter for surprise that his blood should be always buffy. Still, obvious and casily accountable for as this fact is, buffy blood has been attributed to the horse as a mark of disease.

And so, in like manner, has cupped blood; -by which is meant, crassamentum, whose upper surface, instead of being flat or perfectly planc, is concave or cupped, having its surrounding margin elevated and more or less inverted, in the form of a tea-saucer. But this is an appearance often to be met with in perfect health : one that no more certainly indicates any morbid condlition with which I am acquainted than docs buffy blood. I had a remarkable instance of this while engaged in some experiments connected with this subject. A horse, to crery appearance in perfect health, was bled to one pound; after which he was galloped (for the space of about twenty minutes) matil he sweated profusely : while under extreme agitation from the exertions he had been put to, another pint of blood was drawn by mpimning the same orifice. The coagulum of the first parcel of blood was sizy, tough, contracted, and decply cupped : that of the last exhibited no signs whatever of buff, was extremely loose and flabby in its texture ; so that, on being landled, it readily mingled with the serum, and in a much shorter time than the first went into the putrefactive state.

This latter fact is intimately connected with what I have already advanced regarding the non-coagulation of the blood after an animal has been coursed to death; since, had cxertion been continued until the horse sank under it, the blood would probably lave remained wholly fluid ; whereas in this case, the animal being only in progress towards that statc-being only urged to a point from which he could recover-the coagulating powers of the blood were merely diminished.

I shall couclude this subject with a statement of the results of blecding twelve horses in perfect health, under circumstances as nearly as possible similar and natural. From cach horse the quantity drawn was one pint. The time it took in flowing in no
ease exceeded a minute. A film of eoagulum was generally pereeptible on the surface at the expiration of ten minutes. Eaeh parcel was firmly eoagulated in twenty-five minutes. All the eoagula shewed buff about half an ineh in depth; seven of them were very firm, of whieh five exhibited the surrounding edge elevated and turned in, the other two being still more deeidedly eupped. In two out of the five not so firmly eongealed, the eoagula were soft and flably. The serum amounted in every parcel to about one half of the whole quantity.

OF THE HEART AND PERICARDIUM.

Situation. The heart is inelosed within the perieardium : and both together oeeupy the middle space of the eavity of the thorax.

PERICARDIUM.

The perieardium is a membrane formed into a conoid sac for the purpose of eontaining the heart. It has, exteriorly, an opaque white aspect ; is dense in its consistence, and firm and tenaeious in its texture. It is composed of two layers, intimately united by eellular tissue. The external one is dense and fibrous, is possessed of the elief strengtl of the membrane, and is attached below by several ligamentary cords to the sternum and tendinous part of the diaphragm, and above to the roots of the large bloodvessels at the base of the heart, upon which we lose sight of it altogether: the sides of it are elothed and additionally strengthencd by the adhesions of the pleure. The internal layer is fine and eellular, exhibits inwardly a smooth, polished surface, and appears to be similar to other serous membranes in its intimate texture and organization. It not only lines the external layer, and gives a covering to the roots of the large blood-vessels, but is reflected from them upon the heart itself, to whieh it forms a elose and complete tunie: so that the heart is absolutely out of (above) the eavity of the perieardium; in faet, it is situated preeisely the same in regard to this membrane as the human head is within a double nighteap.

The liquor pemcardi is the pale yellow serous fluid found within the cavity of the perieardium, seereted therein by the exhalents of the membrane. It serves to lubrieate the contiguous surfaecs of the sae, and to preserve them against any ill conscquenees from friction.

The use of the pericardium is to confine the heart in its situation, to sustain it in its reciprocal aetion with the lungs, preventing any unduc collision, and to serve as a protceting fence to the organ.

ILEART.

Form, Situation, and Attachment. It is of a eonoid form. Its base, turned uppermost, is opposed to the bodies of the 4 th, 5 th, and 6 th dorsal vertebre, from whieh it is suspended in its situation in the middle of the eavity of the thorax, by the attaehments of the venous and arterial trunks immediately eonneeted with it. Its apex hangs loose and unattaehed within the perieardiac eavity, pointing downwards and baekwards, and is inelined to the left side.

The weight of the heart is about six or seven pounds.
Division, external and internal. For the eonvenienee of deseription, we distinguish in the heart a base, a body, and an apex.

It is also said to have two sides, each of whieh eontains two eavities: the two superior eavities (from haring been likened to the ears of a dog) have been denominated auricles; the two inferior have been named ventricles. Their boundaries are marked cxternally by deep exeavations, whieh are filled with fat; the limits of the ventrieles are likewise pointed out by furrows upon the body of the heart, eontaining fat, continuous in substanec with that whieh is deposited above. This fat is more abundant in old than in young horses.

The heart owes its smooth glossy aspeet cxternally to its thin duplieature of perieardium, whieh is cyerywhere in sueh intimate adhesion with its surface, and so transparent, that its parictes are too plainly demonstrable through it to require that this membrane be stripped off.

The sides of this organ, commonly distinguished by the epithets right and left, wonld more properly be deseribed, in allusion to the relative situation of their eavitics, as anterior and posterior; for the right auriele forms the upper and fore part, turning its apex to the left side ; and the greatest part of the left auriele is apparent behind, though its apex is also turned to the left side, and is inelined downward. The ventrieles, being situated under their respective aurieles, face eonsequently, like them, forwards and baekwards. Though the auricles are essentially the same in strueture as the rentrieles, they differ from those parts in exterior appearanee, in bulk, and in the substance of their parietes ; they are of a palc pink eolour, are very uneven, when distended, upon their surfaees, and are indented along their infcrior borders; whereas the ventrieles are of a dull red or deep flesh eolour, are smooth and even upon their surfaecs, and of themselves compose three fourths of the organ.

The right auricle, generally found full of blood after death,
is lined by a finc, vascular mombrane, and presents internally a polished surface, the regularity of which is interrupted in places by many fleshy prominences, named the musculi pectinati; between which are numerous little sinuses, or cul-de-sacs, that, as well as the fleshy pillars themselves, vary much in size, and are most numerous and remarkable within the appendix, or car-like portion of the auriele, where they form together a retieulated strueture. Three venous trunks terminate in this cavity : the vena cava anterior opens into the superior and posterior part of it; the vena cava posterior opens into the inferior postcrior part; and the coronary vein just below it. The vena azygos forms a junction with the anterior eava just as the latter pierees the auricular parietes. Between the openings made by the two venæ eave, there is a prominence that is usually called the tuberculum Loweri. There is a deep sac or sinus at the entrance of the posterior cava; and between this and the mouth of the coronary vein, a erescentic valvular flap, which projects half way over the mouth of the latter vessel. The right auriele has a frce communieation with the right rentriele by an aperture of large size, ealled the auriculo-ventricular openiny.

One auriele is divided from the other by a museular partition, denominated the septum auricularum ; in whieh may be seen, when the part is hold to the light, an elliptieal inlet of semitransparent membrance, erossed in plaecs by flesly faseiculi, which takes the name of fossa ovalis: in some subjects there is a small aperture through it, and this is all that remains of the foramen ovale.

The mght ventricle is redder and eonsidcrably thicker in substance than the right auriele: like it, it commonly contains, after death, a large coagulum of blood. It is likewise lined by a smooth, polished membrane, and has within it numerous fleshy pillurs, which, instead of being reticulated as those are in the auriele, are disposed longitudinally. In addition to these, there are three eonspieuous fleshy prominenees, from their size named the carnea columne, from which sevcral little tendinous cords, chorde tendinee, proceed to the edges of three membranous and fibrous produetions (sometimes distinguished by the name of cortina tendinea) that close the auriculo-ventricular opening : the apparatus altogether forms thevalvula tricuspis. Other cords, similar to the eordr tendineæ, but stronger than them, pass between the outer wall and the septum. The pulmonary artery emerges from the upper and back part of this eavity ; and its mouth is guarded by three semilunar valves, which present little pouches within the eavity of the vessel : these valves consist of doublings of the lining membrane of these parts, infolding, about the middle of their loose
elges, three small granular substanees, deseribed as the corpuscula Arantii. Opposite to the valves, three depressions are apparent in the eoats of the vessel, named the simus Valsalva.

The left auricle is smaller than the right, and has thieker parietes. It contains, in gencral, but little blood, and in some subjeets none. It presents nearly the same aspeet internally as the right. It has not so much of the retieulated structure how-ever-fewer musculi pectinuti; what there are, are more strongly marked, and are principally confined to the appendix. The pilmonary veins terminate by four openings in the superior and posterior part of this eavity. The auriculo-ventricular opening is somewhat larger than that of the right side, and is rather square than round. Now that the aurieles are both laid open, the septum auricularum, fossa ovalis, and foramen ovale, may be distinetly viewed.

The left ventricle, though smaller within, is longer, and moreprominent and extensive without, than the right: it forms, of itself, the apex cordis. Its outer wall far exeeeds in thiekness that of any other eavity of the heart, being thriee that of the right ventricle. Its musculi pectinati appear mostly upon the septum, within the apex, and under the valves. It las but two carnece columne, but they are very bulky, and project much into the earity. Its auriculo-ventrieular opening is only furnished with two valvular productions; in other respeets the cortina tendineu and chorde tendinere resemble those on the right side : this valve is ealled the valvula bicuspis vel mitralis. The aorta takes its rise from the upper and fore part of this ventriele, and, conecaled at its origin by the pulmonary artery on one side and venæ eavæ on the other, makes its exit close to the spine. The mouth of the aorta is shat by three semilumar valves, similar in formation and disposition to those at the origin of the pulmonary artery : but the simus Valsaluce are much larger and deeper. Just above two of them are seen the mouths of the coronary arteries. The rentricles are divided by a thick, fleshy partition, called the septum ventriculorum.

Organization. Though the heart is composed mostly of fleslyy fibres, a tendinous structure is demonstrable in its middle, whieh tendinous intertexture appears to be the eommon medium of attaehment between its aurieles, ventrieles, vessels, and valves, one to another. The fleshy fibres composing the parietes of the aurieles, stronger in theleft than in the right, are disposedin every direetion; those that form the walls of the ventrieles, for the most part, appear to run longitudinally and obliquely, and many of them in a spiral mamer. These fibres are more slender than those of other museles, and are more intinately and firmly compaeted ; the
cellular tissue also, uniting them, is finer, denser, and less in quantity.

The heart is supplied with blood by the two coronary arteries ; the first branches given off from the aorta. Its veins pour their blood into the coronary vein, by which it is returned into the right auricle. Its nerves are derived from the cardiae plexus.

OF THE BLOOD-VESSELS.

There are two orders of blood-vesscls-arteries and veins : the former conduct the blood from the heart to all parts of the body; the latter return it therefrom back to the heart.

ARTERIES.

These vessels, in all their manifold ramifications, spring originally from two main trunks-the pulmonary artery and the aorta: the former sends its branches to the lungs; the latter to all the other parts of the body.

PULMONARY ARTERY.

A vessel of larger calibre than the aorta. It takes its origin from the postero-superior part of the right ventricle of the heart, winds upwards to the root of the left lung, and there divides into right and left pulmonary arteries; which divisions immediatcly enter the substance of their correspondent lungs, and thercin ramify to capillary minuteness, the branches regulating their course and division by the ramifications of the bronchial tubes.

AORTA.
This trunk, together with its manifold branches, may be compared (viewing them altogether) to a short, but straggling and very branchy shrub or dwarf tree of luxuriant but extremely irregular growth; and their number and ramification may be pictured to the mind, by remembering that no organized part of the body is without few or many of them.

TABLE OF THE ARTERIES.

The Right Arteria Innominata sends off branches correspon.. dent to those on the left side ; and, in addition, the

> Ramus Anastomoticus $\}$ Occipital $\left\{\begin{array}{l}\text { Dura Matral } \\ \text { Tcmporal } \\ \text { Nuchal }\end{array}\right.$ Internal Carotid $\left\{\begin{array}{l}\text { Arteria Communicans } \\ \text { Anterior Dura Matral } \\ \text { Anterior Cerchral } \\ \text { Midde Ccrebral } \\ \text { Latcral Ccrebral. }\end{array}\right.$

POSTERIOR AORTA $\left\{\begin{array}{l}\text { Thoracic Division } \\ \text { Abdominal ditto }\end{array}\right.$ ThoracicDivision $\left\{\begin{array}{l}\text { Bronchial } \begin{array}{l}\text { Right Bronchial } \\ \text { Left ditto }\end{array} \\ \text { Esophageal }\left\{\begin{array}{l}\text { Superior Cisophageal } \\ \text { Iuferior ditto }\end{array}\right. \\ \begin{array}{l}\text { Intercostals } \\ \text { Phrenic }\end{array}\end{array}\right.$

Bifurcation of the Posterior Aorta into External and Internal Iliac Arteries.
Internal Iliac $\left\{\begin{array}{l}\text { Artery of the Bulb }\left\{\begin{array}{l}\text { Umbilical } \\ \text { Vesical Branches } \\ \text { Prostatic } \\ \text { Anal and Perincal Branches }\end{array}\right. \\ \text { Obturator }\left\{\begin{array}{l}\text { Artcria Innominata } \\ \text { Foraminal Branches } \\ \text { Ischiatic } \\ \text { Pubic } \\ \text { Int. Pudic }\end{array} \begin{array}{l}\text { Branehes to the Crus Pcnis } \\ \text { Ditto Corpus Cavernosum } \\ \text { Ditto Dorsum Pcris } \\ \text { Ditto Glans Penis } \\ \text { Cutancous Branches. }\end{array}\right.\end{array}\right.$

The Middle Sacral issues at the Bifurcation of the Trunk.
External Iliae $\left\{\begin{array}{l}\text { Circumflex of the Ileum } \\ \text { Atery of the Chord } \\ \text { Iteria Prolunda }\{\text { Epigastrie } \\ \text { Femoral }\end{array}\left\{\begin{array}{l}\text { Braneh to the Froin } \\ \text { Braneh to the Ring } \\ \text { Ext. Pudic }\end{array}\right.\right.$ Inguinal Minseular Branehes
Stitle ditto Muscular dit to Popliteal \{ Reeurrent

Femoral
Reeurrent Artieular
Mluseular Branehes Anterior Tibial . . Cutaneous ditto Metatar:al Branelies f Recurrent Metatarsal Artery $\{$ Ext. Plantar Museular Branches Int. ditto Posterior Tibia Medullary
Tharsal
Int. Metatarsal $\{$ Recurrent.

THE AORTA, the main trunk of the general arterial system, takes its origin out of the base of the left ventricle of the heart, and mounts upward between the left auricle and the pulmonary artery; the latter vesscl by inclining forward learing visible, on a side view, a small angular portion of the aorta. The length of the single truuk measures about two inches. It is situated directly underneath the fourth dorsal rertcbra, where its bifurcation takes place into anterior and posterior aorte; vesscls that are both of them curved in their course, but of unequal dimensions.

The coronary arteries are the only branches given off from the single trunk: they arise close to its root, immediately above the semilumar ralves. The right coronary artery cmerges from the interspace between the pulmonary artery and the right auricle, winds round the fissure separating that carity from the right ventricle, and turns down under the termination of the rena cava, within the furrow dividing the rentricles, upon the side of the heart, distributing lateral ramifications in its course, which penctrate the substance of the parietes, and cuding in small spiral branches near the apex cordis. The left coronary artery, in passing out between the pulmonary artery and left auricle, scuds off a large branch which encircles the other auriculo-ventricular fissure; it then takes its course downward within the ventrieular furrow upon the left surface of the heart, distributing latcral branehes which supply the parictes forming this side, and ending in spiral ramifications whieh extend quite around the apex cordis, and anastomose with those upon the opposite side.

Anterior Aorta.

The anterior, smaller, and shorter division of the main trunk, whose length falls somewhat short of an inch, in aseending, bends forward, and divides below the body of the third dorsal vertebra into the right and left arterix innominate vel communes. The eourse of this vessel is below the windpipe and rather to the left of it, within the space of the mediastinum. The trunk itself furnishes no branehes; but its bifurcations give origin to those large arteries which are distributed over the breast, neck, head, brain, and anterior extremities.

Arterice Innominata vel Communes.

The right artery is considerably longer than the left, and measures ncarly as mueh again in eireumferenee, in consequenee of its having to form the common carotid artery (the trunk from whieh the two earotids spring) after it has detaehed braneles to the right side corrcspondent in size, number, and distribution to those into whieh the left division resolves itself. These vessels form a very aeute angle as they leave the anterior anrta, and pursue their course horizontally forward, diverging very gradually as they adranee: the right is plaeed lower than the left, and lies more immediately under the windpipe, having the vena eava antcrior upon the other side of it; the left deseribes a eurve upward in passing forward, inelines outward, and gets under the œesophagus: both braneh out about the middle of the space between the first two ribs, where the right ends in the two carotid arteries, the left in the vessels now to be deseribed, which, as was observed before, are nearly the same on one side as on the other.

1. The dorsal artery generally comes off in one common root with the next ressel. From its origin, it eurves upward and backward to arrive at the second intercostal space, whieh it perforates very obliquely elose to the posterior edge of the first rib, a little below its head. Out of the chest, it still pursues the same oblique eourse, erossing over the transverse proecss of the second dorsal vertebra, and then aseending upon the spines of the withers, among the museles attaehed to whieh its ramifications are expended. Its branches worthy of names are-a. Superior Mediastinal, a twig detaehed near its origin to the mediastinum. b. Anterior intercostal, a braneh sometimes nearly equal in size to the dorsal itself, given off just hefore the ressel penetrates the intcrcostal muscle, by whieh the seeond, third, fourth, and fifth intcrcostal arteries are furnished; the reason for which is, that the posterior aorta (the vessel furnishing the majo-
rity of the intcreostals) is too far removed from these anterior ribs to send vessels to them ; their deficiency therefore becomes convenicntly supplied by the antcrior intercostal. Thesc intercostal branches follow the postcrior margins of their correspondent ribs, each running within a shallow groove; midway, however, between the rertebre and sternum, they leave the ribs for the middle of the intercostal spaces, and end in several slender ramifications, some of which may be traced as low as the sternum, there anastomosing with similar ones coming from the internal pectoral artery. The intcreostals in their course detach twigs to the pleura, but more especially supply the intercostal muscles.
2. The posteriol cervical artery, arising in common with the dorsal on the right side, but by a separate root on the left, takes an opposite direction to that vessel, inclining forward and upward. It traverses the upper part of the first intercostal space, piercing the muscle filling it with considcrable obliquity, and then ascends in a winding coursc between the transversc processes of the first dorsal and last cervical vertebree, upon the body of the lattcr, wherc it turns forward, and runs as high as the rertcbra dentata, close alongside of the roots of the ligamentum nuchre, concealed by the complexus major, to which its ramifications arc principally distributed. Besides some small and unimportant branches within the chest, it gives off the first intercostal ariery, which descends behind the first rib, and anastomoses with twigs from the internal pectoral.
3. The vertebral artery is a vessel of considerable size, and is vastly important, from being onc of the principal conduits of blood to the brain. It arises with a sort of bend from the upper part of the arteria innominata, dircetly opposite to the first rib, in such manner, that, if a knifewere thrust into the chest behind the rib, the artery would just eseape puncture. The right vertebral is at its origin placed lower than the left, and deviates somewhat less from a straight line in procceding, which it docs, close under the transverse process of the seventh cervical vertebra to enter the foramen through that of the sixth. They then both of them continue their passage to the head, passing directly through the foramina of the fourth, third, and second vertebre, wherein they rum sceurely barred from cxternal injury ; arriving at the atlas, they make a curve upward upon its transverse processes, proceed through the posterior pair of foramina, and euter the foramen magnum. In its course along the neck, the vertebral artery on either side detaches several short branches of considerable size, which turn round the transverse processes, and ramify among the decp-seated muscles. It also sends some smaller ones inward, which enter the intervertcbral holes for the supply of the medulla
spinatis and its membrancs. Under the atlas, the vertebral trunk receives a large vessel of communication from the internal earotid: its further description, however, must be suspended until we come to trace the ressels of the brain.
4. The mpterial pectoral abtery, less in volume than the vertebral, leares the trunk below, opposite to the origin of that ressel above, protected by the first rib, along the posterior and inner margin of which it descends in a perpendicular direction towards the sternum. Leaving the lower extremity of the rib, it makes a broad swecp downward and backward, and desecnds upon the internal surface of the sccond bone of the sternum : it afterwards diverges gradually from its fellow, traverses the ends of the eartilages of the posterior true ribs, and, having crossed that of the last, splits into two divisions. One of these ascends upon the internal part of the chest, along the border of the seventh truc cartilage ; thenec it crosses the false cartilages, detaeling slender ramifieations to them which anastomose with some of the postcrior intercostals, and makes its way towards the flank, and disperses its ultimate branches among the museles there, some of which reach far enough to communicate with the ramifieations of the cireumflex artery of the ileum. The other division (generally considered as the continuation of the trunk, being rather the larger onc) pierecs the sheath of the rectus, and makes its appearance upon the upper surface of that muscle, over which it ramifics extensively, sending branches out again to anastomose with the epigastric. Exclusively of these divisions, the trunk detaches muscular branches along the first rib, inwardly anterior mediastinal vessels, larger branches to the muscles of the sternum, and inferior mediastinal; and also thymic twiys.
5. The external pectoral artery, comparatively small and unimportant, comes off also from the under part of the trunk, makes a turn downward in front of the stermum, and distributes its ramifications among the pectoral museles. This artery in some subjects is derived from the intermal pectoral.
6. The inferior cervical artery, longer and larger than the afore-described ressel, arises from the common trunk opposite to or in company with it, and makes its exit from the chest below the vertchral artcry, and then bends outward. At the bottom of the neek it divides into several branehes: these run principally to the eontiguous muscles, though some few ramify with the adipose substanee in the neighbourhood, and others are destined to the absorbent glands hereabouts.
7. The serenth and last braneh, and largest (if we except the carotids on the right side, and the eontinuation of the main trunk on the left), is the-

Axillary Artery,

The souree from whieh is derived all the arteries supplying the fore extremity. This ressel is so buried between the scapula and the trunk, that not only is it out of the way of all injury, but is excluded from all possibility of being got at for the purpose of demonstration without detaehing the limb from the side. It arises within the chest from the arteria imnominata, and gains exit by making a sudden turn around the first rib, rather below its middle, erossing the lower border of the scalenus in the turn: it is first directed outward in this flexure, and then baekward, and at length reaches the imncr part of the head of the humerus, where it makes another turn baekward, and subsequently takes the name of humeral artery. Its branches are-1. The external thoracic extends backwards aeross the arehes of the ribs, taking the same course as the vessel called the "spur vein," and supplying the museles thereabouts. 2. The humeral thoracic runs to the point of the shoulder, and gives its branches to the levator humeri and shoulder-joint. 3. The dorsalis scapulce aseends in a flexnous manner obliqucly upon the shoulderjoint, crossing the insertion of the subseapularis; it next runs for a short way along the anterior costa, around whieh it subsequently continues to reach the antea-spinatus. 4. The subscapuIaris, a large artery arising from the upper part of the trunk, but near to its termination, creeps 1 pward along the posterior costa, sereened from view by the edges of the subseapularis and teres major, to both of which museles it detaches laterally several small branches, and ends near the posterior angle of the bone. It gives off a considerable brameh at a short distance from its origin, whieh proeeeds in a waving line across the inner surface of the trieeps, and ends in the pannieulus earnosus; and another, a decp-seated one, about the middle of the costa, whieh is prineipally expended in the head of the triecps.
The hemeral artery descends from the inner and baek part of the head of the os humeri in an oblique direction to the inferior and anterior part of the borly of the bone, where it splits into the ulnar, spiral, and radial arteries. To its imner side run the spiral and ulnar nerves; in front, the radial nerve ; and behind, the humeral veins : and it is corcred internally by the peetoralis magnus, to which it sends some small branches. But its principal branches are--1. One near its origin, which crosses the bone to get to the flexor brachii, and sends twigs to the shoulderjoint. 2. A posterior braneh, arising a little lower down, whieh bifureates and then enters the triceps. 3. Near its termination, another anterior branch passes to the flexor braehii. In the
place where the artery divides, it is covered by the humeral plexus of reins, and by the absorbent glands of the arm.

The ulvar abtery consists of a common root from whieh spring three or four vessels of considerable size running in waving limes upon the imner surface of the lower end of the humerus. The upper one, commouly the largest, is direeted to the ulna; splitting, however, before it reaches the bone, and sending one brameh upward upon the olecranon, and another downward to the heads of the flexors, to which muscles the other branelies of this vessel are exclusircly distribnted.

The spiral artery, the outermost division, turns round the os humeri, and passes under the flexor brachii, sending a reeurrent branch to it, to arrive at the front of the head of the radius, where it splits into several branches, of which-1. Some run into the clhow-joint. 2. Others, larger and more in mumber, penetrate the licads of the extensors. 3. Two long slender ones deseend upon the radius, under the extensor museles, to which they give branches in their course, as low as the front of the knee, and there end in ramifications about and into the joint, anastomosing with others coming from the radial.

The radial abtery, the principal division of the humeral, eontimes its descent along the radius, inclining as it descends from the inner to the back part of that bone; so that if it were purposed to cut down upon it ahout the middle of the arm, the ineision should correspond in a line with the inner edge of the radius, from which, to expose the vessel, the faschia must be first detached, and afterwards the flexor metacarpi internus. The radial nerve, which in this place accompanics it, runs upon its outer side, but subscquently gets behind it. A short way above the knee, it splits into the metacarpal arteries. It gives off1. Small vessels to the elbow-joint. 2. Varions branches to the flexor muscles during its eourse. 3. The medullary artery of the radius, at ahout one fourth of the length of the bone downward.

The small metacarpal artery descends, within a eellular sheath, along the inner and back part of the knce, more outwardly situated than the large one, from whieh it is separated by the posterior annular ligament. It contimues its descent along with the metacarpal rein (which runs to its imer side) until it arrives below the knee, where it bifureates and transmits its divisions down upon the front of the suspensory ligamentbetween it and the camnon-bone. It sends off-1. Cutancons branches over the front of the knee, which anastomose with the spiral. 2. Ramifieations to the front of the cannon. 3. To the suspensory ligament.

The large metacarpal artery, which may be regarded as
the continuation of the radial trunk, continues its course down the leg by the side of the tendo perforatus, passing along with it at the knee under the posterior ammular ligament, but inclosed within a cellular sheath of its own. Is it procecds, it inclines to the side of the tendo perforans, and, in approaching the fetlock, gets in adrance of that tendon. Immedhately above the joiut, where it is situated between the tendo perforans and the suspensory ligament, it splits into three resscls. The middle division slides into the interval between the bifureated terminations of the ligament, and between them and the bone forms a transverse areh, from which three recurrent arteries retrace in a flexuous line the suspensory ligament, and form communieations with the small metacarpal artery : the lateral divisions become the plantar arteries. From the arch, below, come off two lateral branches whieh desecud into the joint.

The plintar arteries, one external, one internal, in the fore extremity result from the bifureation of the metaearpal, in the hind from that of the metatarsal artery: I prefer this appellation for them, becausc it denotes their destination at once, and because it sares us the uscless division of a trunk only six inches in length into three nominal artcrics; and beeause our descriptions and memories are not clogged by it as they are by the "large pastern," and the "small pastern," and the " coffin arteries." Their general distribution is the same both in the fore and hind fect.

The plantar arteries, in emerging from their common origin behind the flexor tendons, describe two sides of the figure of a triangle, the base of which, turned downward, is represented by a line drawn aeross the baeks of the sesamoid bones, the apex being the point of bifireation. 'They descend the fetlock upon the outer sides of the sesamoids, in company with their correspondent yeins whieh run in front of them, and with the plantar nerves which proceed behind them: in this part of their course, they describe corrclative eurves ontward, to conform to the promincuces of the fetlock, and henecforward continue to pursuc precisely the same uniformity both in course and distribution, so that we need only in the progress of our description make mention of onc. In its passage orer the sesamoid, the outer edge of that hone is fomed to rise between the ressel and the flexor tendon; but in quitting the fectock, the artery again approaches the tendo perforatus, and subsequently runs alongside of it to its implantation in the head of the os corone, at which place the artery sinks down behind the eartilage into the substance of what is called the " fatty frog." Inchining forward in its subsequent deseent, the artery next passes the inner and upper extremity of the ala of the os pedis, where, it
enters a groove scooped in that bonc, arid is conducted obliquely forward and inward, into the foramen in the posterior concavity of the bone. Here we lose sight of it altogether-the knife and forecps no longer arail us to discover its progress and destination : cither the bone must be chiselled away, or (the ressels being previously injected) be croded by maceration in an acid. We shall then detect the artery in the interior of the coffin-bone, making a turn outward again, and subsequently another inward, in the course of which, mecting with its fellow, the two trunks coalcsce, and in so doing form an arterial semicircle corresponding to the circumferent line of the edge of the os pedis, which has been recy properly named by the Professor, the circulus arteriosus.* The plantar ressels and nerves are invested in the course of their descent to the foot by cellular substance, which binds them loosely to the parts contiguous, whereto they pass. This accounts for their canals being flexnous when distended with injection, or when the foot is flexed upon the fetlock; a circumstance that secms to have escaped the notice of writers on the foot. The branches of the plantar artery are many and important. After detaching some small ramifications inwardly to the fetlock, postcriorly to the flexor tendons, which anastomose with their fellows, and anteriorly to the extensor tendon, which are also anastomotic, it sends off-

1. The perpendicular artery, a little above the middle of the os suffiraginis: a slender branch that descends upon the side of the bonc, inclining forward, and ends in the space above the coronary ligament in anastomosis with its fellow, forming an arch, presenting its convexity downward, called the superficial coromary, from which emanate about eightecn small descendiny arteries that run down over the coronary plexus of veins, whose principal function, it is said, is "to scerete the crust." I would beg to remark here, howerer, that, although I belicre what I give to be the ordinary arrangement of these arteries, there is so much variation to be found in different subjects, that I camot rouch for the unexceptionable correctuess of this description, however I may stand amenable for its gencral accuracy. The plantar trunk laaring detached rarious small unimportant branches backward, the great design of which appears to have been to preserve free and uninterrupted intercourse with the ouposite trunk, it next sends off, below the pastern-joint,
2. The transverse artery, which procceds dircetly across the front of the os coronx, underneath the extensor tendon, to join its fellow branch from the other side, the two together forming the superior coromary circle: this pours most of its blood through two short lateral conduits, the communicating arteries,

[^7]into the inferior coronary artery; though other short twigs are sent both upward and downward fiom it.

The abore two, just deseribed, may be considered as the antevior branches of importance: we now proceed to those arising posteriorly: the first we need notice partieularly is-
3. The alteley of the frog. It comes off' opposite to the pastern-joint, and deseends obliqucly inward through the substanec of the fatty fiog, wherein it bifurcates: both divisions take nearly the same direetion, one passing down upon the side of the elcft along which it eontinues, distributing branches in its course to the toe of the frog, and forming communications with the ressels of the sole; the other ramifies over the heel of the frog, and sends branehes outward to the eartilages.
4. The lateral laminal artery leaves the trunk just as the latter reaches the os pedis, passes through the foramen in the ala, and proceeds within a superfieial groove to the front of the foot, distributing branches upward and downward to the lamine, and disappearing through a small foramen in the anterior and lateral part of the eoffin, whose substanee it cnters in order to form a communication with the eirculus arteriosus. From this vessel a branch deseends upon the side of the bone to join the eireumflex artery.

5 . The chrculus arteriosus, resulting fiom the coalition of the main trunks, preserves, to a ecrtain cxtent around the toc of the coffin, the same curve interiorly that is made by the exterior edge of the bone itself, at the distance of about an ineh above it. From the circulus arise two prineipal sets of vessels.

1. The anterior laminal arteries, numerous, small, short branches springing from the front of the cireulus, and making their exit through the various foramina in the front and sides of the coffin, to ramify among the lamine, and anastomose with the desecnding and lateral coffin arteries.
2. Tie inferior communicating arteries, " thiirteen, and sometimes fourtecur," in number, aceording to the Professor, arise from the convexity of the eirculus artcriosus, and desecnd through the foramina in front of the coffin, a little abore its boundary edge: having made their exit, they continne the same direction to gain the extreme edge, around which they are all reecived by the
3. Circumflex artery, which is eommonly deseribed as eneireling " the toc" of the eoffin-bonc. Then again, from this vessel spring

The solar arteries (whieh may be so named, as well from their radiated anangement, as from their destination), thirteen or fourteen in number, though they run from the same ehannel,
do not " take their origin immediately opposite the termination of the vessels into the circulus arteriosus." They are destined for the supply of the sole, upon which they rim in radii, at pretty equal distances, whose common centre is the toe of the fiog, where they end in communications with the arteries belonging to that borly.

The Carotid Arteries.

The right arteria innominata (having detached seven branches which differ but unimportantly in their mode of origin, and not at all in their general course and distribution, from the seven arteries into which the left division resolves itself) becomes the common curotid: a ressel of large caliber, about an inch in length, emerging through the upper part of the anterior opening of the chest, having the trachea between it and the spine, above; the rena cava anterior, bclow it ; and dividing, as it quits the carity, into the right and left carotids. These arteries bend upward from their origin, diverging as they aseend along the neck so as to leare a space between them for the windpipe, which they closely embrace and cling to for the first part of their course : towards the middlle of the neck, however, we find them gradually inclining, as they ascend, to the posterior and lateral borders of that tube, a line of direetion they preserve during the remainder of their course.* Having reached the top of the larynx, the earotid of either side splits into three divisions-the external and internal carotids, and the ramus anastomoticus: at which place, though the trunk itself is found decply lodged in soft parts, yet its situation is well indicated by the larynx (with which it is in contact) below; the transverse process of the atlas, above; the angle of the jaw a little in advance of it ; and the coronoid process farther removed above and before it. A deepincision corresponding to the posterior border of the stylo-maxillaris, would sever the vessel at or rery close to its division. The carotid detaches-l. Several unimportant muscular branches in its progress up the neek. 2. The thyroideal artery, coming off opposite to the top ring of the trachea: a branch of no mean size, which turns round the windpipe and enters the substance of the thyroid gland. In its way, the thyroideal furnishes the lerrymyeul, a small artery that perforates the ligament uniting the erieoid and thyroid cartilages,

* The carotids lie more deeply the higher they proceed up the neek: each is covered by the sterno-maxillaris; and the readiest way to find the vessel is $t 0$ make a cut, aloner the upper border of this muscle, and depress it with the finger or handle of the knife. The artery is separated; except at the bottom of the neck, from the jugnlar vein by a thim partition of muscular fibres; the par ragrum accompanies it outwardly, and the sympathetie nerve runs between the two.
and is dispersed upon the membrane lining the larynx: in some instances, however, this forms a branch of the main trunk. The common division of the carotid is into the three vessels just named; but not infrequently we meet with a fourth coming from the point of ramification, the additional onc being the facial artery; and, occasionally, we only find a simple bifurcation of the ressel into the external and internal carotids.

The External Carotid Artery

Is the large division, the one that looks like the continuation of the trunk of the common carotid itself. It takes a flexuous course : first it curves downward behind the angle of the jaw, where it crosses the inscrtion of the stylo-maxillaris, by which it scems defended from injury; next it makes a curve upward and forward, crosses the membranous sac of the fauces, and passes between the stylo-maxillaris and cornu of the os lyoides, decply buricd under the parotid gland; lastly, it makes a third curve, dirceting it forward along the posterior border of the branch of the jaw, and to that it subsequently corresponds in its course until it bifurcates, which it does immediatcly behind the neck of the condyle. This vessel is so bedded in glandular substance, surrounded by renous and nervous trunks, and protected by neighbouring bony prominences and muscles, that but a small, and that the upper, portion of it is safcly accessible to the knife : rather more than an inch below and behind the condyle, it is comparatively superficially lodged, being there only covered by the anterior thin border of the parotid and a thick aponeurosis, in addition to the common integuments. We reckon eight branches from it.

1. Submamleary artery: it comes off behind the cormu of the os hyoides, just as the ressel is going to make its second curre, and ranks next in size to the carotid itsclf. It takes an oblique course downward and forward within the submaxillary space, prescring at first the line of the cornu; afterwards it crosses the lower portion of the pterygoideus, and reaches the posterior border of the branch of the jaw (about one third of its length downward), round which it turns to mount upon the face : in making this turn it becomes subentancons, distinctly percoptible to the fcel, and (from being in contact with the bonc) very conveniently compressible, on which account, it is the vessel ordinarily selected to convey a knowledge of the state of the pulse. In asconding upon the face, it corresponds to the anterior border of the masseter; but before it reaches the alveolar processes it ends, by a pretty equal division, in the facial and inferior labial
arteries. Its branches arc-a. The ascending pharyngeal, whieh mounts obliquely over the cormu of the os hyoides, and ramifies upon the side of the pharynx, giving off commonly a laryngeal twig or two in its way, and another to the velum, which in some instanees is derived from the submaxillary itself. b. Various inconsiderable branches to the pterygoid muscle and parotid gland. c. The lingual, nearly or quite equal in magnitude to the submaxillary itself. It first bends its course obliqucly inward, detaching a few twigs into the submaxillary spaec; it then splits into two artcries, the ranine and the sublingual. The ramine, the larger one, the apparent continuation of the lingual, turns downward and proceeds in a flexuous manner along the under part of the tongue, serpentining between the museles, and transmitting many branches into the interior: it continues of large size even to the tip of the organ, wherein its extreme ramifieations arc expended. Its ramifieations, I believe, have no anastomosis in ordinary eases with those of its fellow on the other side; though I have a head now before me in whieh I find the two ranine artcries eommunieating by a large eross braneh at the root of the tongue. The sublingual branch winds along the under and outer border of the tongue, preserving a more superficial course than the former. It supplies the sublingual gland, and distributes its longer ramifieations over the membrane and papilla of the tonguc. d. The submental ariery leares the submaxillary eontignously to the internal side of the jaw, a little before the latter vessel begins to make its turn. It follows the course of the branch of the jaw, nearly prescrving the line of its middle, detaching twigs prineipally to the pterygoideus and mylo-hyoideus, and transmitting its furthest ramifieations into the substanee of the grums internally. e. Anterior masseter branches, one large, or two or three small ressels, eoming off in the eourse of the ascent of the trunk upon the face.
f. Tue inferior dabial artery courses the side of the jaw, occupying nearly the same site externally to what the sulbmental docs internally, invested in the collular and fleshy sulstance belonging to the retractor labii. It is principally destined for the supply of the glandular substanee of the under lip, wherein it anastomoses with its fellow ressel. It gives off-a. Slender ramifications to the investing cellular sulstanee. b. Buccinalor arteries. c. A large branch to the angle of the mouth, which distributes buccal lwigs in its course, and then bifureates, sending its divisions respectively to the upper and under lips, along their lateral borders: these form the superior and inferior coronary arteries of the lips.
g. The fachal artery ascends upon the side of the face,
with an inclination forward and downward, erossing the buccinator muscle a little in advance of the anterior border of the masseter. Having run as high as the level of the bony ridge from which the masseter arises, it detaches a large branch, and then winds upward and spreads into an arborescent expansion upon the upper and fore part of the face. a. It mostly sends one or two mussetcr branches backward. b. Buccal twigs from both sides. c. The superior labial, the branch whose origin has just been shown, takes its course below the false nostril, to which it sends ramifications, to the upper lip, wherein it anastomoses with the terminating branches of the palatine arteries and also with its fellow. d. Long slender branches, commonly two, to the false nostrils. e. Terminating ramifications to the cellular substance and skin covering the fore part of the face, which auastomose with others making their exit from the infraorbitar foramen, and also with some straggliug twigs escaping from the eavity of the orbit.
2. The parotideal brancues are those we may consider next to the submaxillary branch of the external carotid. They are too variable in number, size, and mode of origin to admit of special description: they come off as the vessel continues its course under the gland.
3. A large branch, intcrnally, to the pterygoideus.
4. One much longer, externally, the posterior masseter artery.
5. The posterior auricular commonly eomes off from the external carotid immediately opposite to the last-mentioned branch. It emerges from underneath the parotid gland, and ascends in a direct line to the baek of the concha of the ear, where it splits into three divisions, which thence proceed along its dorsum to its tip, distributing branches right and left ; and these anastomose freely with one another, and likewise with the other auricular arteries, and there by form a beautiful vascular net-work. It also gives branches to the parotid gland, to the muscles of the concha, the meatus auditorius externus, and membrana tympani.
6. The temporal artery, the unterior auricular, and the internal maxillary, may be considered as the terminating branches of the external carotid. The temporal leaves the trumk just as it is issuing from the depth of the parotid gland, and then curres upward and forward around the neek of the jaw, a little below the condyle, which serves as a guide to cut down upon it ; from this, it runs in a straight line towards the outer circumference of the orbit, opposite to which margin it dips into the substance of the masseter, and so eludes further trace without the aid of dissection. We find it henceforward corresponding in course to the line of the maxillary ridge, sending branehes down into the
muscle, and frecly anastomosing with the anterior and internal massetcr artcries.
7. The anterior auricular artery, arising in common with the former, inclines in an opposite direction, upward and backward, and is decply scated at first under the parotid gland. It ascends to the fore part of the root of the car, and ends in short ramifications to the anterior muscles of the concha, and in other superficial ones which anastomose with the anterior auricular arterics. It sends off-a. Branches to the temporal muscle. b. An internal auricular branch, which enters the concha. c. A subcutaneous branch, which descends upon the forchead and anastomoses with the supra-orbitar arterics.
8. The interval mamblahy artery originates decply buried on the inner side of the articulation of the jaw, a little below the condyle, between the neck of the inferior maxilla and the upper portion of the cornu of the os hyoides. It pursues a winding course, first bending inward then downward, to the bottom of the orbit, where it splits into four arterics. In its way to the orbit, it gives off-a. Deep temporal branches: screral small arteries, variable in number, some of which rum into the pterygoid muscle, while others, longer oncs, ascend in the space behind the orbit, ramifying within the adipose matter there, and penetrating the lower portion of the temporal muscle.
b. Long slender twigs to the soft palate, to the car, and to the articulation of the jaw.
c. The inferior maxillary, a small artery of considerable length, which erceps down the branch of the jaw, crossing the pterygoid muscle, to enter the foramen maxillare superins in company with the nerve of the same name; within which canal it distributes branches to the roots of the molar teeth and to the diploc, and afterwards makes its exit, greatly diminished in size, through the foramen maxillare inferius, upon the side of the mouth, where it becomes lost in anastomosis with the inferior labial artery : in some instances, the latter artery sends a twig into this hole in place of one coming out. The ressels in which the internal maxillary terminates are-
d. The supra-arbitar artery, which traverses the upper and inner part of the roof of the orbit, and leares the cavity through the foramen supra-orbitarium, and is lost in slender ramifications in the cellular membrane upon the forchead, anastomosing with the temporal branches of the anterior auricular and the aseending deep temporal arterics.
e. The ocular, under which name are included a bunch of arterics arising from the bottom of the orbit, distributed to the fatty matter thereabouts, to the muscles of the globe, and to the
lachrymal gland, eyelids, and duetns ad nasum. One in particular, larger than the others, named the lateral nusal branch, enters the eavity of the cranium through the foramen orbitale internum, and after forming a eonmunieation therewith the anterior eerebral artery, turns round and enters the nose through the ethmoidal eells to be dispersed upon the Sehneiderian membrane.
f. The infra-orbitar, a considerable branch entering the infraorbitar eanal, in order to supply the anterior molar teeth and medullary substance of the bone with blood: having served this purpose, it sends its remaining twigs out upon the eheek, through the maxillary hole there, whereupon they anastomose with the ramifieations of the facial artery.
g.The palato-maxillary, the largest of the terminating divisions of the inferior maxillary artery, enters the foramen palatinum superius, deseends through the palatine eanal, reappears upon the roof of the palate, and follows the tract of the palatine groove, some short distanee removed from the sides of the molar teeth, out of whieh, inferiorly, it makes a eurve inward, just above the roots of the front teeth, to take its passage through the foramen ineisivum, to reach the front of the jaw, there to join its fellow. From this remarkable arterial mion issue several branehes, some of whieh run down to supply the glandular strueture of the upper lip, while others are direeted upwards upon the external nares: the deeper-seated ones penetrate the dilatator narium and depressor labii superioris; and many of them anastomose with the terminating ramifieations of the superior labial artery. This vessel gives off some few branehes to parts at the back of the orbit, before it enters the foramen ; and other short twigs as it eourses the palate.-Sportsmen and farriers have a practice of eutting through the bars and severing the palato-maxillary, in order to detraet blood on any oecasion of emergeney : the artery, howerer, seldom bleeds mueh-it soon retraets into its eellular ease, and forms a coagulum ; and this renders the operation, in a general way, both ineffeetual and liarmless.

The second and smallest division of the carotid, is the

Ramus Anastomoticus.

It leaves the trunk of the carotid, commonly at the angle formed by the external and internal earotids, crossing the latter in proceeding to the spinc. Deeply seated beneath the parotid gland, in its eourse it deseribes an are backward, whiel, in the ordinary position of the head, nearly eorresponds to the under border of the stylo-maxillaris. From below the coronoid process, it turns under the transverse process of the atlas. where it joins
the vertebral artery, as soon as the latter has emerged from the foramen in that bonc. From about the middle of the areh comes off.

The occipital artery, a vessel nearly equal in magnitude to the trunk itself, which pursues a flexuous course to the occiput, first ascending upon the coronoid process, and then climbing the occipital ridge to reach the vertex. Its branches are-a. A long, slender, deep-seated one, that mounts upward and enters the cranium through the foramen lacerum to be dispersed upon the dura mater, though this is sometimes a branch from the anastomotic trunk itself. b. Twigs forwarded to the temporal musele. c. Terminating ramifications to the straight and oblique museles of the occiput.

The third division of the carotid is the

Internal Carotid Artery.

This vessel, whose caliber is not more than half that of the external carotid, is originally deeply lodged within the submaxillary space, whence it asceuds to the base of the skull, crossing the upper extremity of the cornu of the os hyoides, inwardly, in its course, which is rendered remarkable by several tortuousturns: it first curves backward, next inward, then upward, and lastly forward, to reach the anterior part of the foramen laccrum, through which it enters the carity of the cranium. It is accompanied in its way by one of the principal branches of the jugular vein, by the eighth pair of nerves, and by the sympathetic nerve. Atits entrance into the skull, we find the artery lodged within the cavernous sinus, whercin it makes two more turns, onc forward, the other inward, from which last flexure comes off a ressel named the

1. Arterla communicans.-This runs in a direction upward and backward, passing under the crura cerebri, to join the basilar, with which it makes one continued vessel, thus forming one side of the circulus arteriosus-to be presently described. After having given off this branch, the internal carotid pierecs the dura mater, and continues its course upward, alongside of the optic nerve, and immediately over the optic decussation splitsinto four principal divisions. At the point of division, howerer, or prior to it, are sent off-2. Two or three long branches of small size, which run forward and spread their ramifications upon the anterior and infcrior portions of the dura mater.

Its four divisions or remaining branches are-
3. The anterior cerebral; which advanees by the side of the optic ncrve, and in front of its decussation transmits a considerable branch across, whichunites with asimilar one coming
from the opposite division, thercby forming a ressel nearly equal in size to the internal carotid itself, named the arieria corporis callosi: this is reflected upward and forward around the corpus callosum, and pursues through its entire length the tract of the raphe, detaching as it proceeds numerous lateral twigs for the supply of the corpus. The anterior cerebral artery now subdivides into several branches, which, with the execption of one, are distributed orcr the anterior lobes of the brain. This onc,

The ophthulmic artery, leaves the cranium through the foramen laccrum orbitale, in company with the nerve of the same name, and at the botton of the orbit, after forming some anastomoses with the orbital artery, furnishes a twig to the lachrymal gland, lony ciliary arteries to the choroid coat and iris, and the central artery to the retina.

3 and 4. The midde arteries of the cerebrum. These vessels come off directly opposite to each other at right angles from the trunk, take a flcxuous passage between the anterior and middle lobes, and ramify extensively within their substance.
5. The internal artery of the cerebrem; which ariscs a little higher than the former, pursues the course of the tactus opticus, and winds round to the tubercula quadrigemina.

The remaining vessels of the brain are derived from the

Vertebral Artery.

This artery enters the cranial cavity through the foramen magnum, and momnts upon the cunciform process of the occipit:l bonc, where, about opposite to the middle of the medulla oblongata, it unites with its fcllow, the two forming a single trunk denominated the basilar artery. The rertebral itself gives off-1. Posterior urteries to the dura mater. 2. Ramitications to the medulla oblongata.

The basilal artery sends off-

1. The posterior arterizs of the cerebedum; which leare it as it passes under the medulla oblongata, wind upward around that body, and cross over to the ccrebellum, to the posterior portions of which they are distributed.-The basilar artery then continues its course under the tuber annulare, detaching lateral branches as it advances, and from that passes between the erura cerehri, where it bifureates. Its bifureations proced but a short way before cach of them subdivide into two resscls: one (2.) runs forward to meet the commmicating artery; the other is the
2. Anterlor artery of the chbebeldum; which winds outward, around the crura cerebri, thence crosses to the cerebel-
lum, and is principally expended within its lateral lobes.-Bclow the origin of this vessel, from the sides of the arterial circle come off three or four considerable branches, the prineipal of which is the

Posterior artery of the cerebrum. - This runs obliquely backward, across the crus cerebri and tractus optieus, and afterwards mounts upon the posterior lobe of the eerebrum to distribute its ramifications.

The circulus arteriosus, then (as we have seen), is formed, anteriorly, by the transverse branch of the anterior cerebral divisions; laterally, by the communicatiny arteries; and, posteriorly, by the bifurcations of the basilar artery.

The Posterior Aorta,

Considerably longer and of greater volume than the anterior aorta, is the main trunk from which are derived the arteries of the abdomen, pelvis, and postcrior extremities, the postcrior intercostals, and some few of the thoracic arteries. It commences opposite to the fourth dorsal vertebra, and is there some little distance removed from the spine. From its origin, it makes a curve, first upward and then backward-having the pulmonary artery on its left, the termination of the windpipe on its right: having reached the bodies of the dorsal vertebre, it enters the superior mediastinum, and afterwards dircets its course straight along the spine, inclined to the left side-having now the oesophagus and vena azygos to its right, the thoracic duct to its left. The portion of the vessel within the eavity of the thorax, distinguished as the thoracic aorta, gives rise to many branehes, but they are but small.

1. Tife broxemial springs from the under part of the curvature of the trunk, bends its eourse downward and forward towards the root of the left bronehial tube, at which place it divides into two-the right and left bronchial arteries. These vessels penctrate their respective lungs in eompany with the right and left bronehial tubes, to the branches of which they continue to cling in the course of their ramification within the substance of the parenchyma.
2. The esophageal likewise springs from the eoncavity of the arch, near to the former, in some instances before it; and proceeds backward and to the right, to reach the œesophagus. Here it splits into a superior and an inferior division; whieh both eourse the entire length of the œesophageal tube, distributing branches right and left over its surfaee, and terminating at the cardiac orifice in anastomosis with the gastric artery.
3. The intercostals, the remaining branches, come off in
pairs from the sides of the vessel, and are destined for the supply of those intercostal spaces posteriorly to the last whieh reeeived a braneh from the anterior intereostal artery. These arteries preserve the lines of the ribs, ruming elose to their posterior borders, and expend themselves about the inferior parts of the thorax and abdomen in anastomosis with the internal peetoral and epigastrie arteries. They furnish, near their origin, small branehes whieh enter the vertebral eanal through the spinal holes; and also numerous museular twigs during their eourse.

Having detaehed these several small vessels, the posterior aorta continues its passage between the erura of the diaphragm into the eavity of the abdomen : in making its exit from the thorax, however, it gives rise to two other small arteries (or else to a single branch whieh afterwards forms two) named the

Phrenic or diaphragmatic arteries, right and left. These vessels penetrate their respeetive erura, in whose substance they ramify, and ultimately expend themselves upon the ehordiform tendon. Within the abdomen, the aorta continues to be firmly attached to the spine through the medium of its several vesscls and eellular eovering, and thus proeeeds, still inelined to the left side, as far as the last lumbar vertebra, underneath the body of whieh it splits into four large arterial trunks. Prior to this division, the abdominal aorta gives off-

1. The cellac artery; which is nothing more than an indemonstrable stump, or rather eommon root, from whieh spring the splenic, gastric, and hepatic-arteries that in some instanees have separate roots-whose origin is from the under part of the trunk, a little posteriorly to the issue of the phrenie.
a. The splenic artery, the middlemost of the divisions of the eœliae, takes a winding eourse to the left side of the eavity, turns forward along the greater eurvature of the stomaeh, running between that and the eoneare part of the spleen, and at length ends in the left gastric artery. Soon after its origin, it gives two or three twigs to the pancreas as it passes that gland; many eonsiderable branehes to the spicen from the convexity of its flexure; whilst from the conearity of it are passing smaller but longer branehes upon the greater eurvature of the stomach. It is prolonged beyond the tapering termination of the spleen, distributing shorter branches to the stomael as it proeceds, and eontinuing to eneirele the organ towards its right extremity, from whieh is coming to inoseulate with it the right gastrie artery.
b. The gastric artery, the smallest of the eœliae divisions, runs forward to the small eurvature of the stomach, between the layers of the omentim, splitting before it reaehes the organ into two branehes that take the names of superior and inferior gastric:
these spread their ramifications, in an arborescent form, upon the upper and under surfaces of the stomach, and anastomose with those of the right and left gastric.
c. The heputic artery, the largest of the coliac divisions, proceeds in front of the pancreas to the right side of the earity, and winds forward over the pyloric end of the stomach. It gives offa. Divers small branches to the pancreas, as it passes by the gland. β. Near the pylorus, it sends a considerable branch to the begimning of the duodemum, which, as soon as it reaches the intestine, bifurcates: one division, the duodenal, retrogrades along the gut, and ends in anastomosis with branches coming from the anterior mesentcric; the other, the right gastric, crossing the gut, procecels to the great curvature of the stomach, where it inosculates with the left gastric. The hepatic trunk itself is continued forward to the porta of the liver, where it divides into the right and left heputic: the right, the larger and shorter one, after giving offi a considerable hranch to the portio media, turns back to reach the right lobe; the left also gives off a branch or two to the middle portion, but they are but small, and then runs to the left, along the left fissure, to penetrate the other lobe.
2. The anterior or gheat mesenteric is the mext vesscl to the coliac, a little behind which it is issuing from the under part of the posterior aorta. The trunk of this artery is cxtremely short ; but it is of large sizc-aneurismal indeed in the ass species-and is the parent stock of a numerous collection of extensive ramifications. From its origin it passes directly downward within the layers of the mesentery, detaching from behind some slender twigs to the pancreas in its desecnt, and soon suddenly resolves itself into a set of branches, of very large size compared with the trunk (commonly from cight to twelve in number), varying in length and caliber, from which are derived- a. A branch that runs to the duodenum, within the concavity of which it divides into two small ones, which turn in opposite dircetions and form arches; one by mion with the duodenal artery, the other with the next mesenteric, from the convexities of which arise other small transrerse branches, which encircle the intestine and ramify to great minutencss under its peritoncal covering, forming altogether a beautiful vascular net-work. l. A collection of branches of considerable length, more uniform than the rest, run backward for the supply of the other small guts; these in like manner run in archos and inosculate, and furnish an abmendant supply of nutrient and secerning ressels. c. Two branches shorter than the other proceed to the cacum caput coli, whence they run along the sides of the caecum, sending off numerous transverse branches which encircle the gut and anastomose frecly with cach
other. d. Several long and short branches to the colon, which furnish with lateral ramifications, distributed after the same mamer, the ceecal portion of the gut, and its two great flexures or arehes: the last of these branches, which is directed towards the sigmoid flexure, is met in anastomosis by the first of the posterior mesenteric.
3. The renal or emulgent arteries leave the aorta at right angles, one on each side, dircetly opposite each other, cither about the same place as or somewhat posteriorly to the origin of the preceding vessel. They pass dircetly outward in straight lines, and each enters the noteh of its appropriate kidncy, and therein splits into threc or four large divisions which penctrate the glandular substance. The right is the longer one, in consequence of the inclination of the aorta to the left side, and its having to cross the vena cava posterior in its coursc. Both furnish in their way- a. Twigs to the enveloping adipose membranc. b. A small artery destined for the supply of the eapsula renalis: in some instances this last vessel comes from the aorta; rarely, from the anterior mesenteric.
4. The spermatic arteries, right and left, in comparison to their diameter, are the longest vessels in the body, springing near to each other from the under part of the aorta, about midway between the origin of the renal arteries and its bifureation: in some instances these ressels come from the posterior mesenteric. They pursue divergent and flcxuous courses backward, pass out of the abdomen at the interual abdominal rings, and enter into the constitution of the ehords with which they proceed to the testicles. In the female, these arterics run within the layers of the broad ligaments to the ovaries, to which they are principally distributed ; but they also transmit branches to the Fallopian tubes and to the horns of the uterus.
5. Tue posterior or small mesenteric, the last of the abdominal arteries, a much longer vessel than the anterior mesenteric, likervise comes from the under part of the aorta, and commonly yery near to the roots of the spermatic arterics. It descends within the folds of the mesocolon, and distributes its prineipal branches to the left-to the sigmoid flexure of the colon; the others run backward and ramify upon the anterior portion of the rectum : their arrangement and distribution are similar to the colic ramifications of the anterior mescuteric. The anterior division anastomoses with the posterior of the great mesenteric; and the posterior forms communications with the other arteries supplying the rectum.
6. Five or six pairs of lumbar abteries (according with the number of vertebre) are also furnished by the postcrior
aorta. Arising in pairs from its sides, they wind upward, covered by the psoas parvis, and, pursuing thic inter-vertcbral spaces, pierce the fibres of the inter-transversales lumborum, and ramify and cxpend their branches among the muscles covering the loins. In the course of their ramifications they enter into communications with the last of the intercostals and the circumflex artery of the ileum. Near their origins, each detaches a branch which enters the vertebral canal by the correspondent spinal foramen, also twigs to the psoas parvus and inter-transversales.

Below the last lumbar vertebra the aorta bifureates into two pairs of large and important arterial trunks,-the external and internal iliacs.

The Internal Iliac Arteries

Are the product of a kind of second bifureation; for there is still a continuation of the trunk of the aorta after it has given off the external iliaes : and this forms a remarkable differenee between it and the division of the corresponding vessel in the human subject, the horse having no common iliac arteries. The internal iliaes are larger than the external, but extremely short. They diverge from the parent trunk, backward and outward, and hardly quit the body of the vertebra before each gives off a large branch, the artery of the bull : the ressel continues a little further, and by the side of the sacral articulation splits into tluree nearly cqual divisions,-the obturator, gluteal, and lateral sacral arteries.

The artery of the bulb springs from the under and outer part of the internal iliac, and procecds in its course backward between the trunk of the artery and the external iliac vein, which latter at the same time is a little above it. It next makes a sweep backward, around the sides of the pelvis (to which it is closely bound by peritoncum and cellular adhesions) ; then insimuates itsolf between the lamine of the sacro sciatic ligament, and continues along the upper border of the ischium to the ischial arch, the side of which it turns round to reach the bulb of the penis, wherein it terminates. In the female, this artery sends its terminating branches to the bulb of the vagina and lining membrane of that canal. Its branches are-1. The umbilical artery, or rather the remains of that ressel which in the footus nearly equalled in size the iliae arteries themselves, and was surpassed by none in regard of importance. In the young subject these vessels commonly remain pervious as far as the bladder ; but in process of time they degencrate into the round ligaments of the bladder; in the description of which organ further notice will be taken of them. 2. Sundry small vesical branches, in passing, to the bladder. 3. In leaving the pelvis, the prostatic artery, which
dctaehes twigs to the vesieule scminales, but distributes its ultimate ramifications to the prostates. 4. Divers branches, anal and perineal, to the postcrior portion of the rectum, anus, and parts composing the perincum.

The obturator artery, the lowermost of the divisions of the internal iliac, corresponds in the first part of its course to the brim of the pelvis, in which it is aecompanied by the crural nerve : it subsequently inelines upward to gain the posterior nook of the foramen obturatorium vel magnum, and there gains exit through the perforation in the obturator ligament. It now turns round the branch of the ischium, and on the front of that bone ends in division into the -isehiatie, pubic, and internal pudic arteries. Its branehes are-1. The arteria imominata, one of very large dimensions, which comes off not far from its origin from the iliae. This procecds backward and outward, close under the pelvic margin, erossing obliquely the external iliac artery and the psor and iliacus muscles, and dips deeply into the substance of the haunch, wherein it sends branches downward to the rcetus, upward to the tensor vaginæ. 2. Ramifications to the obturator museles and ligament, in passing through the foramen. Its divisions or remaining branches arc-3. The ischiatic, whieh turns down upon the baek of the haunch, passing opposite to the hip-joint, and distributes its branehes to the triceps. 4. The pubic runs baekward along the branch of the ischium, and expends itself in the large head of that muscle. 5. The internal pudic artery turns inward and backward, around the isehial arch to the root of the penis, where it splits into two sets of branches. a. One set penctrate and cud in the erus penis. b. Two or three branehes belonging to the other set run further forward, and pierce the fibrous ease of the corpus cavernosum. c. One or two slender brauches of the same run along the dorsum penis. d. Another aceompanies the pudic nerve to the extremity of the organ. e. Besides which there are sundry cutaneous twigs.

Tie gluteal artery, the middlemost of the iliae divisions, shortly after its origin leares the pelvis through the hole in the sacro-sciatic ligament, at the anterior nook of the notel, in company with the seiatie nerve, whieh runs behind it: immediately that it has made its exit, it splits into two or three branches of large size, whose ramifications are destined prineipally for the gluteal muscles, though some deseend to aid in the supply of the posterior femoral museles.

The lateral sacral artery proceeds dircetly backward, along the side of the sacrum, to whieh being closely bound by ccllular adhesion it nceessarily takes the slight curve of that bone: having reached the coeeyx, it splits into two long, slender, termi-
nating branehes. It furnishes-1. Sacro-spinal branches, five or six in number, whieh enter the spiual eanal through the internal saeral foramina. 2. The perineal artery, a braneh as large as, or eren larger than, the trunk itself, of which it might be more eorreetly, perhaps, eonsidered as the continuation; and whieh soon divides into several ramifieations, of whieh-a. many run to the gluteal museles; b. while others deseend úpon the baek of the thigh ; c. and a third set are distributed to the anal museles, and to the skin and eellular substance of the perineum. 3. The lateral coccygeal artery, one of the terminating branches of the lateral saeral, runs elose to the side of the os eoceygis, even to its extreme point, preserving the line of direetion of the spine, diminishing in diameter as it reeedes, and distributing numerous branches laterally to the eoceygeal museles. 4. The inferior coccyyeal artery, rather larger than the lateral, takes the same correlative eourse along the inferior and lateral part of the bone, and may also be traeed to the tip. It sends down a long slender twig or two to the anus : the remainder of its branehes are distributed to the eoecygeal museles.

The midde sackal artery is a very ineonsiderable branch eoming off, generally, from the trunk of the posterior aorta at its angle of bifureation into the internal iliaes. It is traceable for a little way only, along the middle of the saerum.

The External Iliac Arteries,

Right and left, result from (what may be signifieantly deseribed as) the first bifurcation of the posterior aorta; whieh takes place underneath the body of the last of the lumbar vertebre. They take the same oblique dircetion (outward and baekward) as the internal iliae; but they are less in diameter, and bear no comparison in respeet to length. The best guide to their situation is the brim of the pelvis; eonsidering the bowels to be removed, they are found ruming along this brink of the eavity, uneovered by anything but peritoncum, following the bony eurvature outward to their termination; whiel takes place upon the same brim, about midway between the symphysis pubis and anterior spinous process of the pelvis. Each vessel gives off-

1. The chrcumplex artery of the ileum: a large branei that departs from the outward side of the trunk, near its origin. It winds directly aeross the loins to the flank, eovered only by peritoneum, crossing in its way the two psore and the iliaeus; arriving in front of the anterior spinous proeess of the os innominatum, it splits into two vessels, which take opposite eourses: one inclines baekward, penetrating the transversalis, to whieh and to the originating portion of the internal oblique musele
its ramifieations are distributed ; the antcrior and longer division eurves forward between the transverse and internal oblique muscles, and sends its ramifieations to them, but prineipally to the latter, with the exception of its ulterior twigs, and they run on and form communications with the last intereostals. These vessels also anastomose, among the muscles, with the lumbar artcries.
2. The artery of the chord (which in other cases comes from the last-described branch, or from the aorta itself) arises from the inder part of the vessel, a little further backward than the circumflex. This is a very slender vessel, but of sufficient length to reach, obliquely backward, the spermatie chord, and proceed with it through the inguinal canal, for the general supply of its component parts.
3. The arteria profunda femoris is a very large branch, and one that may be said by its origin to mark the limit of the iliae artcry, postcriorly, and the femoral, anteriorly, and onc also that may be considered to be given off by cither of these trunks at the plaee where they individually ehange their names. The profunda plunges at once into the thiek of the hauneh, and there makes an oblique curve round the neck of the os femoris, passing under the short and long heads of the trieeps. Having reached the postcrior quarters, it sends its ramifications principally into the biecps. Prior to its dipping into the substance of the thigh, it gives rise to a large braneh,

The epigastric artery; which at first makes a curve backward, downward, and outward, and in so doing turns round the inward margin of the internal ring, running at this time between the peritoneum and the tendon of the transversalis; next, it makes a sweep outward and subsequently upward, in the eourse of whieh it gradually insinuates itself between the disgregated tendinous faseiculi of this musele until it at length is found pursuing its way between the transverse tendon and internal oblique musele. It afterwards continues its passage forward, within the sheath of the rectus, along the upper and inner border of the musele, furnishing as it proceeds ramifications from its sides, and at length cnding in anastomosis with ramifications coming in a contrary dircetion from the internal pectoral. In passing the ring, it gives origin to a considerable branch which turns round the crescentie borders of the tendons forming that aperture, and then splits into several small artcries. Of these-a. A twig runs to the groin, and ramifics among the adipose membrane and absorbent glands there. b. A long slender braneh makes its way to the ring, and deseends upon the eremaster : this is furnished, however, in some instances by the external iliae. c. A subcutaneous twig to the thigh. d. The external pudic, the largest and longest of these
divisions (at least when this is their arrangement, for the origin of these vessels is attcuded with much variety), runs forward, invested in the subcutaneous cellular substance of the serotum, sending ramifieations to the tunica vaginalis and the skin, and continning forward upon the penis, where it inosculates with the superfieial ramifieations of the internal pudic.

The Femoral Artery.

Regarding the profunda femoris as a limb of the external iliae, we deseend from the latter to the femoral artery, the dircet eontinuation of the same trunk. This artery proeeeds in an oblique direetion down the haunch, preserving nearly the line of its middle; and so specdily afterwards disappears from our view, and from no part of it being made visible by the removal of the femoral faschia, that it would scem as if it direetly plunged deep among the museles of the thigh; this, however, is by no means the ease, for the upper half of the vessel may be considered, in an anatomieal sensc, as superfieial: an ineision carried along the anterior prominent border of the graeilis, detaehing it from the sartorius, will (the latter being pushed forward) at any point in the upper half of the thigh, immediately expose the ressel.* The beginning of the femoral trunk, whieh is eurved outward, is eovered by lymphatie glands of the groin; it is next overlapped by the thin posterior edge of the sartorius, and subsequently by the anterior border of the graeilis, running, rather below the middle of the thigh, within a triangular spaee formed by the approximation of the two; here the vessel dips deeply into the muscular substanee, having the long head of the triecps on its inner side, the bone on its outer, after which it takes its course between the heads of the gastroenemins cxtcrnus into the hollow at the baek of the stifle, whercin we find it close to the joint, but nearer to the outer than the inner side : opposite to the head of the tibia it bifureates into the anterior and posterior tibial arteries. The femoral trunk is accompanied by its vein, which courses at first behind, and afterwards gets to the outer side of it; and by the prineipal branch of the erural eurve, whieh runs for nearly one third of the way likewisc along its outcr side: they are all three invested in some loose cellular substanee. Its anterior branehes are-1. The inyuinal; one of large size arising in the groin, eovered at its origin by the lymphatic glands, to whieh it sends twigs ; it then crosses under the sartorius, to whieh it also

[^8]sends ramifications, and gets between the vastus internus and reetus, where it splits into two divisions whieh penetrate those museles. 2. Three or four small branches to the sartorius. 3. A long slender one to the side and front of the stifle. Its posterior branehes are-1. A eonsiderable one to the graeilis, whieh detaehes twigs to the long and short heads of the trieeps. 2. A small one that turns inwardly to the vastus internus. 3. A braneh supplying both the long and large heads of the trieeps. 4. One that turns round the baek of the bone, about the middle of the thigh, for the supply of the bieeps. 5. One large or two smaller branehes sent along the posterior border of the gastroenemius externus, from whieh reeurrent ramifieations ascend to the trieeps. At the baek of the stifle come off the popliteal branches, four or five in number, taking opposite direetions, whieh are destined for the supply of the stifle-joint: one runs down upon the posterior tibial museles; another, the recurrent branch, elimbs the baek of the os femoris, and anastomoses with the deseending ramifieations of the profunda femoris.

The Tibial Arteries,

Anterior and posterior, are to be regarded in no other light than the bifureated continuation of the femoral trunk: this division takes place at the baek of the head of the tibia.

The posterior tibial artery, the smaller of the two, is eurved outward at its origin; it then deseends through the posterior deep region of the thigh, inelining all the way, from the outer to the inner side, at first rumning between the flexor pedis and the popliteus (which is behind it) ; subsequently between the former musele and the flexor pedis aeeessorius; and at length between the tendon of the last-named musele and the inner, posterior, and inferior part of the body of the tibia. Just above the hoek, it inclines inward again, and gets deep-seated between the lower end of the flexor pedis and the bone, where it ends in bifureation. Its branehes are-l. One, whieh eomes off a short distanee from its origin, and runs into the flexor pedis. 2. The medullary, whieh enters the medullary foramen, in the upper and back part of the tibia. 3. Unimportant twigs to both the flexors. Of its terminating branehes-the external one proeeeds round the outside of the hoek, ramifying there subentaneously, and anastomosing with some artieular twigs of the anterior tibial; the internal continues down the leg over the tendon of the flexor pedis, within a eellular sheath formed between that tendon and the root of the os ealeis, in company with the internal metatarsal nerve, and erceps along the inner edge of the metatarsal bone, between the flexor tendons and suspensory ligament, ending at
the lower part of the eannon in divers small ramifieations. At the hoek, this artery sends off one or two recurrent branches, whieh aseend upon the back of the os ealeis, and anastomose with others coming down from the posterior tibial.

The anterior thbial artery no sooner leaves the common trunk, than it suddenly turns forward, and passes between the tibia and fibula towards the fore part of the thigh. Next we find it between two veins, crossing with very gradual obliquity the outer part of the bone to gain the front, whieh it does about midway between the stifle and hoek; it then continues to deseend between the outer border of the flexor metatarsi and the bone until it reaches the front of the hoek, where it makes another sweep outward, and ultimately arrives in the channel between the external and large metatarsal bones, in whiel situation it beeomes the metatarsal artery. Its branches are-1. Some small reeurrent artieular, ascending to the stifle and communieating with the popliteal branches. 2. Various muscular branches, in its course down the thigh. 3. Divers, small, articular and eutaneous branches, as it obliquely winds from the front of the hoek to its outer and anterior part. 4. A slender metutarsal artery whieh deseends upon the front of the eannon, in elose conncetion with the bone, along the inner border of the extensor tendon, whose ramifications, mostly eutancous, are distributed orer the inner and fore part of the leg, the terminating ones reaching as low as the fetlock.

The metataisal artery pursues its course, unacompanied by any vein, along its (above-noticed) channel, for two thirds or thereabouts of the length of the leg; it then passes between the internal and large metatarsal bones, and gains the posterior part of the latter, between which and the suspensory ligament, a little above the fetlock, it divides into three vessels: one forms an areh (as in the fore extremity) sending off the recurrents, which anastomose with the posterior tibial artery; the other two-the lateral divisions-become the plantar arteries.

Heneeforward, the arteries in the hind leg are similar in all respects to those in the fore extremity: the description already given of the latter, therefore, will be found equally applicable here.

OF THE VEINS.

There are ten radical veins, though no more than two of them possess a volume correspondent with the main arterial trunk: these two, denominated the vence cave, may be looked upon as the fellow-vessels of the anterior and posterior aorte: the other eight are the

PULMONARY VEINS;

Which vessels originate within the air-cells of the lungs, from the extreme ramifieations of the pulmonary artery, and, by repeated and reiterated union and coaleseence, at length form themselves into eight venous trunks, which proeeed direetly from the roots of the lungs to the left auricle of the heart, and into that cavity empty themselves by four openings.*

VENA CAVE,

Anterior and Posterior, form the two main or general trunks of the venous system; the former reeeiving the blood returned from the fore parts of the body; the other, that flowing from the hinder parts. Their ramifieations in most parts exeeed, in number and size, those of the correspondent arteries; in addition to which, veins are found in many parts (and those mostly superficial) where arterial trunks do not exist ; which excess of number and duplicity of course has caused a division of the veins into those that are superficial, and those that are deep-seated.

[^9]TABLE OF THE VEINS.

The Anterior Vena Cava

Forms the main trunk of (or common reservoir for) the veins rcturning the blood from the head, neek, parietes of the chest, and fore extremities. It is a short vessel, but one of considcrable volume, becoming remarkably bulky at its termination in the summit of the right auriclc. In relative position, the trachea lies above it, the anterior aorta to its right, and it is with both included in the interspace of the supcrior mediastinum. The antcrior cara is principally formed by the concurrent union of the juyular and axillary veins, and is situated at its formation within the intcrval between the two first ribs, about midway between the sternum and vertebre: it also receives the pectoral, vertebral, dorso-cervical, and inferior cervical veins, and the vena azygos; which again augment its volume in its coursc to the heart.

Jugular Vein.

This forms the principal venous conduit from the head, along the neck, corresponding in course and ramification to the carotid; consequently therc exists a right and a left jugular vein, and it is quite unimportant which is takcu by way of description. The jugular vein has its formation at the foramen laccrum basis cranii, from the termination there of the lateral sinus of the dura mater, from which it reccives the blood returned, principally from the cerebrum, partly from the cercbellum. Conccaled at its origin by the condyle of the jaw, it desecnds to the inner side and behind the neek of the condyle, decply buried under the parotid gland: lower down, it makes its appearance behind the branch of the jaw, and there joins the external carotid artery, along with which it continues its passage into the neck. In this part of its course it receives the following branches of impor-tance-1. The auricular veins, anterior and posterior, and also internal, varying in their number and mode of termination, which are scen descending over the root of the ear. 2. The temporal, a vein of considerable size, running along the upper side of the temporal artery. 3. The internal maxillary, a large vcin kecping company with its artery; and in its coursc recciving many small vcins-the palato-maxillary, infra and supra orbitar, ocular, inferior maxillary, and deep temporal. 4. The parotideal, numerous vcins from the parotid, and some also from the submaxillary gland. 5. Branches from the masseter and pterygoid muscles.
6. Tie occipital vein, a long flexuous branch descending from the head along with the occipital artery, that brings blood from the occipital sinuses, receives veins from the posterior lobes
of the cerebrum, and from the ccrebellum, as well as veins from the dura mater; and also scveral muscular branches in the course of its descent.
7. The submaxillary vein, the most considcrable branch of the jugular, so large, indeed, compared to the continued trunk, that some regard the two together as a bifurcation of the common jugular. It is formed upon the side of the face by the coalition of the facial, labial, and varicose veins; whence it turns round the branch of the jaw, between the artery of the same name and the parotid duct, and joins the trunk by the side of the trachea, just below the parotid gland. In its course it receives other veins which likewise contribute to its volume, of which the principal are-the submental, sublingual, lingual, pharyngeal, and superior laryngeal veins. The facial vein results from a ramous expansion of small veins upon the side of the face, and in its course receives one or two branches, onc of which is commonly varicose, from the masseter. The labial vein is formed by the union of a plexus of venous branches coming principally from the angle of the mouth, in conjunction with others from the upper and lower lips. The varicose vein is a vessel deeply buried under the substance of the masseter, descending obliquely along the furrow made by the aproximation of the jaws (when the mouth is shut), and is very remarkable from having naturally a large varix or reservoir for blood at its origin: not, however, that this is the only varicose vein, for the temporal commonly bulges more or less, as well as a vein from this muscle already noticed; but this is the largest specimen of so extraordinary a formation. I believe that these varices serve to guard against stagnation or congestion in the brain and its membranes, and from consequent rupture of their sinuses and delicate veins, by continuing to admit of the influx of blood at a time that the circulation is interrupted or impeded by the motions of the jaw.

The jugular trunk having received the submaxillary vein, which it does in the space between the larynx and vertebra dentata, proceeds down the side of the neck, covered by the cervical portion of the panniculus carnosus, along a channel formed for it by the lower border of the levator humeri and the upper one of the mylo-hyoideus: by a layer of obliquc fibres coming from the former of which muscles it is separated from the carotid artery and trachea, they being situated to its inner side, and rather below it: in its course down the lower half of the neck, however, the vein gets deeper-seated, approaches the windpipe, and afterwards runs in company with the carotid artery. It terminates in the anterior vena cava within the space between the two first ribs. At or near the junction of the submaxillary, the jugular vein re-
ceives some small veins, principally thyroideal: during its course it also receives many small branches-cutaneous, muscular, and tracheal veins. Near its termination it receives a considerable branch, the superficial brachial vein, which originates in front of the radius, about two thirds of the length of the bone upward, from the main brachial vein, asecnds along the anterior border of the biceps, and continues upward in the hollow between the breast and arm, winding as it proceeds a little outward, to reach the jugular: this by farricrs is called the plat-vein-it is the one we are in the practice of opening for lameness in the shoulder. It receives some unimportant muscular and cutancous branches in the course of its ascent.

The Vertebral Vein

Is the fellow vessel to the vertebral artery: the two pursuing their course together, on cither side of the neek, from the head to the chest, passing through the foramina in the transverse processes of all the cervical vertcbre with the exception of the last. This vein has communications with the occipital sinus and posterior cerebral veins; but it owes its formation principally to the veins coming from the medulla oblongata, and the spinal marrow and its membranes: it also receives vessels from the deep-seated muscles in the vicinity. In its course it runs above the artcry, and at the entrance of the chest quits its companion to terminate in the anterior vena cava, just behind the first rib.

The Axillary Vein

Forms the main channcl for the return of the blood distributed by the divisions and ramifications of the axillary artery (to which it corresponds) to the various parts of the fore extremity. Its forming branches may be arranged into sets-a superficial and a deep-seated set: the former run for the most part immediately underneath the skin; the latter, exceeding them both in number and size, accompany the arteries, among the muscles. Besides, there exist divers vessels of communication between the two sets. It will facilitate the description of these vessels, at the same time that it is the most natural mode of proceeding, for us to descend at once to the foot, and trace them from their origin : this will direct our commencement from the

Plantar veins. There is not, perhaps, a picce of vascular structure in any part of any animal that can be exhibited as a specimen of greater beauty of venous arrangement than the foot of the horse : the sole displays a curious and intricate network of small veins, and the lamine in every part show a similar reticular venous ramification, altogether giving the foot quite a covering of
venous netting. We have seen that the arteries of the foot elude pressure, and eonsequent impeded or interrupted eirculation, by picreing the substanec of the os pedis; we now pereeive that the veins, running all outside (for, to have admitted them also through it, the bone must have been perforated in so many plaees that it would have beeome physically inadequate to the superineumbent burden), guard against the impediments eonstantly oceasioned to the eireulation in some one or other of them by the numbers of eommunieating eanals erossing in every dircction : in addition to which, in order to give every facility to the flow of blood through them, they are unprovided with valves.

The veins of the sole pour their blood into the veins of the laminæ, with the cxeeption of some few of the posteriormost, and they end in the veins of the frog.

The veins of the lamine inerease in size as they approaeh the eoronet, and gradually unravel themselves so as to form a great many plexuses or bunehes, whieh run direetly upward, erowd through the substanee of the eoronary ligament, and afterwards collcet into the superficial coronary vein. From them also, larger branches proceed laterally, to be united in transverse eommunieation by the deep coronary, a vein eommonly double. From this the larger veins upon the sides diminish in number, and all eonjoin into two or three branehes, whieh, opposite to the pasternjoint, unite into a single vcin.

The veins of the frog, after ramifying in the form of network over that body, aseend along the inner sides of the eartilages into the heel, converging and uniting into larger vesscls as they leave the foot, and finally forming a single vein upon the pastcrn-joint, whieh runs up and unites, a little above the head of the os suffraginis, with that eoming from the laminæ, thereby forming the plantar vein.

The plantar vein aseends in front of the plantar artery, kecping company with that vessel until both unite with their fellow venous and artcrial trunks of the opposite side, and become metacarpal. In its eourse, it is joined by the perpendicular vein, besides other small unimportant branches : at its termination, it receives onc or two veins of eonsiderable size which cmerge from the fetloek-joint.

The metacarpal veins, two in number, result from the union of the plantar ; and this takes place in the form of an arch immediatcly over the sesamoids, in the interval betwecn the flexor tendons and the suspensory ligament. These veins pursuc their course up the leg, one on either sidc, along the same correspondent chamels, betwcen the tendons and the ligament, to the back of the knee, where they end in a remarkable anastomosis,
formed by a transverse branch equal in diameter to either of the trunks. The internal metacarpal vein accompanies the artery, having that vessel situated behind and the inner small metacarpal bone in front; the external vein, the smaller and deeperseated one, also preserves the line of the splint bone on the other side, but it is more inwardly placed. These veins receive in their course cutaneous veins from the front of the eannon, and at their origin one or two descending veins from the back of the leg. There is some variety commonly found in regard to the number and disposition of the anastomosing and other branches at the back of the knee; but there are ordinarily two principal venous trunks, one of which ascends over the immer and back part of the joint, having the artery situated behind it, the other mounts close along the inner border of the trapezium. As they pass the joint, these vessels receive the blood from the anterior and posterior articular veins. A little above this, they communicate by a short and free anastomosis, and afterwards run on to form the superficial and deep-seated veins of the arm.

The superficial brachial vein (the cephalic of the human subject, the plat-vein of our farriers) continues to aseend along the inner side of the radius, inclining very gradually forward, until it has arrived at the elbow-joint ; here it crosses obliquely over to the front of the biceps, and pursues its ascent upon that muscle, in a direction to the point of the shoulder, to the inner part of which it crceps round, and afterwards plunges inward to reach the jugular vein, in which it terminates. This is one of the superficial veins of the arm, it being covered only by the skin from its origin to its passage over the shonlder-joint ; and is, as was observed before, the vein we commonly let blood from. In its eourse, it receives divers cutaneous and muscular branches, which contribute to augment its volume a little; and, besides, contracts anastomoses with the other veins of the arm, among which should not be overlooked a large and remarkable communication it has with the humeral vein, just before it leaves the radius, through the medium of a branch that runs directly upward.

The radial veins, springing from the coalition of the metacarpal veins above the knce, are two in number, and take the same course as the radial artery, and a little above the shoulderjoint concur with the anastomotic branch coming from the supcrficial brachial to form the humeral vein. They receive many muscular branches as they ascend, and also some anastomosing vessels from the ulnar and superfieial veins.

The ulnar veins are divers small ressels taking the course
of their respeetive arteries. One of them, apart from the other:s, is eonneeted with the humeral by a separate eanal, and makes a curve upon the inner part of the elbow-joint in the dircetion of the olecranon, and afterwards deseends upon the side of that projection along the backs of the flexors, where it beeomes superfieial, and continues so to its termination at the knee. The others all end by one common trunk in the humeral vein, about its middle.

The humeral vern, the issue of the union of the anastomotic branch from the superfieial brachial with the radial veins, is a large vessel extending along the inner side of the humerus, in contact with the bone. The humeral artery, which aceompanies this vessel, is at first concealed between the bone and the vein, but higher up the artery gets in front of the vein. It receives small veins from the joint, and divers others from the museles around, whose number is indeterminable, and whose course is best learnt by a reference to that of the arteries. It also receives a considerable branch from the trieeps.

Tife axillary vein is the eontinuation of the humeral, augmented by the aceession of the triceps vein. The axillary arrery enters the limb directly opposite to the shoulder-joint, and the vein runs immediately below and in eompany with it. It follows the future course of the artery, turning along with it around the first rib, to join the vena eava anterior, which it does at the same place that vessel receives the jugular. Its branehes are-1. The subscapular vein, one of eonsiderable size aceompanying the subseapular artery, receives as it runs along branches from the trieeps and subseapularis, corresponding to the arteries, and joins either the root of the axillary or the termination of the humeral. 2. The dorsalis scapule pursues the course of the artery of that name, bringing blood firom the antea and postea spinati, and terminating about midway between the thorax and shoulder. The remaining branches of the axillary come from the parietes of the thorax. They are- a. The humeral thoracic, comprising two or three vcins, corresponding to the arteries so called, the original ramifieations of whieh issue from the museles about the point of the shoulder. b. The external thoracic, a long vein traversing the lower part of the ehest, in a horizontal direction, behind the arm. A great portion of it rums subeutaneously, and is distinetly traccable in the living animal through the skin; from whieh eireumstance it has been notieed by horsemen, and named, from its situation, the spur rein. It is originally derived from the abdominal parietes, from the uniou of two eonvergent branehes which issue from the integuments of the sheath, or, in the female, the mammae: it
reeeives also, as it crosses over the ribs, other small veins, and these likewise contribute to its volume.

The Pectoral Vein

Answers in eourse and distribution to the peetoral artery. It originates in branehes from the abdominal parietes, eontinues to reeeive laterally aeeessory vessels in its passage, and aseends along the inner and posterior border of the first rib, in front of the artery, to arrive at the under part of the vena eava anterior.

The Dorso-Cervical Vein

Consists of two divisions ramifying along with the doral and posterior eervieal arteries, and returning blood from the museles they supply. It also reeeives the anterior intereostal vein, the eompanion of the artery so named, whieh is the eommon trunk of the veins eorresponding to the second, third, fourth, and fifth intereostal arteries.

The Inferior Cervical Vein

Is the vessel or vessels deseending along the inferior part of the neek in eompany with the inferior eervieal artery. Its prineipal branehes are museular ; though some come from the skin and absorbent glands in the vieinity.

The Vena Azygos,

The last and only single braneh of the vena eava auterior, in whose supero-posterior part it ends, just as the trunk opens into the auriele. It arises, as far baekward as the loins, by some small straggling veins; and takes its eourse aeross the bodies of the dorsal vertebre, on the right side of the posterior aorta, growing somewhat larger as it advanees towards its termination, where it forms a remarkable eurvature downward, to reaeh the trunk of the eava. It reeeives at its origin many veins from the neighbouring museles, those of the loins more partieularly; but its destined offiee is to eonduet the blood from the posterior intereostal veins-from twelve to thirteen of them on the right side, from eight to nine only on the left, in eonsequenee of its being plaeed inconveniently for the reeeption of more of the latter : had the vena eava posterior been raised alongside of the postcrior aorta, a vena azygos would not have been required; it may be said, therefore, to supply the place of that vessel along the spine.

Posterior Vena Cava.

This is the eorrespondent venous trunk to the posterior aorta-
the eonduit returning the blood from the parietes of the abdomen and pelvis, the urinary and genital organs, and the posterior extremities. The internal and external iliae veins, unlike their aeeompanying arteries, eoalesee and form two eommon iliae trunks, from the subsequent union of whieh, upon the last rertebra of the loins, results the main trunk now under eonsideration. Thus formed, it takes its eourse underneath tine bodies of the lumbar vertcbrre, runs within the great fissure of the liver, perforates the ehordiform tendon, and pursues its way direetly aeross the middle spaee of the eavity of the ehest to the posterior and inferior part of the right auriele. In its passage it is joined by the lumbar, spermatic, renal, hepatic, and diaphragmatic veins.

The lumbar veins, eorrespondent in number and eourse to the lumbar arteries, result from the union of small reins issuing from the museles elothing the loins ; reeeiving in their subsequent passage, eaeh of them, a braneh emerging from the vertebral eanal; and ultimately joining the main trunk at right angles.

The spermatic vein aseends alongside of its artery, pursues its course forward within the abdomen, and terminates in the under side of the posterior vena eava; in some instanees, uniting first with its fellow into one eommon vessel.

The renal or emulgent vein, formed by a combination of branches emerging from the pelvis of the kidney, whieh eommonly exeeed in number the divisions of the artery, aeeompanies the renal artcry to the spine, and ends in the under and outer part of the main trunk. The left vein is longer than the right, in eonscquenee of having to eross the aorta. They also reeeive the veins belonging to the capsulx renales.

Time hepatic veins, manifold in number, spring from the terminations of the vena portre and hepatic artery, issue from the parenehyma of the liver, and end in the vena eava, as it runs along the great fissure, by numerous orifiecs resembling pinholes.

The pifrenic ol diapiragmatic veins.- From the arboreseent venous display upon the surfaee of the diaphragm result six aseending branches of eonsiderable size ; these, however, eonjoin afterwards, and make but two on eaeh side, whieh enter the trunk as it perforates the tendinous substanee.

The Common Iliac Veins

Take their rise under the saero-iliae symphysis from the mion of the external with the intermal iliaes. Their eourse, which is very short, is obliquely forward under the last vertebra of the loins, where they eoalesee and form the main trunk. They reeeive, however,-1. A eonsiderable vein resulting from the conjunetion of small branehes coming from the psore and iliacus
2. The circumflex vein of the ileum, after ramifying with its artery. 3. At their point of junction, the middle sacral vein, an azygos vessel of small size, eorresponding to the artery bearing. the same name.

The Internal Iliac Vein

Is extremely short-in fact, it is nothing more than the root common to the two venous trunks by whieh it is said to be formed, viz., the ischiatic, and lateral sacral veins. Its situation is at the brim of the pelvis, a little outwardly to the sacro-iliae symphysis.

The ischlatic vein, lying against the side of the pelvic eavity, midway between the external iliac and lateral sacral veins, consists of a short but bulky trunk, and of a eollection of large branches uniting to form it, at the upper opening of the great sacro-seiatic noteh. These branches may be distinguished into an internal and an external set. The internal comprise veins coming from the bladder, anus, perinæum, and, in the male, from the bulb and prostates - in the female, from the vulva and corpora eavernosa vaginæ. The external consist of veins coming principally from the gluteal and obturator muscles.

The lateral sacral vein originally comes from the tail, springing there from the combination of two or three slender coceygeal veins: it runs forward along the side of the sacrum, recciving other veins in its eourse, viz., 1. Perineal veins, a collection of small branches coming from the posterior parts of the thigh, gluteal muscles, perinæum, and anus. 2. Sacro-spinal branches, small veins issuing from the spinal canal, through the internal saeral foramina.

The External Iliac Vein

Is found running along the inner and upper side of the external iliae artery, taking all the way preciscly the same course as the artery. It extends from its junction with the posterior vena eava to the place where it leaves, in company with the artcry, the brim of the pelvis; the vein after that becoming femoral. As it departs from the cavity of the belly, this ressel receives the

Inguinal vein, one of rather large size coming from the groin, which owes its formation to a considerable branch emerging from the museles of the thigh, and a superficial or cutancous abdominal vein ; which latter runs in a serpentine manner along the abdomen, after taking its rise as far forward as the cartilages of the ribs, where its branehes form communications with the cutaneous veins of the thorax : it is a very conspicuous vessel in milch eows, and is vulgarly denominated the milk rein.

The Femoral Vein

Is the eontinuation of the external iliae trunk below the brim of the pelvis, and beeomes the main ehannel into which the deepseated veins of the hind extremity pour their blood. It will be more regular to commence the description of the veins of the hind extremity from below, having already proeceded so with those of the fore extremity ; but it will not be necessary to deseend so low down as the foot, the plantar veins being similar both behind and before: we may begin, therefore, at the leg.

The large metatarsal vein having aseended about halfway up the cannon, by the side of the flexor tendons, leaves them and takes an oblique course over the bone to reach the anterior and inner part of the hock, where it sends down an anastomotie braneh under the tendon of the flexor metatarsi, from which anastomosis with the small metatarsal vein, and from the aceession of a branch coming from the hoek, results the

Anterior tiblal vein or veins; for there are commonly two veins aceompanying the anterior tibial artery. They aseend between the tibia and fibula as high as the inferior and posterior part of the os femoris, and there are joined by the posterior tibial vein ; all three uniting to form the femoral.

The posterior tibial veln is a eontinuation of the small metatarsal vein, which latter corresponds in eomparative size and course to the small metacarpal vein. This vessel runs in eompany with the posterior tibial artery, recciving various muscular branches in its course, and also the medullary vein of the tibia.

The femoral vein is one of large sizc. It begins at the plaee of union of the two last-deseribed vessels, runs behind the femoral artery, and ends in the external iliac rein. It reeeives various large museular veins, eorresponding to the prineipal branehes of the arterial trunk, as well as veins from the stifle-joint, and also the medullary vein of the os femoris. Likewise, about two thirds of its length upward, it is joined byt he saphena vein.

The vena saphena major, the prineipal superfieial vein of the hind extremity, takes its rise, at the imner and fore part of the hoek, from the large metatarsal vein ; at which place a branch from the major ascends obliquely round the imner side of the joint to join the vena saphena minor. It then makes an oblique aseent up the middle of the thigh, aeross the surface of the gracilis covered only by the skin, and high up plunges inward among the museles to join the femoral trunk. At the hock, it las a remarkable anastomosis with the anterior tibial vein, thus establishing a communication between the deep-seated and superficial veins; it also reecives many entaneous and museular branehes in its
course ; but these are too variable in their number and distrilntion to come very usefully into any general description.

The vena saphena moor springs from the small metatarsal vein. It runs directly up the back of the hock, over the root of the os calcis, and pursues its course upward along the front of the gastrocnemii, and ultimately joins the femoral vein. It anastomoses with the greater saphena, and reccives in its course both cutancous and museular branches.

The Vena Porte.

The veins of the chylopoictic organs have a peculiar and distinct arrangement from those of the body in general, and on this account a separate description is commonly given of them. They receive blood, as has been already scen, in a similar mamer to other parts ; but they return their blood into a chamel which conveys it all through the liver, instead of conducting it immediatcly into the vena cava posterior: this channel is the vena porte, a vessel principally formed by the union of the splenic and mesenteric veins, though it is likewise contributed to by veins coming both from the stomach and pancreas.

The splevic vern, in company with its artery, occupics the fissure of the spleen, makes a circuit in a flexuous manner towards the right side, receiving in its way branches from the stomach, omentum, and pancreas, besides all the veins of the spleen, and at length ends in the vena portie.

The mesenteric veins, anterior and posterior, bear much correspondence to their arteries. The anterior one is of large size, being constituted of those numerous ramifications which diverge over the small intestines, together with the arteries: it also receives branches from the cecum and cecum caput coli, some few from the stomach, and some from the pancreas. The posterior mesenteric runs obliqucly forward, after having reccived branches correspondent to those of its fellow artery.

The vena porte is conccaled at its origin by the pancreas; immediately above which its formation takes place. From this it runs under the begimning of the duodenum, on the right of the hepatic duct and artery, and makes its way to the concave part of the liver. About opposite to the centre of the right lobe, the vein splits into two divisions: the right immediatcly enters the substance of that lobe; the left is continued forward along with the hepatic artery, and, the same as that vessel does, bifureates to supply the left and middle lobes.

SECIION IV.
 RESPIRATORY SYSTEM.

THE RESPIRATORY SYSTEM COMPRISES TIE LARYNX, THE TRACHEA, AND THE LUNGS.

OF 'IHE LARYNX.

'Ine larynx is the organ producing the voice of the animal.
Situation. It is joined to the top of the trachea (or windpipe), and is placed in the throat, between the postcrior and broadest parts of the branches of the lower jaw; having the pharyux and uppermost part of the œesophagus situated above it ; the superior portions of the sterno-hyoidei and thyroidei below it; the tongue with its muscles, and the os hyoides, in front of it ; and the trachea issuing from bclow and bchind it.

Attachment. The larynx is retaincd in its place by its connection with the os hyoides and pharynx; by its muscles; and by its coalition with the trachea.

Conformation. The larynx has so complete a flcshy covering, that it is not until it is divested of its muscles (which have bcen heretofore described) that it is discovered to be composed of five pieces of cartilage, so joined together as to be moveable on onc another, and open both superiorly and inferiorly to admit of the passage of air into and out of the trachca. These cartilages have reccived the names of thyroid, cricoid, (two) arytenoid, and epiglottis.

THE THYROID or shield-like cartilage, by much the largest of the five, forms the superior, antcrior, and lateral parts of the larynx. It consists of two broad lateral portions, continuous and prominent at the upper and anterior part of the neck, the prominence corresponding to which in human anatomy has reccived the name of pomum Adami. Below this point of union the divisions recede from each other, leaving a triangular space between them, which is occupied by a ligament denominated the ligamentum crico-thyroideum. The four projecting corners from the postcrior parts of the thyroid cartilage are named its comua: the two supcrior are joined by capsular articulations to the body of the os lyoides; the two infcrior are connceted by very short capsular ligaments to the cricoid cartilages ; the union of all which parts reccives additional strength from cxpansions of membrane. At the roots of the superior cornua are two foramina that give passage to nerves, of considcrable importance, to the intcrior of the larynx.

This cartilage not only constitutes by far the most extensive part of the larynx, but, as its name indicates, incloses and shiclds from external injury all the others.

TIIE CRICOID or ring-like cartilage is placed below the thyroid. In front it appears like part of the trachea; but it broadens so much behind, that it overlaps the first ring of the windpipe, somewhat after the form of a helmet. Upon its broad or posterior part are four surfaces of articulation : the two upper reccive the hinder extremities of the arytenoid cartilages, the two lower are adapted to the inferior cornua of the thyroid cartilage : they are all furnished with eapsular ligaments and synovial membrancs. Furthermore, it is attached by ligamentous expansions to those parts, and likewise to the first ring of the trachea.

THE TWO ARYTENOID, or ewer-shaped cartilages, triangular in their figure, lie over the upper and back part of the trachea, leaving an apcrture between them leading into that canal, denominated, from its proximity to the tongue, the glottis. Their inward parts are everted, and form a triangular prominent border, over which is spread the membrane of the glottis: their outward surfaces are marked by concavitics in which are lodged the arytenoid muscles. Posteriorly, they repose upon the cricoid cartilage, and are comnceted with them by capsular articulations : in front, they have a membranous connection with the cartilage next to be noticed.

THE EPIGLO'TI'IS, so named from being raised over the glottis, and occasionally covering it like the lid of a pot, is well adapted, from its heart-like shape, to the rima glottidis; whose margin is completed by two narrow slips of cartilage proceeding from the base of the lid to the arytenoid. By some, tliese slips of cartilage have been separately considered : but in my opinion improperly so ; for they are, in reality, nothing more than prolongations or appendices of the epiglottis. The surface of this cartilage presented to the interior of the larynx is smooth and concave, and covered by an extensiou of membrane from the glottis ; that part opposed to the tonguc is unevenly convex, and is tied to that organ, as well as to the os hyoides, by a doubling of membrane infolding some muscular fibres: to this musculo-membranous ligature, which assists in retaining the cartilage in its elevated position, the name of frenum epiglottidis is properly given. The frenum reccives co-operation in this function from strong elastic ligaments connecting the base of the epiglottis to the thyroid and arytenoid cartilages.

If we detach the epiglottis, or raise it forcibly, in order to obtain a more complete view of the rima glottidis, the latter will be found to be stretched into an oblong quadrilateral figure, whose
width gradually diminishes from the middle towards either extremity, and bears a ratio of about one to six when compared to its length. The sides turned forwards, are formed by the arytenoid cartilages; those dirceted backwards, by two prominent folds of membrane (which envelope the thyro-arytenoid muscles), commonly described as the vocal ligaments, from their being concerned in the formation and intonation of the voicc. Immediately over them are slit-like apcrtures, opening into membranous sacs, each large cnough to contain a walnut; these are the ventricles of the larynx, whose usc is also connected with the production and modulation of the roice.

The membrane lining the cavity of the larynx is onc of great susceptibility; on which account it is kept continually moist by a mucus, oozing from numcrous lacuna-the excretory orifices of small subjacent follicles whose situation is denoted by the little round cminences upon its surface. This is the common seat of that species of catarrh which is accompanied by cough.

OF THE TRACHEA.

The trachea, or windpipe, is a cartilaginous tube extending along the neck, from the larynx to the lungs, for the passage of air. In horscs of ordinary size, it is from twenty-five to thirty inches in length.

Course. The trachea commences from the inferior border of the cricoid cartilage, oppositc to the body and transverse processcs of the atlas; takes its course along the anterior and infcrior part of the neck, inclining to the near side, between the stcrno-myloidei muscles (which by their approximation conccal the lower portion of it), and cuters the chest between the two first ribs ; whercin, under the curvature of the posterior aorta, it divides into two parts, the bronchial tubes.

Structure. From fifty to sixty anmular picces of cartilage enter into the composition of the windpipe; altogether constituting a structure so remarkable for the incquality or asperity of its cxterior, that the ancients, in order to at once distinguish it from all other vessels, called it the aspera arteria. No entire or undivided tubular substance could have partaken of the various motions of the head and neck, without having suffcred more or less distortion, and consequent deformity and diminution of caliber, of some part of its canal, which would have heen attended with frequent interruptions to the free passage of the air, dangcrous, and even fatal, to the respiratory functions; whereas, constructed as it is, with the aid of its muscular power, no attitude into which the animal may naturally put himsclf will impede the frecdom of passage through it. The cartilages, or, as they are commonly described, the rings
of the windpipe, have all a close resemblanee to one another: if there be any disparity between them worthy of notiee, it eonsists in those that form the superior part of the pipe being somewhat larger and broader than those nearest to the bronchial tubes.* A ring is not uniform in its breadth, in consequence of having waving or scolloped borders; the advantage of which is, that a sort of dove-tailed eonneetion is effected whieh materially contributes to the compaetness and strength of the entire strueture. Its front and sides measure, in the broadest places, half an ineh in breadth, and nearly a quarter of an ineh in thickness-evidently made so substantial to resist external injury ; whereas its posterior or unexposed parts grow suddenly thin and yielding, and taper to the extremities; whieh instead of meeting and uniting, pass one over the other, and thus form a shield of defence behind, while they admit of a certain dilatation and eontraetion of the internal dimensions of the tube. These attenuated ends are joined together by a ligamentous expansion, mingled with a quantity of cellular membrane. The rings are likewise attached to one another by narrow ligamentary bands, strong and elastie; whieh after they have been drawn apart in certain positions of the head and neck, have the power to approximate them: when the pipe is removed from the body, and suspended by the uppermost ring, these ligaments counteract the tendency its weight has to separate the rings, and still maintain them in apposition. The lowermost ten or twclve pieees of cartilage appear on examination but ill to deserve the name of rings ; indeed they are little more than semi-annular, the defieieneies in them behind being made good by intermediate moveable pieces of cartilage. These pieces, whose breadth inereases as we descend, are let into the vacuities in such manner as to overlap the terminations of the segments, and they are confined and coneealed by the same sort of ligamentary and cellular investment as was before noticed.

Muscle. Where the outward extremity of the ring suddenly turns inward and degenerates into a thin flexiblc flap on either side, a band of muscular fibres is fixed and stretched aeross the eanal, dividing it into two unequal semi-elliptieal passages:-the anterior one is the proper air channel ; the posterior or smaller one is filled with a fine retieular membrane conneeting the band to the posterior part of the ring, and preventing it, in aetion, from encroaehing upon the main eonduit. This self-acting band appears to me to have been added to the tube to enable it to enlarge its ealiber-not to diminish it, as a superfieial view of these parts

[^10]might lead one to imagine; for, in consequence of the passage being naturally elliptical, and the muscle being extended across its long diameter, the contraction of its sides will give the tube a circular figure, by increasing the curvature of the ring anteriorly, and thereby, in effect, will expand and not contract the caliber of the canal. I would say, then, that the trachea was made muscular in order that it might have the power of increasing its capacity for the passage of air, whenever the lungs were called into extraordinary action : in addition to which, I think, that this band may, in some degree, counteract any tendency certain positions of the head and neck have to alter its shape and diminish its circumference. This opinion is corroborated by the circumstance, that the muscle grows slender and pale as we approach the lower end of the pipe, where the canal itself is nearly circular, and where it is placed in the least moveable part of the neck.*

Membrane. The trachea is lined by a soft, pale red membrane, which, anteriorly, has a close adhesion to the rings themselves, and presents a smooth polished internal surface ; but which, posteriorly, is loosely attached to the muscular band, and puckered into fourteen or fifteen longitudinal plice or folds, that extend with regularity from one cud of the tube to the other. These folds were evidently made to allow of the contraction and elongation of this muscular band; for I cannot myself assign any reason why they should exist in its relaxed state unless this fulness of membrane be given to admit of enlargement of the caliber of the tube during the contractions of that muscle : if this be plausible, I may adduce the corrugation of the membrane as another proof that the caliber of the trachea is susceptible of augmentation. This membrane is continuous with that which clothes the rima glottidis; but it is paler than it, and not near so sensitive. Its arterial ramifications, also less abundant than upon the glottis, cxhale a vapour from its surface; independently of which, it is kept continually lubricated by mucus, furnished from its numerous lacunce, to defend it from anything acrimonious that may be contained in the breath.

BRONCHIAL TUBES.-The trachea having entered the thorax, bifurcates into the two bronchial tubes:-of them, the right is the more capaeious canal, on account of having communication with the larger division of the lungs; the left the longer one, in consequence of having to cross under the pos-

[^11]terior aorta, in its eourse to the left division of the lungs. The last eartilage of the main pipe has a spear-like or angular projeetion extending down between the bronehial tubes, filling up that space whieh would otherwise be left open from the divergent manner in whieh they braneh off: it is quite loosely attaehed, in order that the branehes may aecommodate themselves to the motions of the neighbouring parts. The bronchial tubes vary in strueture from the trunk that gives origin to them : instead of their rings being formed of entire pieees of eartilage, they are eonstituted of several separate pieces, making up so many segments of the eirele, overlapping one another, and united together and invested by an elastic cellular substanec: they also differ in having no museular band, another faet conneeted with the physiology of that part. The bronchial tubes, in penetrating the substance of the lungs, subdivide-the right into three prineipal branehes, the left into two ; from which spring imnumerable others that grow smaller and smaller, until the ramifieations become so reduced that they are no longer traceable by the naked eye. In the larger branehes we may disseet out five and even six segments of eartilage, held together by a thin, but dense and clastie eellular substanee: in the smaller divisions, only two are found, and they are diminished in size; and in the smallest visible ramifieations of all, eartilage is altogether wanting, though, in many places, marks of the rings may be traeed upon the eontinuation of the lining membrane, whieh in these intimate parts composes the entire parietes of the tube. In the larger branches this membrane (whieh is eontinuous throughout the bronehial system) assumes a plieated disposition-apparently to admit the more readily of expansion.

Thyroid Glands.

Two egg-shaped, apparently glandular bodies, attaehed just below the larynx to the sides of the trachea, and united in front of that tube by an intervening portion of the same substance, which, by way of distinetion, is by some called the istlimus. They are enveloped and attached in their situation by eellular membrane; are larger and more vaseular in the young than in the old subjeet ; and exhibit a spongy texture when eut into, which I am at present ignorant of the preeise nature of. They are well supplied with blood-vessels, and have many small nerves going to them. Their physiology still remains obseure.

OF THE LUNGS AND PLEURA.

The lunys are the essential organs of respiration: the pleura is but the membrane by whieh they are invested.

Pleura.

The pleura is a fine semi-transparent membrane, lining the cavity of the chest, and giving a covering to the lungs. By that portion of it whieh is ealled the mediustimum, the cavity is divided into the right and left sides of the thorax.

General Conformation. If the lungs be exposed, by breaking off one or two of the ribs, we shall pereeive that their surface, as well as that of the eavity itself, is everywhere smooth, polished, and humid: this is owing to the extensive investment of the pleura, the surface of which is now presented ; so that, in reality, without breaking the surfaee, nothing but pleura ean be touched; although, from its extreme tenuity and pellueidity, the viscera appear, on a superfieial view, to present their own bare exterior. Its other side, on the contrary, is rough, haring numerous cellular flocculent appendages, by which it is united to the parts it invests: and so close and firm are these adhesions, that to cleanly detach it, in the recent subject, is a very difficult and tedious disscetion.

The pleura is a reflected membrane ; by which is meant one that not only lines the cavity in whieh the riscera lie enelosed, but, by duplicature, or what in anatomical language is called reflection, gives a partial or complete covering to the contained organs themselves. It is evident, therefore, that such a membrane admits of division into two portions:-a lining or parictal and a reflected portion; and these, with regard to the pleura, have, for the sake of more definite description, received the names of pleura costatis and pleura pulmonalis : they are both, however, continuous at all points, are precisely similar in structure and function, and, in faet, are still but one and the same pleura.

Mediastinum. There is yet a third portion of this membrane to which a distinct appellation has been given, and that is the mediustinum, the membranous partition between the eavities or sides of the thorax; it differs from both the others in being composed of two layers, whieh are derived from the two plcure of the opposite sides. If we conceive the pleure of the two sides of the thorax to be perfeet saes or bags, with flattened sides turned inwardly, and elosely applied and united together, in such a manner that the double membrane formed by their union extends through the middle of the chest, from the dorsal vertebre to the sternum, we shall at onee have a tolerably eorrect idea of the formation as well as situation of the mediastinum.

Structure. The pleura, from the nature of its secretion, is one of those included in the list of serous membranes, to which it has been demonstrated also to be similar in its intimate organization.

Like them, it presents a shining seereting surface, of a whitish aspeet, and considerable transpareney, and is eomposed of little else than condensed cellular substance, whose texture is penetrated by blood-yessels, absorbents, and nerves: by long maecration in water, indeed, it may be entirely resolved into cellular substance. In most parts it is extremely thin, and by no means tough : but it is not so in all; for that portion which faces the diaphragm is much denser and stronger than the pulmonary or costal division of it.

Organization. The arteries of the pleura, whieh come from the adjacent parts, are in the natural state exceeding small, admitting only the colomless parts of the blood-a cireumstance that accounts for its pellucidity ; under inflammation, however, they eontain red blood, and such is the explanation of that arboreseent vaseularity upon the sides of the thorax in horees that die of pueumonia; than which state nothing ean better demonstrate the comparative number and distribution of these blood-vessels. The majority of them terminate in exhalent orifiecs, from whieh is continually poured, upon the contiguous surfaces of the smooth interior of the membrane, a serous fluid, in the form of steam or vapour, which may at any time be rendered visible by opening the chest of an animal reeently dead. The absorbents of this membrane are very numerous; and though their extreme exility prevents us from demonstrating them in a state of health, yet may they often be seen in considerable numbers in horses that die of dropsy of the chest; we have also abundant proofs of their existence from varions phenomena that oceur in the diseases of the part: we know, for instance, that these ressels take up the serous fluid effiused in hydrothorax, for they have been found full of it after death; and it is a faet that no longer admits of doult, that blood extravasated into the chest, is absorbed by the mouths of these minute vessels.

The nerves of the pleura are too sinall to be traced by disseetion ; but, though it is not possessed of much sensibility in a healtly state, we know, at least we presume from analogy, that it is highly sensitive in the diseased; for few diseases are more acutely painful in the human subjeet than pleurisy, and we have every reason to believe that horses suffer mueh from the same malady.

Secretion. It has been observed that the exhalents of the ploura seerete a serous fluid, whieh is emitted, in the form of an exhalation, or vapour, into the cavity of the thorax ; and that it may be rendered risible at any time, if an animal, recently dead, be opened while yet warm; or, if an opening be made into the chest of a live animal: in cither ease, a whitish stean will be
perceived to issue from the interior of the carity. This rapour, shortly after death, becomes condensed and converted into a liquid; which accomnts for the contiguous surfaces of the plemra being moist, and for a collection of morc or less fluid, resembling water, existing in the most depending parts of the eavity. In conscquence of every part of the membranc being bedewed in this mannel', the lung itself may be said to be in an insulated state ; for the pleura costalis does not, philosophically speaking, touch the pleura pulmonalis, nor is the latter in aetual eontact with the mediastinum : all frietion, therefore, in the motions of these parts, is by this interfluent sceretion effeetually prevented. In this, then, consists the ehicf use of the pleura, viz., to furnish a secretion for the purposes of lubrication and facility of motion, whieh it further promotes by its extreme glibness of surface. It is said also to answer the purpose of ligaments to the contained organs, thereby confining and strengthening them. The use of the mediastinum is to divide the chest into two compartments.

Lengs.

The lungs (by butchers called the lights) are two spongy bodies formed for the purpose of respiration.

Situation and Relation. They are contained in the lateral regions or sides of the thoracic cavity ; separated from each other by the mediastinum and heart, which occupy the middle region. Prior to any opening being made into the thorax, the lungs contimuc to fill up every vacuity : no sooner, howerer, is a perforation made into the thoracie eavity than they shrink in volume, and become in appeararice too small for the spaces they oceupy. This arises from their being during life-or rather during the unopencd state of the thorax-in a constant state of inflation with atmospheric air, which preserves them expanded; and they sufter collapse of substance the instant air is admitted, in consequence of the pressure of the atmosphere npon them, from which they were protected before by the parietes of the thorax.

Division. The lungs are two in number: the right and the left lumy; partitioned from each other by the mediastinum. A further division of these organs has been made into lobes:- that on the right side, the larger of the two, consists of three lobes; the left, only of two: these lobes, which are nothing more than partial divisions of the lung by fissures of variable extent through its substanee, serve to arlapt them more aceurately to the thoracie eavities, and, at the same time, render them fitter for the purposes of expansion and contraction.

Volume. The lungs of the horse, when inflated, are of great bulk *; and the right is the larger of the two: in eonsequence of the heart being inclined to the left side, less space is given for the left lung.

Attachment. The lungs are attaehed, superiorly, to the spine (whieh attaehment is sometimes ealled their roots) by bloodvessels, the divisions of the traehea, and the mediastinal portions of the pleura : everywhere else, in a healthy subject, they are free and uneonneeted.

Figure. In form, the lungs of the horse are very like those of the human subjeet; and the latter have been eompared to the foot of an ox, to whieh the injeeted lung of the fæetus bears indeed much resemblanee : for, though the two lungs are not symmetrieal, yet, both together, they put on this shape, whieh is the eounterpart of that of the eavity they oceupy. With regard to their general figure, however, the lungs may be said to be eonieal: being broad and eoneave posteriorly, where they are opposed to the eonvex surface of the diaphragm ; narrow and somewhat pointed anteriorly, where they are reeeived into the blind pouehes of the pleura, in the spaec between the two first ribs.

Colour. In eolour, these organs vary somewhat, dépending upon the age of the animal, and upon the quantity and distribution of the blood they eontain. In the young subjeet, they are of a lighter and more uniform sliade than in the adult. In perfeet health they assume a pink hue; whieh, as age advanees, beeomes mottled with purple and grayish patehes. Sometimes, in the dead subjeet, they are found of the colour of the darkest venous blood, whieh arises from an inordinate congestion of that fluid within the pulmonary veins.

Structure. The lungs are composed of the branches of arteries and veins, and of the ramifications of the traehea; all whieh vessels are eonnceted together by an abundant, intervening eellular substanee, known by the name of parenchyma. Beneath the eurve made within the ehest by the posterior aorta, the traehea divides into the two bronehial tubes, of whieh the right is the larger, but the shorter: the left the longer, in consequenee of having to pass under the aorta in order to reaeh the left lung. Having entered the substanee of the lung, the right tube divides into four others ; the left only into three; whieh differenee arises from the right lung possessing an additional lobe : these branehes may be traeed for a considerable extent within the parenehyma, giving off in their passage numerous other smaller tubes of simi-

[^12]lar structure; but, as we proseeute our disseetion of them, we shall find that, in growing smaller, they partake less and less of the nature of eartilage, and that the extreme ramifieations are not only entirely membranous in their eomposition, but of so fine a texture as to be perfeetly transparent. It will be remembered here, that, in speaking of the traehea, a membranous lining to it was deseribed of the mueous kind, whieh, it was observed, thence passed into the bronchial vessels : now, it is of the continuation of this membrane in an attenuated state that the minute air-tubes appear entirely to eonsist; at the extremity of every one of which the membraue is prolonged into a kind of blind bag or eul-de-sae, to which the name of uir-cell has been given.

From the arboreseent ramifieation and peeuliar mode of termination of the bronehial tubes, some anatomists have compared them, and the eells at their extremities, to a buneh of grapes supposing the stalks to represent the ramifieations of the former, and the grapes conneeted with them the air-eells; others have deseribed them as having a resemblanee to a honeycomb: and so far as the knife, with the aid of glasses, ean develope their intimate structure, the first is an apt comparison, insomueh as it relates to the disposition of their eells; the last, insomueh as it eonveys an idea of their ready inter-communieation. For, though they do not eommunieate but through the ramifieations of the bronehial tubes, this is a medium of intereourse at onee so general and free, that numbers of them are inflated at the same time by impelling air into any one of the larger branches: with the parenehymatous substanee, however, they have no communication whatever.*

The blood-vessels that enter into the eomposition of the lungs are denominated the pulmonary. The pulmonary artery, having taken its origin from the right ventriele of the heart, winds upward to the root of the left lung, and there divides into the right and left pulmonary arteries, which divisions enter their correspondent lungs. The ramifieations of these ressels (which differ from other arteries in having no anastomotic communieations one with another) aeeompany those of the bronchial tubes, and, like

[^13]them, divide and subdivide, grow smaller and augment in number as they approach the air-cclls; upon the internal* surfaces of which they become capillary, and assume the texture of correspondent thinness and pellucidity with the cells themselves. Through these minute vessels every particle of blood is impelled every time it is circulated over the system, as was stated when on the blood: a remarkable change of colour is thereby cffected in it, and we have now an opportunity of secing in what manner this fluid is exposed to the influence of atmospheric air for the purpose. It is evident that no immediate contact can happen between the air and the blood, for the thin, transparent side of the ressel, if not that of the air-cell likewise, must ever be interposed ; so that whatever this influence be, it must take efficet through one or other or both of these membrancs. We might conceive, indeed, that such minute vessels could not trausmit through them such a body of fluid as the blood; but when we took at the volume of the lungs, and consider the incalculable number of air-cells they must contain, the globular surface of every one of which is furmished with an expansion of pulmonary vesscls, we shall focl more surprise and admiration at the extreme division and diffusion of this fluid in order to receive the necessary change, than that such a prodigious number of capillaries should be equal, in their united caliber, to the pulmonary artery itsclf.

From the extremities of the arteries, upon the surface of the air-cell, arise the pulmonary veins. These, by repeated mion with one another, form themselves, first, into visible branches, which subsequently become branches of larger size, until at length they end in eight pulmonary venous trunks, which proceed to, and by four openings terminate in, the left auricle of the heart. The ramifications of thesc reins, unlike the generality of others, are not more numerous than those of their correspondent artcrics : and the reasou for this is obvious; for, here, one sct of ressels are not more subject to compression than the other, nor does the heart (which is so proximate to them) require any such aid as an additional number of reins affords to carry on the circulation. The pulmonary veins lave only to convey the blood back to the heart, after it has received its due change within the capillaries upon the air-cells.

Oryanization. Besides the pulmonary blood-vessels, there are two others, named the bronclial arteries. They come off, by one trunk, from the posterior aorta, and each of them enters a division of the lungs, in the substance of which it branches forth, and

[^14]takes the course of the branchial tubes. These tubes they supply as well as the coats of the pulmonary vessels, and the parenchyma of the lungs, with blood: in fact, they may be regarded as the nutricut vessels of these organs. It has been, however, and still remains, a suljject of disputc, whether those vessels do exclusively nourish the substance of the lungs or not; some say that they do ; while otliers asscrt that they are assisted in this function by the pulmonary artery, with some of the branches of which they anastomose. The latter opinion certainly does not appear to be supported by facts of much weight; on the contrary, the blood which the pulmonary arteries contain is dark-coloured, and unfit for the nutriment of any organ ; and as for anastomosis, we have no demonstrative proof of its cxistence. The bronchial reins end in one trunk, which returns the blood into the sena azygos.

The nerves of the lungs are derived principally from a large plexus within the chest, constituted of the par vagum and sympathetic. They enter the pulmonary structure in company with the bronchial tubes and blood-vessels, and continue their course with them, to be dispersed upon the bronchial mombrane and parictes of the air-colls.

The absorbents of the lungs arelarge and numerous, particularly the deep-seated : and of the superficial, we may often suceeed in injecting considerable numbers, by introducing a quicksilver-pipe muder the pleura pulmonalis. They all pass through the absorbent glands situated around the roots of the bronchial tubes.

Parenchyma. The comecting medium of the varions constitucnt paits of these organs, or, as it is termed, their parenchyma, appears to consist of little else than cellular tissuc, without any intermixture of adipose matter: it admits of the fere diffusion of any fluid that may be extravasated into it-of air that may have escaped from the air-cells, or of serons fluid poured out when the lungs become anasarcous; but, as was observed before, there is no intercommunication between it and the cells or ressels, as long as the organs preserve their integrity of structure.

Specific. Gratily. The lungs, when healthy, are exceeding light in comparison to their rolume ; so that it they be immersed in watcr, unlike most other parts, they will float uponthesurface, a fact familiar to erery one who has secen the liver and lights of an animal thrown into a pail of water to be washed: indecd, the name of lights. itself scems to have been given to them from this very property. If the foetal hings, however, be so treated they will instantly sink to the bottom of the resel : and this experimental result at once shows why those of ann anmal that has once breathed should swim; for, in the one instance they contain air, in the other they are wholly frec from it. They are not to he re-
garded as respiratory organs in the foetus. It is evident, therefore, that the lungs owe their property of lightness to the air they eontain ; and, as a further proof of it, if that fluid be by any means absorbed or pressed from them, and their bulk diminished by collapse of the air-eells, like other viscera, they will prove heavier than an equal volume of water : henee it is that the lungs of a horse that has died of hydrothorax, even though they be sound, are of a greater speeifie gravity than those of one in health. It oeeasionally happens, however, that these viscera evince, in this particular, the properties of airless lung, while their natural volume and general appearance remain the same: there must be present interstitial deposition.

Bronchial Glands.

Small, oval-sliaped, glandular-looking bodies, situated about the roots of the lungs, adhering more particularly to the bottom of the traeliea and the bronchial tubes. They exhibit a dirty Freneh gray liue, interspersed with dark blucish spots, and are about the volume (though this varies mueh) of a tiek-bean. For a long time the nature of these bodies remained obseure : of late, skilful injeetions have elearly shown them to be absorbent glands. They possess their eapsules, and, when eut open, exhibit a cellular strueture. They eontain a dark fluid, whieh will soil anything it touehes; whose prineipal ingredient ehemists have found to be earbon.

SECTION V.

DIGESTIVE SYSTEM.

1N THLS SYSTEM ARE COMPRISED THE MOUTH, TONGUE, SALIVARY GLANDS, PHARYNX, GSOPHAGUS, STOMACH, INTESTINES, LIVER, SPLEEN, PANCREAS.

OF THE MOUTH.

Ir may be ohserved here (as prefatory to the deseription of this part), that in quadrupeds in general, the facial angle* is one of very eonsiderable obliquity, in eonsequenee of the prolongation

[^15]of that part of the head which eorresponds to the face in the human subjeet : and this development of feature is in none more striking than in the horse and dog. Consequently, in these animals, the nose and mouth are eavities of large dimensions. And in the horse, the mouth appears to have been thus prolonged, not only to enable him to eolleet his food with more facility, but also that he might subject greater pareels of it at a time to the aetion of the grinding tecth, whereby the processes of mastication and deglutition are greatly accelerated.

Conformation. The mouth is eonstrueted, in part, of bone, and in part of soft materials. The superior and anterior maxillary and the palate bones form the roof; the inferior maxilla, the lower part; the incisive teeth, the front; and the molar teeth, the sides. The lips, checks, soft palate, gums, and buccal membrane, eonstitute its soft parts. The tongue occupies its earity, and the salivary glands are appendages to it.

Lips.

General Conformation. The lips, two in number, superior and inferior, are attaehed to the alveolar projeetions of the superior and inferior maxillæ, by the muscles that move them ; by the ecllular tissue entering into their eomposition ; and by the membrane that lines them. Their borders surround and bound the orifice of the mouth, and are united together on cither side; whieh points of union are denominated their commissures, or the anyles or corners of the mouth. Exteriorly, the lips are creased down the middle by perpendieular lines of division ; exhibit little papillary eminences upon their surface ; and present a softer and shorter eoating of hair tham what is found in ordinary places, out of whieh project several long straggling horse-hairs or whiskers. The inferior lip is altogether smaller, and is thimer in substance than the superior: and is distinguished by a remarkable prominence about its centre, from which grows a tuft of long coarse hairs, vulgarly designated as the beard.

Structure. The lips are both musenlar and glandular in their eomposition. Several small muscles (which have already come under our obscrvation*), arising from the maxillary bones, are inserted into them, and endow them with great self-mobility : one alone, eonsisting of cireular fibres, is interwoven in their substance without laving any other connection; this is denominated the orbicularis oris, or sphincter labiorum, from its use, which is that of elosing the mouth. This muscle is an antagonist to all the others; they raise or depress the lips, or draw them to one

[^16]side ; but this eontraets them, and oceasionally projects them in sueh a manner, that the horse can exert with them a prehensile power, whieh is most remarkably evinced at the time that he is picking up grain from a plain surface ; indeed, the act of nibbling our hands with his lips demonstrates this faeulty, and also the force with which he can employ it. The lips are lined by the same membrane that lines other parts of the eavity of the mouth. Beneath it are seated numerous mucous follicles that elevate it everywhere into little papilla, which are perforated by the mouths of these follicular glands, as may be readily seen with the naked eye by cverting either the superior or the inferior lip. The skin covering the lips is extremely thin, and possesses considerable vascularity and sensibility. To the tenuity of it, and to the shortness and scantiness of thcir pilous covering, is to be ascribed the superior sensitive faculty of these parts.

Cheeks.

The ehecks are constituted substantially of the masseter and buccinator muscles, eovered by the skin upon the outside, and the buccal membrane upon the inside. Their internal or membranous surface is studded with scattered mucous follicles, whose cxeretory orifices may be seen by cverting the part.

Gums.

The gums consist of dense, compact, prominent, polished masses, of the nature of periosteum, adhering so closcly and tenaciously to the teeth and the sides of their sockets, that it renders the one inseparable from the other but hy extraordinary mechanical foree. Like other parts of the eavity of the mouth, they receive a covering from the buecal membrane.

Palute.

Two distinct parts are included under this head ; the herd and the soft palate. The hard palate is constituted of the palatine processes of the superior and anterior maxillary bones : and of a firm, dense, periostenm-like substance, the vanlted, inward part of which is elevated into several semi-circular ridges, vulgarly called the burs. The fibres of this substance, which possess great tenaeity, are inserted into the pores of the bone in every part, but are most numerons and dense along the palatine suture; the interstices are filled up by a dense colhnlar tissuc, through the substance of which are dispersed the ramifications of the palatine ressels and nerves.

THE SOFT PALATE, sometimes called the velum palati, is
attached to the superior or creseentie border of the hard palate, the border formed by the palatine bones; from which the velum extends baekward and downward as far as the laryn., and there terminates over the epiglottis, in close apposition with that part, in a loose semi-circular edge. In consequenee sf the velum palati being long enough to meet the epiglottis, the eavity of the mouth has no communication with that of the nose-these two parts forming a perfect septum between them; hence it is that a horse cannot respire and vomit by the mouth like a human being, in whom the velum is so short that there is an open space left between it and the epighottis, through whieh air or aliment ean pass either upward or downward. The soft palate is composed of extensions of membrane from the nose and mouth, between whieh is interposed a pale, thin layer of muscular fibres (deseribed at page 103, under the appellation of circumflexus palati).

The velum performs the offiee of a valve : it prevents the food in the aet of swallowing from passing into the nose, and it conduets the air from the windpipe into that eavity, without permitting any to cscape into the mouth.

OF THE TONGUE,

The tongue, the principal organ eoneerned in taste and deghtition, is lodged in the month; filling the interspace between the branches of the inferior maxilla.

Duplicity. Like the other organs of sense, it is double ; being. composed of two parts, whose union is marked by a longitudinal crease along its middle, the divisions having no vaseular nor ncrous conncetion, nor in fact any intereommuieation whatever : so that an animal has to all intents and purposes two tongues, and apparently for the same reason that he has two cyes, two rars, und two nostrils. Anatomy, as far as we ean earry our researehes, demonstrates this : perhaps we have no better proof of it, however, than what happens in hemiplegia, a disease in which only one half of the body is paralytie: under these eircumstanees, in the human subjeet, the patient ean only see with one cye, use one arin, and taste with but one (and that the correspondent) side of the tongue.

Division. The tongue, in deseription, is eommonly divided into root, body, and apex: by the attaehments of the two former it is held in its situation; the latter is loose and uncomected.

Attachment. At its root, it is deeply and firmly inserted by sereral museles whieh arise chiefly from the os hyoides and the inferior maxilla: it is also eomeeted with the pharynx, and with the soft palate. From the sides of the lower jaw, separate layers
of the membrane of the mouth are reffected upon its body, forming by their junction a sort of bridle, which is thence extended to the symphysis: to this part, which serves to restrain the organ in its motions, the name of fremum linguce has been given.

Papille. The dorsum or anterior surface of this organ has a peuliar covering, which, though it appears to be continued from the buccal membrane, is a different structure altogether, and serves quite a different purpose. The surface of it is roughened, possessing a villous texture, every where studded with numerous little conical eminences, called papillce, which are supposed to be formed out of the extremitics of the nerves, and to be the especial seat of the sense of taste. These papillæ vary in size and figure, and are more abundant and larger upon the base and along the sides of the organ. Interspersed with them are a number of mucous follicles, whose apertures may be seen with the naked eye, through whieh a mucus is discharged upon the papillary surface kecping it continually moist, and rendering its pereeption of taste more acute.

Structure. The tongue is said to possess a covering of common integument; and ecrtainly its strong compact tunic has all the appearanees of skin, and presents the commont tests of it: the external layer is laminated, is bloodless, is insensible; the internal or substantial part is tough, fibrous, vaseular, and sensitive, in fact, is like cutis; and the intermediate or comnceting matcrial is delieate, soft, and retieular, and forms a bed for the lodgement of the papillæ. The substanec of the tongue itself consists of an inter-minion, or rather an incorporation of its museles, the fibres of which interseet one another, and take a varicty of dircetions ; but intermixed with them is a fine adipose tissuc to which is owing the flabby softness of the organ, and the peculiar aspect it exlibits when eut into.

Use. Though the tongue is emphatically denominated, from its essential claaracter, the organ of taste, it is not the only part that possesses this faculty ; for the palate, the pharynx, and the œsophagus, it is believed, participate in it. The tonguc, in addition to possessing this faculty, disposes of the food during mandueation, and, when sufficiently masticated, collects and thrusts it, portion after portion, into the pharynx : and furthermore, at the time the animal is drinking, it is not only employed as an instrument of suetion, but also as a eanal along whieh the fluid ascends into the pharynx.

Organization. Every part of this organ is plentifully supplied with blood. Its arteries are the lingual, branches of large size from the external carotids. The blood-vessels of cither side are gencrally found free from anastomosis with one another : if either
of the arterial trunks is filled with injection, it rarely happens that the opposite half of the organ receives any colouring from it. Its nerves are the ninth pair, which ruu to the muscles, and a considerablc branch from the fifth pair, in whose extreme ramifications, which are distributed to the papillæ, the perception of taste is supposed to be inherent.

OF THE SALIYARY GLANDS.

Number and Names. The salivary glands, properly so called, are six in number, three upon each side of the head;-the parotid, the submaxillary, and the sublingual.

THE PAROTID, the largest of these glands, so called from being placed near the ear, lies within a hollow space at the upper and back part of the head, bounded by the branch of the lower jaw before, and the petrous portion of the temporal bone behind: it extends as high up as the root of the ear, and as low down as the angle of the jaw, by which latter a small portion of it is concealed. This gland, like the others of the same class, is enveloped in a case of dense cellular membranc, and is constituted, in structure, of many little lobes or lobuli, comnceted together by processes transmitted into the interior from this cellular covering. Every lobulus is composed of a distinct sct of sceretory ressels, from which numerous tubuli arise, conjoin, and at length form one main branch; these branches, which correspond in number to the lobuli, unite and re-unite until they end in one common excretory duct. The duct emcrges from the inferior part of the gland, runs along the inncr part of the angle of the jaw, and crosses over the posterior edge of the bouc immediately above or behind the submaxillary artery and vein: in the remainder of its course it corresponds to the border of the masseter, and, about opposite to the sccond anterior molar tooth, pierces obliquely the buccinator, and terminates by a tubercular eminence upon the internal surface of the buccal membrane.*

THE SUBMAXILLARY GLAND, of smaller volume than the parotid, lies in the space between the angles of the jaw, to which, and to the muscles thereabouts, it is looscly attached by cellular membrane : a portion of it is also generally found pro-

[^17]ceeding backward as far as the trachea. Its structure is similar to that of the parotid gland. The submaxiliary duct issues near the eentre of the gland, erceps along the under and inner border of the tongue, elose to the lower edge of the sublingual gland, and terminates by a little mammiform elongation of membrane, vulgarly called the barb (barbillon) or pap, upon the fremum lingure, about half an inch above its attachment to the symphysis. Among the other ridiculous and mischevious practices of farriers is that of snipping off these processes. They were seemingly designed as valves, to prevent the insinuation of alimentary matters into the ducts. The coats of this vessel are extremely thin and transluseent.

THE SUBLINGUAL GLAND is still smaller in volume than the submaxillary, though, altogether, one much resembles the other in figure. It lics along the under part of the tonguc, corered by the buecal membrane, where, from the lobular unerenness it gives to the surface, its situation is well marked. Its duets penctrate the membranc by the side of the frenum lingur.

The use of the salivary glands is to secrete a saline limpid fluid, callerl, saliva; which is conveyed and poured by their duets into the mouth during manducation : here it is mixed with the food, mollifying it, and rendering it more easy of digestion, and at the same time faeilitating the passage of the alimentary bolus into the stomach.

OF THE PHARYNX.

The pharynx is a funnel-shaped sac, lodged in the throat for the reception of the foorl.

Situation. The pharynx is contiguous to the guttural pouches, superiorly ; the larynx, inferiorly; and the anterior portions of the parotid glands and brauches of the jaw, laterally. Posteriorly, it is continuous in substance with the oesophagus : anteriorly, it presents an opening to the mouth.

Attachment. In front, to the os hyoides and palate bones; below, to the larynx ; behind, it grows narrow and ends in the œsophagus.

Structure. The pharyux is in part muscular and in part membranous. Of the museles belonging to it (described at page 100) the constrietors are those that more immediately enter into its composition. They are so disposed as to give the membrane forming the sae a complete fleshy covering, whieh is rendered the more uniform by their proximate fibres being indistinguishably blended: thus the museles form the most substantial part of the pharynx. The lining membrane, which is of the meous class, is soft and thick in substance, and palely tinged with red

DIGESTIVE SYSTEM.
in colour, and is papillary and in places rugose upon its surface; being perforated by the ducts of numerous follicles which diseharge a mucus that preserves glibness and moisture to its interior. The membrane itself is (where it meets them) continuous both with the buceal membrane and that which lines the esophagus.

Although the pharynx is designed for the reception of the food, it does not open directly into the mouth : the two cavities are separated from each other by the soft palate and epiglottis. Except in the act of swallowing and eoughing, they have no communication : in the former case, the velum is pressed upward by the food against the posterior openings of the nose ; in the latter, the larynx is depressed by a convulsive aetion of the museles in the vicinity. Into the cavity above the velum there are four openings-two of the chambers of the nose, one of the larynx, and one of the esophagus: the eustachian tubes do not open into the pharynx ; they end in two large membranous pouehes at the upper part of the fauces. The opening leading into the esophagus is constantly elosed, except when alimentary matters are passing to or from the stomach; so that air received into the pharynx through the nose can pass nowhere else but in to the windpipe ; but if food be returned from the stomaeh, it will be regurgitated into the nose ; at least, only that portion of it which enters the pharynx at the moment that the larynx is depressed in the act of vomiting, ean be thrown into the mouth : in the same way that air is in the act of eoughing.

OF THE ESOPHAGUS.

The esophagus, or gullet, is the tube through which the food is condueted from the pharyme into the stomaeh.

Course. It has its beginning from the pharynx, and is there placed at the upper and baek part of the larynx, taking the first part of its eourse above and behind the trachea, between that tube and the eervical vertebrie. Having proceeded a short way down, it inclines to the left, and soon after makes its appearance altogether on the left side of the trachea, and continues so placed during the remainder of its passage down the neek: this explains why we look for the bolus during the act of swallowing on the left, and not on the right side of the animal. In eompany with the traehea, the esophagus enters the thorax between the first two ribs, at whiel place, running above that tube, it quits its companion for the superior mediastinum, which cavity it traverses below and a little to the right of the posterior aorta. Immediately beneath the decussation of the crura, the esophagus
pierees the substance of the diaphragm, and enters the stomaeh, at a right angle, about the ecntre of its upper and anterior part.

Structure. The œsophagus presents, externally, a strong, red, muscular eoat; internally, one remarkable for its whiteness, whieh in its nature is cuticular. The museular eoat is eomposed of two orders of fibres-a longitudinal, forming an outward layer ; and a eireular, an inward layer: the former will shorten the tube, and perhaps dilate it for the reeeption of food ; the latter, by suceessive contractions of the canal, will transmit the food into the stomach. The seeond, or internal coat, is ealled the eutienlar, from its analogy to the euticle of the skin. Although it is continuous with the membrane of the pharynx, it is of a totally different composition : it is thimer, but it it mueh more eompaet and stronger in its texture, and, I believe, is both insensible and inorganie. It adheres to the museular eovering by a fine ecllular tissue, the extensibility of whieh gives full play to the latter; and admits, during the empty or collapsed state of the tube, of the former being thrown into many longitudinal plice or folds; as is demonstrated by making a transverse seetion of the tube: such appearances result from the contraction of the one eoat, and the want of proportionate clasticity in the other. Between the two tunies, embedded amongst the conneeting eellular tissue, are numerous follicular glands, whose offiec is to pour forth a mueous seeretion upon the internal surfaee of the lining membrane to render the passage of food along it glib and free from any friction.

OF THE ABDOMEN.

In eonsequenee of the organs next to be deseribed being eontained in the eavity of the abdomen, it will be neeessary to examine this eavity, in order to understand their relative situation and eonnexioli.

The abdomen, or belly, is formed prineipally of soft parts ; which parts eonsist, in the main, of the four pairs of abdominal museles (deseribed at page 121) : at least, they constitute its broad superfieies below and laterally. Its anterior part (where the most important viseera are situated, viz. the stomael and liver) is bounded at the sides by the false ribs, and in front by the diaphragm; its posterior compartment (eontaining the organs of generation), by the pelvis; its superior, by the dorsal and lumbar vertebre, and museles belonging to the loins.

Secing that the contained organs lie altogether in this eavity, whieh is one of eapacious dimensions and without any natural division in it, anatomists have found it neeessary (in order to
render their deseriptions definitive) to divide the eavity artificially; and they have done this by drawing certain imaginary lines over its superfieies, which are supposed, by means of imaginary planes let down perpendicularly from them, to intersect or partition the cavity into so many eompartments, to whieh the name of regions has been assigned.

The primary and grand division of the abdomen is into three regions-the anterior, or epigastric; the middle, or umbilical; and the posterior, or hypogastric.

The epigastric region is the spaee comprehended between the ensiform cartilage and an imaginary line drawn across the abdomen, posteriorly to the cartilages of the false ribs: it is subdivided into three others-the scrobiculus cordis, the space included between the ribs; and the right and left hypochondria, the lateral cavities or boundaries of it.

The umbilical region extends in breadth from the line just mentioned to another drawn across from one anterior spinous process of the ileum to the other: it is equally subdivided into three others by transverse lines, the middle of which retains the name of umbilical region, while the lateral are called the lumbar regions.

The hypogastric region extends over the remainder of the belly. It is also subdivided into three : the part included between the spinous processes of the ilea and the pubes receives the name of regio pubis; the latter subdivisions, of iliac regions.

The abdominal viscera of the horse differ from those of the human subjeet chiefly in the shape and comparative size of the stomach and the colon : their general relative situation and connection we shall find to be much the same in both.

Having opened the cavity of the abdomen, by making a crucial incision through its muscular parietes, we perceive that its interior, and the viseera lying within it, present an uniform glistening surface; are smooth, polished, humid, and slippery to the feel ; and are bedewed with a limpid exudation : all which arises from their possessing a general investing membrane of the same (serous) class as the pleura, and which appears, in most respects, to perform similar uses. To this part the name of peritoneum has been given.

Peritoneum.

The peritoneum is the membranc, then, that lines the cavity of the abdomen, and is reflected upon the eontained visecra. When I introduce my hand into the belly, every surface I apply it to being eovered by peritoncum, I am not, in truth, able to actually
touch any of the viscera within it : this, we know, is preciscly the same case in regard to the pleura.

Texture. The texture of this membrane also is like that of the pleura. Strip it ofl from any part, and it will prove rough and shaggy, exteriorly, from the presence of numerous little fioceulent adhesions; and this shows the nature of its attachment to the screral parts it invests; viz. by cellular tissuc. But its interior surface is everywhere smooth, glib, and humid; and this is assiguable to two causes- to the uniformity and compactness of its texture, and to the exhalation of a scrous vapour, which after death becomes condensed, and which we always find more or less of, in the liquid state, between the different visecra. The peritoneum appears to be composed of condensed cellular membrane, interworen with numerous blood-vessels, some nerves, and many absorbents. It is extremely clastic, whereby it accommodates itself, without corrugation, to the perpetually varying capacity of the cavity, as well as the frequent change of volume and relative situation of many of the viscera : indecd, at certaiu times, it must admit of very considerable extension ; e. g. in the mare during gestation, and in ascites.

Ligaments. What arc called the ligaments of the peritoneum, are certain parts which in the foetus were vessels of importance, but which in the adult degencrate into impervious chords, and for this reason have their name altered. The anterior ligament or ligamentum rotundum (originally the umbilical vein) runs between the peritoneum and abdominal museles, from the umbilicus, or navel, to the liver. The two posterior ligaments (consisting of what once were the umbilical arterics and the urachus) pass in the same manner from the navel to the bladder ; the former trarersing its sides to join the iliac arteries, the latter entering the substance of the bladder at the very apex of its fundus. In the young animal it generally lappens that these yessels are pervious for a considerable distance; but then their caliber is exceedingly reduced in size, their coats being proportionatcly thickened.

Use. The principal use of the peritoneum is to secrete a serous fluid-a fluid that exists in a vaporous state during life, for the lubrication of every part of the membrane; in consequence of which those visccra that arc continually moving within the belly glide over one another not only without friction, but without exciting the least consciousness of their motions on the part of the animal himself. In addition to this, the peritoneum furnishes most of the viscera with a complete external tunic, and theroby adds strength and firmness to their several textures; it attaches, and supports, and confines those visecra (within cer-
tain limits) in their respective places; and it strengthens the abdominal cavity altogether by its uninterrupted extension every where through and around it.

Of the Situation of the Viscera of the Abdomen.

When the eavity of the belly is laid open, the large intestines present themselves first to view ; consequently they are placed undermost when the animal is standing, and are lying immediately in contact with the abdominal muscles. About the middle of the cavity, the apex of the cecum is secn protruding from the body of the intestinc of that name, which is extended to the right side, encircled by the colon. Gencrally speaking, the small intestines are not seen on first reflecting the muscular flaps: this, however, will depend on the state of the large; for if they are flaccid some of the small guts will insinuate themselves between the crecum and colon : should we not sce them, however, in the first instance, they may at once be brought into view by turning. the cacum to the right side.

The stomach is principally lodged in the left hypochondriac region, though a part of it cxtends into the epigastric, and there crosses the spinc. Its anterior or convex part lies against the diaplnagm and the false ribs of the left side; its posterior or concave part is concealed by the intestines; its lower surface is invested by omentum ; its left extremity has the spleen attached to it, which viscus also extends along its great curvature ; and its right end is in contact with the left and middle lobes of the liver.

Prior to proceeding to the situation and course of the intestines, it becomes necessary to anticipate a little in onr descriptions, by observing here, that anatomists have divided these viscera into smull and large ; and that the former, begiming from the stomach, comprehend three subdivisions--the duodemum, jejumm, and ileum; the latter, commencing from the termination of the small, likewise threc-the crecum, colon, and rectum.

The duodenum takes its begiming from the riglit extremity of the stomach, and soon after forms a curvature around the head of the pancreas; having the liver above, and the great arch of the colon below it. Having reached the concave part of the liver, it makes a sudden turn backward and to the right, and becomes attached to the right kidney; lastly, it crosses the spine, between the roots of the mesentery and mesocolon, to the left side, where it takes the name of jejunum. This gut, during its course, is so closely bound down by peritoncum, that its motions must prove exceeding limited ; so that it will always bear pretty
nearly the same relative situation in regard to those visecra whose motions, like its own, are confined-the stomach, the liver, and the kidney.

The jejunum and ileum (two intestines that do not essentially differ from each other, except that the latter is one fifth longer than the former) constitute together numerous convolutions, which are lodged principally in the umbilical region, where they are encircled and in part concealed by the colon. They are but loosely connceted to the spine by peritoneum ; so that (unlike the duodenum whose attachments are so short) they can move in various dircetions and to a considerable extent: a circumstance, of course, that will materially affect their relative situation.

The ileum, towards the right side of the eavity, terminates in a part of the large intestines, which, from its continuity with the colon, to which and to the excum it appears to give origin, has been denominated the cecum caput coli, or blind head of the colon. From this part procceds downward the body of the cescum, and this accounts for its apex protruding in the manner already described, amid the convolutions of the colon.

The colon, taking its origin from the same part as the cœeum, at first passes downward, and encircles the body of the eœcum, running both before and behind that gut: next, it reflects upon itself, and makes a sceond turn like the first; so that this part, which may be ealled its great arch, is double. That portion of the sccond flexure of the intestine which forms the upper and anterior part of the arch, and which fills up the bottom of the space between the cartilages of the false ribs, is of very considerable volume ; in its course, however, to the left side of the spinc, it becomes again contracted, aud is there attached to the spleen, with which it now runs in contact. Under the left kidney it makes a sudden curve backward, and becomes reflected upon itself somewhat like the letter S : from which peculiarity of figure this part is called the sigmoid flexure of the colon. It is worthy of remark here, that although the colon and cecum are intestines that possess considcrable motion, they are so united that they cannot alter their places materially in regard to each olher: it may be added also, that they will invariably oceupy the lowermost parts of the abdominal cavity.

Rectum.-As soon as the colon has reached the basis of the sacrum, it ends, and the intestine assumes the name of rectum : the remaining portion of gut, howerer, though so called, is not perfectly straight, but follows the bend of that bone. It terminates by an enlarged extremity in the anus.

The omextum (the intestines being drawn to one side) is
now brought into view，investing the lower part of the stomach； to the great eurvature of whieh，and to that portion of eolon whieh erosses the spine to form the sigmoid flexure（its last turn），it is attached．In the horse，the omentum is small，and seldom contains mueh adipose matter．It consists of four layers of peritoneum：two derived from the stomaeh，and two fiom the eolon；whieh are disposed in a manner that will be pointed out when the refleetion of that membrane is eonsidered．

Mesentery．The small intestines are loosely eomneeted to the spine by a duplicature of peritoneum，ealled the mesentery； the eolon is attaehed in like manner to the bone by a produc－ tion of the same membrane，named the mesocolon ；and the rectum is eonfined in its place by a similar refleetion，by some deseribed as the mesorectum．

The liver is，in major part，situated in the right hypoehon－ driae region，though some part of it lies in the epigastric，and a small portion extends between the stomael and diaphragm into the left hypoehondriae region．This viseus is eonfined in its situation by means of，what are named，its ligaments；whieh， with the exeeption of one，are nothing more than productions of peritoneum．The one attaehing the right lobe to the diaphragm， is ealled the right ligament；a similar one eonneeting the left to it，the left ligament；between the diaphragm and its middle lobe，we find the suspensory ligament；and immediately above that，surrounding the posterior vena eava，the coronary ligament ： lastly，within the folds of the suspensory ligament are the re－ mains of the umbilieal vein，to whieh the name of round liga－ ment has been given．The large lobe of this gland is conecaled by the great areh of the colon；its left and middle lobes are in eontaet with the stomaeh，and its right with the duodenum and upper margin of the right kidney ：to all of whiel it has perito－ neal attachments．

Tiee spleen is situated in the left hypoehondriae region， lying there within the eoneavities of the false ribs，with the lindermost eartilages of whieh its margin lineally eorresponds； so that if the abdomen were piereed from the left side posteriorly to the last rib，this organ would eseape injury．It is attached to the left half of the great curvature of the stomaeh ；but the ehief bulk of it lies behind and rather above the stomach．Its an－ terior end lies in contact with the left lobe of the liver：its posterior is eomected to the left kidney，and eoneealed by the convolutions of the eolon．

Pancreas．－The most ready way to get a view of the panereas is to tear through the omentum．It lies aeross the spine，within the epigastrie region，underneath the crura of the
diaphragm, immediately behind and a little above the small curvature of the stomaeh. Its liead is surrounded by the duodenum, with whieh, and with the stomael and eolon, it is chiefly eonnceted; and its body whieh is piereed by the vena porte, has one attaeliment to the spleen, another to the left kidney.

Of the Reflection of the Peritoneum.

In order that the various eonnexions and relations of the peritoneum may be perfectly understood, it is usual, at this time, to trace (what the Seliools call) its reflections; by whieh is meant, to show the way in which it lines the cavity, and afterwards invests the different visecra eontained in it. The peritoneum, though a perfeet sac, taken as a whole, is not, as far as regards the eavity of the belly, a eireumseribed bag; at least, it is not in the male, subsequent to the deseent of the testieles; for those organs in their passage carry down a portion of the membrane into the serotum, whercby the cavity of the tunier vaginalis (in which the testiele is contained) becomes continuous with that of the abdomen ; and ever afterwards the two have frec eommunieation, so that water or air will readily pass from the one to the other : notwithstanding this, however, the integrity of the peritoneum itself remains still unimpaired. In eonsequcnee, therefore, of the mombrane being continuous at all points, it posscssing, the same as a bag without an opening, weither begimning nor cuding, it imports but little from what part of it deseription is commeneed. We may begin at the inferior part, where it gives a lining to the abdominal museles, passing from thein over the pubes upon the fundus of the bladder, from whieh it is extended on cither side to the parietes of the pelvis, whieh extensions are called the vesical ligements. From the fundus it continues round upon the supcrior surface of the bladder, as far backward as its cervix : at the same time aseending to inelose the rectum and attaeh it to the saerum; thus forming the mesorectum. From the saerum it advanees upon the lumbar vertebree, which it soon after quits to invest the colon, and afterwards returns to the spine, in this mamer forming the mesocolon. It descends from the spine a sccond time, to invest the whole mass of sinall intestines (and also the areh of the colon); and having done so, returns again, and thus forms the mesentery; at least one layer of it, the other coming up to meet this from off the surface of the pancreas. Having reaehed the spine, these two layers unite by adhesion, and become refleeted together in a direetion downward, and afterwards backward, spreading under the bowels for some short way posteriorly, and then doubling
over upon themselves and turning back and advaneing again, and running to the stomaeh, giving that a covering: in this mamer the loose floating production of peritoneum denominated the omentum, is formed: which eonsequently consists of four layers of peritoneum. From the stomach the membrane spreads right and left: the left invests the spleen; the right passes to the liver, and having given the gland a eomplete eovering, is continued upon the posterior surface of the diaphragm : the several portions of peritoneum eonnceting the one to the other, forming the ligaments of the liver. The part of the membrane whieh eomes off from the posterior parts of the liver extends from it to the duodenum, and from that to the pancreas, to go to form the anterior layer of the mesentery. The kidneys and the panereas eamot be said to receire peritoncal coverings; inasmuel as the membrane simply passes over their unattached surfaces.

OF THE STOMACH.

The stomach is a pouch or bag, formed for the reception of the food as it passes through the esophagus.

Importance. It is an organ of singular importance in the body; and the strongest proof, probably, we have of its being so, is the universality of its existenee in animals, from the highest to the lowest amongst them : this is not the ease with the brain, mueh less with the heart ; and it was this eireumstance that led Mr. Hunter to regard the presenee of a stomach as the ehief characteristie between animals and regetables. The stomaeh has been empliatieally denominated the organ of digestion; beeause within it, the aliment transmitted by the esophagus in a erude state, undergoes its primary and principal ehange in a proeess the objeet of whieh is to convert it into material for the support of the body.

Situation, Position, and Plenitude.-The stomaeh is situated prineipally in the left hypochondrinm, which it nearly fills, extending more or less into the epigastrimm, according to its state of plenitude. Its anterior part lies in contact with the liver' ; its left extremity is opposed to the diaphragm and spleen, and it lies in part npon the small, bnt mainly upon the large intestines. It is evident that the full and empty conditions of the stomach must affect its position in relation to the neighbonring visecra, and that the motions of the diaphragm will alter its sitnation ; for during the reees of that muscle, it must be pmshed more or less into the umbilical region. On the other hand, the action of the diaphragm will be impeded by distension of the abdominal viseera, and more particularly by fulncss of the stomach: in-
ereased pressure must eoifnteraet its efforts to recede, and the thorax, monder these eireumstances, must have reeourse to other inspiratory agents-the intereostal muscles, and those passing from the ribs to the fore extremitics. This aceomen for the inaptitude of horses recently fed to undergo violent exertion, and the increased embarrassment in respiration that hard work then oceasions - why they should be sooner blown, and why they will, if pressed, absolutely sink from premature exhaustion : henee the practice of keeping hunters short of water, and of feceling them unusually early, and on corn only, on the morning of hunting.

Form. The stomach has been not inaptly likened to the airbag of a set of bag-pipes : I should probably fail in conveying so good an idea of its shape by any other resemblanec.

Division. For the eonvenienec of deseription, it has been divided into several parts: e.g. an upper and an under surface; a left or large extremity, whieh is formed into a large blind pouch or cul-de-sac, ealled its fundus; and a right or small end, whieh opens with a bend into the duodenum or first intestiuc ; a large curvature, to which the spleen is attached ; and a small one, extending between its two openings: the former of these eurvatures in the living animal, is turned upwards and baek. wards; the latter, downwards and forwards.

Orifices. The stomaeh has two orifices. One, in whieh the esophagus terminates, is situated about the eentre of its anterior part, at the right extremity of the small eurvature, and takes the name of cardia: it is eonstantly elosed but when matters are passing into or out of the organ. The other is plaeed at the termination of the right or small extremity, and opens into the duodenum: though it has the power of elosing, this one is mostly open.

Comexion. The stomaeh is fastened in its place by its uniou with the esophagus and duodenum. It has other comexions, but they are of a peritoneal nature: viz. at its great curvature, it is attaehed to the spleen and eolon by the omentum, at the eardia to the diaphragm by a fold of peritoneum, and near its pyrolic end to the liver by an extension of the same membrane. The esophagus, previously to entering the stomach, makes a sudden ineurvation downward, by whieh an angle of sueh a nature is formed between them at their junction as to have the effeet of a valve in preventing any regurgitation of aliment.

Volume. Perhaps no animal, in proportion to its size, has so small a stomaeh as the horse. Let us only compare it with that of the human subjeet: the stomach of a middle-sized man (a man weighing twelve stonc) will contain more than three quarts of water; whereas that of all ordinary-sized horse, whose body
exceeds his in weight and bulk by cight times, will not hold more than three gallons, or four times the quantity of the man's. We are to bear in mind, howerer, that the stomach, like other hollow museles, has the power of aecommodating itself to the bulk of its contained matters; so that we are not at liberty to draw eonelusions of its eomparative volume barely from the state of plenitude in whieh we may find it. At another time I shall endeavour to show why Nature has given so small a stomach to the horse ; an animal whose consumption of food we know to be enormous.

Structure. The stomaeh is eomposed of four layers of substance, termed coats. The first is that whieh it derives from the peritoneum, thenee ealled the peritoneal coat : at the greater eurvature the layers coming from the omentum disunite and scparate, and spread uniformly over both surfaces of the organ. In texture, this coat is the same as the parietal portion of the membrane, and, like that, exhales a serous vapour from its surfaee, to obviate frietion between the stomach and those visecra with whieh it lies in eontaet. Inwardly, the peritoneal adheres, by a fine dense cellular tissue, to the next tunie.

The second or muscular coat, lies immediately underneath the peritoneal. It is composed of two orders of fibres, which may be most plainly seen when the stomaeh is distended with air, and its peritoneal eovering stripped off. The exterior fibres run in a longitudinal dircetion, and are fewer in number and weaker than the interior, which take a eireular course, and are strong and well-marked, partieularly about the pylorie extremity, where they appear to be blended with those of the duodenum: from this arrangement of the fibres, the earity ean be diminished in every dimension.* If we slit open the pylorus, we shall find a valvular projeetion, forming the boundary line, internally, between the stomaeh and the intestine: this is ealled the ralve of the pylorus; it is made up of a cireular prodnetion of museular fibres enveloped within a fold of the internal eoat. Though this valve certainly tends to prevent the return of alimentary matter from the intestines, yet do physiologists not regard this as its principal use. They beliere that its operation is rather that of

[^18]preventing the eseape or expulsion from the stomach of any erude or indigested aliment-of solid matters that have not been duly softened and dissolved-into the intestinal eanal: I say solid matters, for fluids pass freely through it at all times into the intestines, without detention in the stomaeh. Actual experiment evinees that they do: but we may also satisfy ourselves of this faet by contrasting the quantity of water a horse that is thirsty will take at a single draught with the known eapaeity of his stomaeh.

Cuticular. The stomach of the horse-speeies differs remarkably from that, I believe, of all other quadrupeds, with the exeeption of the graminivorons monoyustric, in haring a partial cuticular lining, that may be reekoned as a third eoat: by turning the viseus inside out, or by slitting it open along it great eurvature, this part, so eonspicuous for its white and wrinkled surfaec, will be broadly exposed to view. And now we ean traee its welldefined border, forming the boundary line between it and the other internal coat, the eourse of which is waving or serpentine, something like the figure of an S . This lining extends over the eul-de-sac or left extremity of the stomach, covering not quite one half of its entire internal surfaee. We eommonly find it thrown into wrinkles, teelnieally termed rugce, which in some are so disposed, as to form a sort of net-work; a condition that is owing to its not being possessed of suffieient elasticity to aceommodate itself to the varying eapaeity of the organ. This eutieular substanec is of the same nature as the lining of the esophagus, with whieh, indeed, at the eardia it is eontinnous. Numerous small openings are visible upon its immer surface, through which issues a nueous fluid, the produet of follicular glands underneath, whieh serves a use in the dicestive process.

Thie fourth, mucous, villous, or other internal cout, extends over that part of the stomach left mocenpied by the eutieular. Its surface is of a yellowish east, inelining in places to a pod. It is soft, fine, and cellular in its texture, and possesses eonsiderable vaseularity. When elosely and aitentively examined, it is fomed to present inwardly, numerons little ragged or shaggy proeesses, which, from their giving it the appearanee of velvet, have received the name of villi: henee the cpithet, villous. They appear to be eomposed principally of the minute ramifications of those bloord-ressels which we believe to perform the office of the gastrie seeretion: by some the villi are supposed to have numerous ininute glands in their composition ; but, in point of faet, we do not know precisely what is their intimate strueture.* This

[^19]coat, as well as the eutieular, oeeasionally exhibits numerous rugae upon its internal surface, which disappear upon extension.

Organization. For no organ, with the exception of the brain, has Nature made more ample prorision to insure a supply of hlood than for this. Its arteries are--the superior gastric, whieh is derived from the posterior aorta, and is distributed to its small curvature, and upper and under surfaces; the right and lef't yastric, whieh braneh from the hepatie and splenie arteries, and take their course along its great eurvature ; besides numerous small ramifieations from the trunk of the splenie, ealled the vasa brevia. Most of these vessels take a tortuous eourse, and by so doing aecommodate themselves to the varying volume of the organ. Their ultimate distribution is to the villous lining, in whieh they ramify to great minuteness, and exist in sneh abundanee as to render it uniformly red when injeeted with size and vermilion. The veins, whieh are somewhat larger in size than the arteries, and have no valves, terminate in the vena porte. The stomaeh possesses numerous absorbents, and is well supplied with nerves from the eighth pair and sympathetie.

of THE INTESTINES.

The intestines are eylindrieal tubes of extremely unequal rolumes, forming one continued but convoluted eanal from the pylorie orifice of the stomaeh to the anus; in which, the proeess of digestion, begm in the stomaeh, is eompleted.

Situation. These risecra, taken- collectively, eannot be said to be lodged in any partieular regions: they are spread over prineipally the inferior parts of the earity of the abdomen, immediately supported by the abdominal museles, and are found, one or more of them, in every region of a earity, of most of whieh they oeeupy the greater spaee.

Length. The intestives of the horse are nincty feet long, or between eight and nine times the length of his body: those of the human subjeet are about thirty-four feet loug, or six times the length of the body.*
one knows that the stomach does seerete mucus, and a peculiar liquor; but I do not, for my own part, see the sources of this. We see distinet sonrees in the intestines, but we do not in the stomach; at least I cannot.Abernethy's Lecteres, in the Lancet.

* I was at first undetermined in my mind how I shonld draw this comparison. I put down the ordinary leight of men at 5 feet 8 inches. I then extended a line from the forehead, above the orbital areh, of a middle-sized lorse, to the point of the hip, and thenee carricd it to the gromed: this I found to measure 11 feet. These, with the relative lengths of the intestinal

Division. These viscera are divided into the small and large intestines: the latter, as their name implies, exceed in volume the former. Each of these divisions is subdivided into three parts ; and these have each of them a particular name. I shall take into consideration the general structure of these tubes, in which they all agree, before I proceed to a detail of their differences.

General Structure. An intestine is composed of three coats; the first or external is called the peritoneal; the second or middle, the muscular ; and the third or internal, the villous or mucous coat.

The peritoneal coat is simply a covering continued from the peritoneum itself, which includes the mesenteric vessels and nerves in its way to the intestines, and connects them to the spine, to one another, and to other viscera. It intimately adheres by fine cellular membrane to the muscular coat underneath. It serves to strengthen the tubes; to furnish a lubricating serous perspiration ; and cither to restrain their motions within certain limits, or to confine them altogether to their places.

The muscular coat, like that of the stomach, is composed of two orders of fibres :-a longitudinal, running immediatcly underneath the peritoncum, and consisting of a fow pale scattered fasciculi; and a circular, of which the fibres are placed more inwardly, are stronger, more numerous, and more distinct. By a combination of both their actions, the intestine may be contracted in every direction; for while the former will have a tendency to shorten it, the latter order of fibres will operate forcibly in diminishing the caliber of its canal : it is the circular fibres, however, that are principally called on for action ; by their operation the aliment is propelled gradually through them.

The villous or mucous coat of the intestines, though in gencral appearance it resembles the one of the stomach, differs from it in many essential particulars. It is also of infinitely greater extent, presenting a surface for absorption and secretion, excceding even that of the common integuments. Its villi (more especially in the small intestines), instead of consisting principally of minute blood-vesscls, are crowded with lacteals, which are supposed to take their origin from them by open mouths. And besides the villi, its interior is studded with numerous glandules, the size and seats of which vary somewhat in the different in-

[^20]testines: these secrete a glairy, mucous fluid, whieh they pour forth mpon the surfaee of the membrane, in order to sheath and defend it from the aerimony or meehanieal irritation of the aliment (as well as from any supplementary mechanical or ehemieal irritant), and also to facilitate its passage through them. In the small intestines of the human suljeet, this coat is collected into numerous transverse folds, called valuulce comiventes, from their being supposed to lave the cffect of so many imperfect valves: but in those of the horse no such structure exists, it not being requisite (for reasons 1 shall hereafter give) either to retard the passage of the aliment here, or to multiply the laeteal apparatus. Having described the appearanee and strueture of the intestines in yencral, I shall proeeed to point out the peculiarities of them, beginning with the

Small Intestines.

The small intestines are mueh smaller and also more uniform in their ealiber than the large, and execed them greatly in length. They are eonstituted of three parts or subdivisions, named the duodenum, jejumum, and ileum.

TIIE DUODENUM is more eapaeious than either of the others, especially at its begiming, but in length is much inferior to them : its name* is inapplicable in the horse, for it is nearly twiee twelve inehes long. I have already given its situation, course, and eonnections-I have no need therefore to enter again into their detail here ; all I wish to repeat is, that it begins at the pylorus of the stomael, and, having erossed the spine, terminates in the jejunum. It not only differs from the others in being larger and shorter, and in being straighter, but in being redder-more vaseular than either of them. It is however at once distinguished from all the other guts, both large and small, by receiving the duets of two important glands, situated near it, viz., the liver and panereas: these tubes terminate by one common orifice upon its internal eoat, about the distance of six inches from the pylorus. Unlike the jejunum or ileum, the duodenum reeeives only a partial eovering from the peritoneum: the membrane is reflected only upon its inferior and lateral parts; the superior surface being attached to the liver, kidney, and spine, by eellular tissue only. Its motions are exeeedingly limited.

THE JEJUNUM, paler, less in ealiber, and mueh longer

[^21]than the duodenum, is extremely tortuous in its course, floating about loosely within the eavity together with the convolutions of the ilcum : there is, in fact, little or no distinction between these guts, except that the latter, by an arbitrary division, is longer by one fifth than the former.

THE ILEUM is the longest of the small (and indeed of all the) intestincs: it forms the greater part of that convoluted tube which lies prineipally in the umbilieal region. Probably it is still less vaseular (being somewhat paler) than the jejunum. It is certainly less in caliber towards its posterior extremity ; which ends, rather abruptly, in the begiming of the large intestines. The jejunum and ileum being attached to the spine by that loose doubling of peritoneum, the mesentery, ean move about within the earity, regulating their movements and relative position according to the volume of the stomach and stage of the digestive process.

Organization. The small intestines are supplich with blood by the unterior mesenteric artery; a ressel of large size, that, after having divided and subdivided many times, sends off numerous small branches, which ramify to great minuteness between their musenlar and villous coats. Their veins, which have no valves, return the blood into the vena portre. The nerves come from the mesenteric plexus.

Corpucity. The small intestines altogether will contain about cleven gallons of fluid.

Laryc Intestines.

The large intestines are shorter in length, but considerably more bulky in volume than the small. They also differ remarkably from the latter in their general appearance-in being puekered into numerous plaits or folds. This peculiarity is oecasioned by some longitudinal muscular bands, which, not being so long as the rest of the intestine, pucker its coats, and contract them into folds: to these bands are appended numberless little, fatty processes, to which anatomists have given the name of appendiculce pinguedinose. Interiorly, the large intestine is divided into many little elliptical pouehes, denominated cells, with partitions between them; which, though they appear to answer similar purposes as the valvulze comniventes of the human intestine, riz., the retardation of the passage of the contents and the augmentation of the surface for absorption, differ essentially from them in being constituted of all the coats of the gut. In other respects, the structure of the large and small guts is not materially diffcrent.

Subdivision. Tlic large intestines, like the small, are three in number, viz., the crecum, colon, and rectum: they do not, however, bear the same degree of resemblance, one to another, as the divisions of the small.

TIIE CECUM or biind gut, the first subdivision of the large intestines, originates in a bulky capacious head or receptacle, called the cecom caput coli, or blind head of the colon, from which it extends downward, and terminates in a blind extremity or cul-de-sac: from this part, in the human subject, procceds a slender elongation of gut, about the size of a quill, denominated the appendix vermiformis. Before we proceed further in the description of the crecum, it is proper to notice the manner in which the small are united to the large intestines. The termination of the ilcum projcets for some way into the caput coli, and does so at right angles both with it and with the ceccum, so that the contents, haring once passed the ileum, are not likely to return: independently of this preventive contrivance, however, there is a valve at this part very like that at the pylorus. This valve, the valvula coli, is formed of a doubling of the internal coat, within which is folded a circular band of muscular fibres; and in its shape resembles a half-moon, so that it is not equally prominent at every part: its office is that of permitting ccrtain alimentary matters and all fluids to pass from the ileum, but to oppose their return.

Peculiurities. The crecum differs from all the other guts, in having but onc opening into it; consequently all matters that have once entered it, must reascend into the caput coli in order to continue their routc. The exterior parts are braced by three longitudinal bands, and puckered by them into three sets of cells internally: these cells, which are abundantly supplied with blood-vessels and absorbents, cxtend the surfaces for absorption and secretion, at the same time that they prolong the stay of the contained matters. The contents of this gut after death are generally found to be fluid: it would appear, indecd, to be the proper receptacle for fluids; for if we give a horse water to drink, the greater part of it will flow at once through the stomach and small guts, and collect within the cecum.

Capracity. It will hold about four gallons of fluid.
THE COLON in the horse is a gut of chormons size, being the most capacious and longest of the large intestincs.

Capracity. It will contain about twcle gallons of water, a greater quantity than the small intestincs will hold, put them all together.

Form and Course. This is an intestine possessing a peculiarity of figure as well as course. It begins at the cæcum caput
coli-that roluminous dilatation of gut between the termination of the ilenm and mouth of the ceecum-and soon expands into a cavity of greater dimensions than even that of the stomach itself; having attained which prodigious bulk, it begins to contract, and continues to do so gradnally during its conrse aronnd the ceecum, until it has completed its sccond flexure, where it grows so small, that it scarcely exceeds in caliber one of the small intestines; and though firm about the middle of this tum it again swolls out by degrecs, it never afterwards acquires its former capaciousness : indeed, previously to its junction with the rectum, it onec more diminishes, and finally assumes the caliber and general appearance of that gut. Its first flexure has three longitudinal bands, which give it a plicated appearance externally, like the cecum, and form it into very many deep and capacious cells within: its last turn, however, las but two, and the cells in it are not only less numerous, but are much shallower as we approach the rectum. This fact tends much to strengthen our opinion of the uses of these cells : for in this part of the alimentary canal, the matters ljeing feculent, no farther absorption is required to be narde from them ; therefore, of conrse, they need not be longer detaincel. Not only, howerer, are the cells fewer and less distinct at this part, but their supply of blood is diminished; so that the intestinal secretion (which it is believed contributes to the completion of the digestive proeess) is here probably wanting altogether, or but very sparingly produced.

REC'IUM. At the upper part of the cireumferent margin of the pelvis, the colon terminates in the rectum. In the horse, this is a comparatively short gut, being continued in nearly a straight line to the anns.

Crapucity. It will hold about three gallons of fluid.
Peculiarities. The rectum, independently of its general figure and dimensions, differs from the crecum and colon in possessing but a partial peritoneal corering and in having no muscular bands, nor eells. Its posterior extremity, more capacious than the anterior part of it, is furnished with a circular miselc-the splincter ani ; which, with the adipose matter in whieh it is enshioned, forms and sires that prominence to the anus so remarkable in the living animal. The nise of the sphincter is, by kecping the ams closed, to retain the feculent matter matil so much of it be acenmulated in the rectum as to excite a desire to discharge it. So that the sphincter is a musele that is in conslemt action, otherwise the feeres would be contimually escaping, and so far it acts inrolunturily; but in order to expel them, the animal has recourse to a coluntury/ power-to abdominal compression, exerted principally by the internal oblique and transverse muscles;
whose operation is aided by the muscular coat of the intestine itself, which fur that purpose is possessed of stronger fibres than the others.

Oryanization. The large intestines reccive their supply of blood from a vessel of less size than the one going to the small; viz. the posterior mesenteric urtery: It is a branch from the posterior aorta; and its distribution is similar to that of the anterior mesenteric. The veins end in the rena porte, and possess 110 valves. The nerves belonging to these intestines issue from the mesenteric plexus.

OF THE LIYER.

The liver is the largest gland in the body: it performs the function of secreting bilc.

Situation and Comection. Already giren at page 21.7.
Figure. Its figure varies somewhat, but not a vast deal, in different domestic animals ; it is convex upon its anterior surface ; concave upon its postcrior; is thick in sulbstance about its middle parts; but in gencral declines to attenuated edges around its circumference. It is clcft in rarious places. Thesc cletts are decper, and the edges are thinner, in gencral, in quadrupeds than in the human body.

Colour. A reddish brown: its huc will vary according to the quantity of blood there may be in the gland.

Dirision. By its clefts or fissures, the liver is divided into what are called its lobes; of which division there is a great rariety in the different species of quadrupeds. In the horse the gland is constituted of two principal lobes, right and left, united by a middle or intcrening portion, and two lobuti, or small or accessory lobes.

Lobes. The right, the larger of the two principal lobes, is situated entirely within the right liypochondrinm. Procecding from its olstuse horder, along its concave part, is scen one of the lobules-the Tobuthes candelus-which is nothing more than a sort of triangular portion of liver included within the fold of the right ligament. The other lobule possessing a cirendar horder with several clefts or fissures through it, whence it may be denominated the lobulus scissutus, issues from the anterior and under part of the middle portion. The left lobe, ncarly equal in size to the right, has the general ontline of an oval: indeed this figure would be perfect, were it not interrupted by the mion of the lobe with the middle portion.

Peritoneal Covering. Divery part of the liver (with the exception of the spaces occupied by the coronary ligament and posterior vena cava) is so elosely invested by peritoncum, that the
membrane has the effect of being a distinct capsule : and (thongh some have described a covering underneath, as separable from it, which they have named the tunica cellulosa hepatis) anatomists in general do not admit of any other tunic.

Arteries. The liver, like other true glands, is composed of m'teries, veins, exeretory ducts, nerves, and absorbents, united together by a particular tissue, to express which we have thic term, parenchyma. Its artery, the hepatic, a branch of the ab)dominal aorta, is but of sinall size in proportion to its bulk, and in eomparison with others which supply the viseera in the vicinity: $e . g$. if we contrast the splcnic artery with the spleen, or the cmulgent with the kidney, and then compare them with the hepatic, and eontrast the hepatie with the liver, we shall find that the latter are remarkably disproportionately small.

Vena Portce. In the venous system of the liver we discover a peculiarity, of which no parallel instance is to be found in the auimal structure: not only is it furnished witl veins that perform the office of returning blood, but it has others for the purpose of conveying blood to it, which are to be regarded in the light of secerning arteries. The trunk they spring from is called the vena porte, a vessel formed out of the union of the splenic and mesenterie veins, which takes place immediately above the panereas. Its course lies over the duodenum, on the right of the hepatic artery and duct, to the eoneave part of the liver: about opposite to the middle of the right lobe, it bifurcates; the right division directly enters the gland ; the left continues its course forward, in company with the hepatie artery, and subdivides into two others, which penetrate the middle portion and left lobe of the organ. Their branches spread out in an arborescent manner within the substance of the liver, ramify to great minuteness, and at length radiate into a system of capillary tubes, which, from some peculiarities they exhibit in their arrangement, lave been named penicilli.

The hepatic veins, the vessels that return the blood conveyed hither by the vena portse and hepatie artery, are in the horsc remarkably small, but exeeeding numerous: their orifiees may be seen, appearing like so many pin-holes, by slitting open the posterior vena cava.

The hepatic duct, remarkable for the whiteness of its coats, will be found running along the upper and inner edge of the right lobe, and reeeiving in its course many small duetiform tubes from the interior of the gland : its trunk afterwards accompanies the hepatie artery, to the right of whieh, and below the rena portæ, it continues its passage to the duodenum. This duct is a muscular tube, haring a membranous lining ; is large enough to
admit of the introduction of the little finger ; and is about thres inches in length. It picrees the eoats of the duolcnum, six inches distant from the stomach, in conjunction with the pancreatie duct, but opening by an orifice distinct from the onc of that duct: the terminations of both, however, are guarded by the sane circular fiap, one composed of doublings of the inner and muscular coats of the gut, whicls performs a valvular function in preventing the intrusion of alimentary matters into these tubcs.

The nerves of the liver, neither large nor numerous (for it does not appear to possess much sensibility either in health or disease), come prineipally from the sympathetic; it receives also a few filaments from the par vagum. Its lymphatic vessels, on the other hand, arc extromely plentiful and are readily demonstrated: we have nothing more to do than to insert a small injecting pipe under its peritoneal capsulc, and allow quicksilver to diffuse itsclf, and wc shall instantly fill vcry many of them, making a beautiful, vascular, arborcseent display upon the surfacc.

Structure. The hepatic artery having entercd the substance of the organ, disperses its ramifications through every part; and they terminate not only in open nutrient points, but in vessels of communieation with all the others : at least, if fine injcetion he thrown in, it will not only pass into the hepatie veins, but also find its way into the branches of the vcna portr, and those of the hepatic duet as well. In fact, the rescarches of anatomy appear to prove, that there is free intercommunication betwecn all thesc different sets of vessels; for if either of the others are injected (except the hepatic veins which have valves,) the same result is afforded. If a piece be torn or broken off the liver, we shall perceive, on close inspection of the laccrated surfacc, numorous little granulary eminences, to which anatomists have given the name of acini : these small bodies, which adhere together by means of a fine cellular web, are composed of the ramifieations of some or all of the ressels that have been mentioned ; but what their intimate structure is, or how or in what manncr they are constituted, remains yet to be explaired. Again, if wc nicely examine the surface of a clean eut into its substance, we shall perceive numerous minute pores, from which a yellowish fluid may be cxpressed: thesc are the pori biliarii, the radieles of the hepatie duet, which run in company with the arterial and vchous ramifications, repeatedly unite and re-mnite, until, at length, they all end in a single tube-the hepatic duet.

BILE is a sort of soapy viscid fluid. Its viscidity it derives from gelatine, which a solution of tannin or alcohol will precipitate. By the agency of the lattcr, the gelatinous matter may lio
separated, leaving what is called a tincture of lile. Gall-stones are found to consist principally of a sort of spermaceti, that has been used for soap to clean cloth with. The colour and notorious bitterncss of bile do not secm to be owing to the presence of anything peculiar ; but rather ascribable to some peculiarity of arrangement of its component parts, which is not understood. For if the tincture of bile is exposed to the air, it becomes white; or of mitric acid be dropped into it, that will likewise render it white.*

\&. OF THE SPLIEN.

The splecn or milt is a sponey viseus, of a pyramidal figure, situated in the left hypochondrium, between the stomach and false ribs.

Colour. Its colour is principally owing to the stagnant hlood in it. The surface possesses a bluc mottled or marble hue, which becomes reddened by exposure to air. It is much darker interiorly-when its contained blood becomes exposed.

Volume and Deight. Thongh it varies continually in its volume, depending on the condition of the circulation through it, it schdom or never enceéds three pounds in weight.

Form. The spleen is adapted in shape to the space in which it is lodged; being coneave next the stomach, convex where it is opposed to the ribs. It differs remarkably from the splecu of the human subject in form ; for instead of being oval in its circomference, and haring an obtuse margin, it is elongated after the form of a tapering pyramid, and at length terminates in a point.

C'ripsule. It reccives a complete capsular envelope from the peritoncum, to the close-fitting and intimate adhesion of which it chiefly owes its fecl of solidity and firmness: for, when stripped of this tumic, its texture is discorered to be soft, lacerable, and spongy, and to present all the appearances of glandular arrangement; and as such any one could not fail to regard it who had not made himself previously acquainted with its intimate structure.

Structure. It differs remarkahly, howerer, from a gland, in not having any excretory duct; an appendage for which it has no occasion, as it is not loclieved to perform any secretory function. It is now gencrally supposed, that the arteries of the spleen, after having spread their hranches within its sulstance into immucrable ramifications, terminate in cells of a mentranons composition, from which veins, about equivalent in number, take their

[^22]origin. To elucidate this structure, it has been likened to a piece of sponge, or a honcycomb; to which, if blood-ressels were superadded, probably the general fabric bears some resemblance. By regarding it as a spongy or porous body, we can account very satisfactorily for the extreme variableness in the magnitude and weight of this organ ; for it is obvions that it will admit of great latitude in its state of distension, and that its volume must greatly depend upon the quantity of blood it may contain. It also posssesses nerves, though they are but snall; as well as absorbents, which vessels are very mumerous, and readily demonstrable by injecting quieksilver under its peritoneal tunic.

Organization. This viscus reccives its blood from the splenic artery, a large branch of the posterior aorta, which, in ruming along the great curvature of the stomach, detaches mumerons short ramifications both to it and to the spleen. The splenic veins, much larger than the arterics, mite with those of the stomach, and form a vessel that largely contributes to the production of the vena porte. Its nerves come from the coliac plexus.

Importance. Thic magnitude and organization of the spleen in the higher erder of animals, together with the constancy of its prescnec, are of themselves forcible arguments to establish its importance in the animal constitution, though it would appear, from some facts, not to be equally useful with other abdominal visecra; for, if it be carcfully extirpated, the animal will not only survive, but thrive and do well: indeed, in the human suljeet, it has been found after death so disorganized from disease, as to have been apparently incapable of performing its function during life; and one case is related in which it was cut out without the individual experiencing any great inconvenience from its loss.

From the resemblance in general appearance and structure between this organ and those that are known to be glandular, rery diligent seareh has been made after an excretory duct: 110 vessel of the kind, howerer, has yet been demonstrated, though, more than onee, have anatomists been led away with the ide that they had discovered traces of onc. Sceing, then, that the spleen was without a duct (and, as was observed before, there is no want of one, there being no sceretion carried on), physiologists, compelled to relinquish the notion of its being a gyland, have attempted to explain its use from what appears to be a faithful description of its structure, comncetions, and relative sitnation.

OF THE PANCREAS.

The pancreas or swectbread is a glandular body lying across the spine in the epigastric region.

Situation and Connection-explained at page 2.2.7.
It possesses no peritoneal covering-that membrane simply passes over its inferior surface.

Division. The panereas has been divided into head, body, and tail; it has also a fourth part, attached to the right side of the spine, a prolongation from its head, to which the name of pancreas minor has been given.

Structure. Anatomists all agree, that there exists a similarity of strueture between this organ and the salivary glands; and what tends to eonfirm this opinion is, the resemblance that the panereatie fluid bears to common saliva. The pancreas is of a palc red speckled colour, and is composed of many small lobes or rather lobules, which, though they intimately adhere together by a fine ecllular tissue, are perfectly distinet from one another in regard to their ultimate organization. For every one of these lobules, or (as some eall them) acini, appears to be constituted of a set of arteries, veins, and duets, which vessels have no eommunieation, execpt through the medium of their trunks, with those of any other ; so that a ecrtain quantity of secretion is prepared within, and discharged from, every one of then singly; in faet, every lobule may be said to be a distinet gland of itself, and this is preeisely the ease in respeet to the salivary glands. In the disseetion of an injeeted panereas, we may trace many arterial twigs into these aemi, which are detached at right angles from the prineipal panereatic artery as it pervades the interior of the gland. The reins also may be seen aceompanying the arterics. The duet, which is the result of two main branches, has a similar mode of ramifieation. Formed at the extreme end of the gland, by the union of several smaller tubes, it takes its eourse through the middle of the viseus, reeeiving in its way other listle ductiform vessels which eome from the neighbouring lobules, and eontribute to augment its size. Thus formed, the loug branch issues from the body of the gland, the short and larger one from the head and pancreas minor: the two then form a single trunk, about an inch in length, which extends direetly from the spleen to the duodenum, and picrees the latter alongside of the hepatie duet. The tube is composed of a thin, pellucid mombrane of considerable strength, and is large enongh in its caliber to admit of the introduction of the finger.

Organization. The panereatic arterics are derived mostly from the hepatie: screral, however, cone from the splenie, in its eourse to the left side of the abdomen ; and one or two from the gastrie. The veins are tributary to the vena portre. The small nerves discorered in it are furnishod by the eceliae plexus.

SEC'IION VI.

APSORBENT SYSTEM.

COMPRYSLNG THE ABSORBENTS AND ABSORBENT GLANDS.

Tue absorbents constitute that system of ressels which are employed in absorbing alimentary and other matters, and conveying them into the general circulation.

Division. These vessels were, when they were first diseovered, supposed to exist of different kinds in the body: hence the appellations lacteals and lymphatics. It is now, however, ascertained that they exhibit no difierence whatever in their anatomy; and also that, although the lacteals are ordinarily employed in absorbing chyle from the intestinal canal, they are equally with the lymphatics, capable of taking up other matters.

The only natural division they appear susecptible of, is, into superficial and deep-seated absorbents: the former are distributed in great numbers immediately bencath the skin and perforate it through almost every point; the latter are commonly found ramifying in company with the trumks of the blood-vessels, more especially with the veins.

Peculiarities. The absorbents are so minute as to bear no sort of eomparison with the blood-vessels, in point of magnitnde. To make up for this, however, they are in general vastly more numerous, and have much more frequent anastomosis. They also cxhibit peculiar tortuositics in their course, and are crerywhere beset with valves.

Glands. The absorbent glands are small oral-shaped bodies, varying in magnitude from a pea to a walment, found in many unexposed parts of the body along the course of the absorbent vessels. Generally speaking, they exhibit a reddish lme : but there are some that assume a dark blue, and even a black eomplexion. They exist mostly in groups or clusters-rarely solitary.

Communication. The superficial and deep-seated vessels com. munieate very frequently with each other, and never fail to send off, in addition, other anastomotic branches to whatever solitary absorbents there may be in the vicinity. The glands, likewise, are linked together by absorbent tubes of inter-commmeation ruming from one to the other.

Demonstration. The following different methods of proeceding with a view to demonstrate these mimite and ordinarily hardly visible ressels, are extracted from the laborions and accurate rescarehes of the late celebrated anatomist, Mr. Cruikshank:-

In an animal opened alive, some hours after it has been fed, the lacteals are seen turgid with chyle: they may also be made visible by throwing coloured thin fluids into the intestines; or, by making ligatures on the trimk of the antcrior mescuteric artery, which will include the trunk of the absorbents. An eye accustomed, readily distinguishes lacteals upon the intestines from arteries and reins, cren when they are collapsed and empty : punctures may be made with a laneet, and the ressels injected with quicksilver by means of a tube formed expressly for that purpose. I have sometimes injected lacteals from punctures made by the sides of veins, where I know they must be, though they were then inrisible to the naked cye.

Upon the liver and lungs lymphaties are frequently visible, and may be injected by puncturing one of the small branches; but the values almost always make the injecting of them fiom the trunk to the branches impracticable. Pressurc in the course of the absorbent circulation will commonly force from the extreme branches into the trunks some little reddish or brownish fluid, making the latter visible, which may then be punctured and injected. - Watery fluids thrown into the arteries, veins, or ducts of glands, very commonly get into the absorbents, and render them visible.-One of the best methods is to previonsly inject the arterics and veins of the part, and afterwards maccrate it for some days: putrcfaction then takes place, air is gencrated in the cellular membrane, whence it gets into the orifices of the lymphaties, and uniformly fills their branches.-The best subjeet for these injections is one whose limbs are without fat and are dropsical, but not too much so.

In parts where glands are to be found, it is only necessary to puncture the gland, and introduce a tube filled with quicksilver, or push the pipe into its substance without any previous puneture. The mercury thus fills the eclls of the gland, and from these the lymphaties. The thoracic duct itself is most successfully injected in the same way, that is, either from grlands upon the mesentery, upon the hodies of the lumbar vertebrex, or those upon the inside of Poupart's ligament.-When ressels are injected, and very much resemble lymphatics, the best method of determining whether they are or are not lymphatics, is to trace them to the nearest lymphatic glands: if they terminate in them in the usual manner, they are lymphaties.

No English veterinarian, to iny knowledge, has, up to the present day, been at the pains to demonstrate practically the particular distribution of the absorbing yessels of the horse: we have hitlierto travelled onward anulogically, and so, I have a notion, should we continue to do, had not our French professional con-
temporaries furnished us, as well as themselves, by their praiseworthy exertions in the cause of seience, with materials to fill up this lamentable hiatus in veterinary anatomy. Professor Girard, whose 'Traité d'Anatomie Vétérinaire' does no less eredit to the talent and industry of its author than honour to the veterinary school over which he presides, has presented us with an article on the ramifications of the lymphatics, which I shall translate, and take the liberty to transeribe into this place.

The Thoracic Duct.

The largest, longest, and most remarkable of the lymphatie ressels, in which terminate the majority of the lymphaties of the body, is situated within the thorax, on the right side of the dorsal vertebre, between the aorta and the rena azygos : it receires the lymphaties from the posterior extremities, pelvis, parietes, and riscera of the abdomen, head, neck, withers, and left anterior extremity.

It takes its origin under the loins in a dilatation or sinns, very rariable in its form and dimensions, sitnated at the root of the great mesenteric artery, named the receptuculum chyli ; it direets its course forward, enters the thoracic earity by the aortic perforation through the diaphragn, extends along the bodies of the dorsal vertebrec until it arrires opposite to the base of the heart, where it curves downward to cross over to the left side, in its way to the anterior opening of the thorax, and, as it leares the spine for this purpose, runs obliquely orer the trachea and ocsophagus; having reached the left side, it stretches forward to the begiming of the anterior rena cara, and terminates against the middle of the anterior border of the left first rib, in the base of the left axillary vein : not infrequently, it ends in the right axillary ; in some instances, eren in the beginning of the anterior cara. Λ t its termination it dilates and forms a simus, whose mouth, opening into the rein, is guarded by a broad valve so disposed as to precent any reflux of blood into the duet:* it has also a ligamentous band around it at this part, which confincs it to the vein receiving its contents.

This canal shows but little uniformity in its caliber: in some places it is strait, in others varicose. And it is not memmon to find it detaching one and even several branches in its course, large or small, which either remain separate, or else, after running a certain distance, rejoin the main chanmel.

[^23]
The Receptaculum Chyli.

This reservoir forms the point of general confluence of all the lymplaties of the posterior limbs and abdomen, and that from which originates the thoraeie duct : it is maintained by the aorta on one side, and the vena eava posterior on the other ; and is formed by the union of five or six large lymphaties, of which two or three come from the entrance of the pelvis, two or three others from the mesentery, a single one from the environs of the stomach and liver.

The Professor here makes a classifieation of all the lymphatics of the body into those that proceed to the abdominal and those that run to the thoracie portion of the duct.

I. Limphatics discharging their Contents into tie abdominal Portion of the Thoracic Duct.

1. Lymphatics of the Posterior Extremities.

These are distinguishable into the superfieial and deep-seated. The first originate particularly from the skin and subeutaneous cellular tissue. They form divers ramifieations which aeeompany the superfieial veins; of which the most remarkable attend the vena saphena major, frequently anastomosing with one another, and forming altogether an anastomotic network. All these lymphaties run to the subeutaneous inguinal glands, which are lodged upon the superior and anterior part of the thigh.

The deep-seated lymphaties take their rise from the foot, aseend along with the plantar veins, eontinue upward among the museles in eompany with the deep-seated veins, corresponding in their principal divisions to those vessels, and proeced to the inguinal glands.

All the lymphaties of the posterior limbs assemble at these glands, and here form a plexus, from whieh several large branehes depart and traverse the iliae glands, clinging to the sides of the iliae vessels, and diseharge their contents into the pelvic branch, contributing to the receptaculum chyli.

2. Lymplatics of the Pelvis.

The vessels coming from this eavity run in part to the inguinal glands and in part to the internal pelvie glands. The superfieial lymphaties about the pubes and the outlet of the pelvis run and join those of the extremity; those of the perineum and anus enter the cavity, and are accompanied by those coming from the croup and tail, both proceeding to the glands within the interior
of the pelvis. All the deep-seated lymphatics accompany the reins, make for the pelvie glands, form unions with the others, and run and empty thomselves into the main pelvic braneh, wherein their lymph mixes with that coming from the inguinal glands.

The lymphaties of the urinary and genital organs, ineluded in the pelvie eavity, also traverse the glands lodged therein, and unite with those of the parietes of the pelvis. Those of the scrotum enter the inguinal glands, as also do those belonging to the sheath and penis. The ramifications derived from the testiele and spermatie chord take the course of the veins, and penetrate one or two of the lumbar glands lodged at the entrance of the pelvis. The lymphaties of the mammæ, whieh are also divisible into superfieial and deep-seated, run to the inguinal glands, and anastomose with the superficial set belonging to the inferior parietes of the abdomen; but, before they reael these last glands, they pervade those of the mammre.

3. Lymphatics of the Parietes of the Abdomen.

These vessels, in general but little developed, for the most part run to the inguinal glands. The superfieial set of the lower parietes aceompany the eutaneons (inguinal) vein, anastomose with the lymphaties of the scrotum and namme, and traverse the glands in the groin: some of them direet their eourse forward along with the eutaneous (external thoracie) rein of the thorax, unite with the superfieial lymphaties of that part, and proceed to the axillary glands. The deep-seated vessels of the belly run in company with the epigastrie vein, and go to the inguinal glands, or else they aecompany the peetoral vein, and perrade the glands in front of the thorax.

The superficial or subeutaneous lymphatics of the loins join either those of the eroup or those of the flanks : the deep-seated, whieh spring from the peritoneum, museles, and spinal canal, perforate one of the internal lumbar glands, and pass onward to terminate in the main pelvie branch.

Among the lymphaties of the abdominal surface of the diaphragm, those issuing from the peritoneum and muscular texture make almost all for the main hepatic branch; some others take the eourse of the phrenie reins, and form a union with those of the thoracie side of the musele.

4. Absorbents of the Mesentery.

The mesenterie trunks, ordinarily two or three in number, the most considerable of which is constantly united to the great me-
senteric artery, reccive all the ressels contimed from the mesenteric glands, as well as those coming from the mescntery and intestincs.

The mesenteric absorbents, extremely mumerons, are sustained between the layers of the mescutcry, where they form a vascular network: many of them issuc from the exhalent surface of the mesentcry and intestinal tube; others take their rise from the interior of the intestine, from which they imbibe chyle. All these vessels converge towards the lymphatic rescrvoir, clinging in their passage around the mesenteric veins; some, however, taking a solitary comse at a greater or less distance from any hlood-vessel : having arrived at the root of the mesentery, they pass through one or two, sometimes three, of the mesenteric glands, and afterwards join the principal lumbar lymphatics. The absorbents of the crecum and crecum caput coli run to the glands set at intervals along the intestinal tube, whence they proceed to the receptaculum chyli.

5. Lympphatics of the Liver, Stomach, Spleen, and Omentum.

The heportic trunk comprises the lymphaties issuing from the liver, stomach, spleen, and omentum : the branch of the receptaculum chyli not uncommonly consists of two divisions, and receives in addition to the above-mentioned ressels, many ramifications from the crura of the diaphragm.

The lymphatics of the liver, extremely numerous, are distinguishable into a superficial and a decp-seated set. The first arise more particularly from the exhalent surface of the organ, erecp along upon its peritoncal capsule, and there form a plexns of close and intricate network. 'Those from the anterior surface make one or two large branches which perforate the diaphragm, enter the thoracic cavity, unite with the lymphatics from the chordiform tendon, and proced to the forc part of the thoracic duct; whilst those of the posterior surface enter the glands placed around the great fissure, where they mite with the deep-seated set.

T'ine deep)-seated hepatic spring from the parenchyma of the gland, cling around the divisions of the hepatic artery and hepatic reins, issue from the interior of the viscus by the great fissmre, run to the glands there, and afterwards proceed along with the superficial to the main bepatic trunk.

The lymphaties of the stomuch, of which the superficial come from the external surface, the deep-seated from its cavity, follow the veins, and are distinguishable into a superior and an inferior set. The former take the direction of the lesser curvature, perforate the glands thereabouts, and go to join the absorbents of
the liver: the latter rmo over the greatercurvature, enter the glands arranged along the fissure of the spleen, form commmications with the lymphatics of that viscus and those of the omentum, and depart to contribute to the hepatic trunk.

As to the lymphatics of the spleen, the superficial, like those of the liver, come from the periphery of the organ and enter into a thick and complicated network : the decp-seated issue from the interior, and contract with the former numerous anastomoses. Along the fissure of the spleen these vessels become nnited, form large brancles which follow the course of the splenic veins, and anastomose with the lymplatics of the great curvature of the stomach: hoth scts then run to the great fissure of the liver, and there terminate in the hepatic trunk.

The hymphatics of the omentum accompany the venous ramifications, and cither join those of the great curvature of the stomach, or the superficial absorbonts coming from the ceecum caput coli. Those around the pylorus anastomose with the pancreatic, and accompany them to the hepatic trunk.

The hymphatics of the pancreas also run with the divisions of its reins, and join cither those of the liver or those of the spleen : some proceed directly to the common liepatic trumk.

Besides these three portions or lymphatic trimks which constitute the receptaculum chyli, the abdominal portion of the thoracic duct also reccives the lymphatics of the kidneys, and renal capsules. These vessels, distingnished into superficial and deep-seated, perforate the glands placed internally, next to the parts from which they spring, and empty themselves into the superior side of the thoracic duct.

II. Ramifications terminating in the Thoracic Portion of the main comion Duct.

This, the terminating portion of the thoracic duct, receives the lymphatics transmitted from the internal dorsal, bronchial, and cardiac glands, and those cither from the left axillary glands, or from the sublingual and gutteral glands. In this numerons series we find the lympliatics of the parietes and riscera of the thorax, of the head, neck, and left anterior extremity.

1. Lymminatics of the Parietes of the Thorax.

The snperficial absorbents of the thorax take their rise either from the surface of the skin or clse from the subentancons minscles; they form several large branches which accompany the thoracic cutaneous rein, unite with the superficial lymphatics
eoming from the anterior parietes of the ablomen, and procead to the axillary glands.

The deep-sealed set take divers directions and pass through different sets of glands. The pectoral, which anastomose with ramifieations from the abdomen, follow the pectoral vein, and reach one or two glands at the entranee of the chest. The intercostel spring from the pleura and intereostal muscles, aecompany the intercostal veins, pervade the internal dorsal glands, and terminate by several branches in the thoracie duet. The lympinatics of the fleshy part of the diaphragm mite, some with the posterior intereostal, others with the peetoral : those eoming from the erura run to the dorsal glands, where they anastomose with the intereostal ; those from the ehordiform tendon anastomose with the deep hepatie, run forward between the layers of mediastinum, nearly to the heart, and enter the eardiae glands.

2 Lymphatics of the Thoracic Viscera.

The absorbents of the different organs eontained within the thorax, traverse one or several of the bronchial or cardiac glands, and afterwards form divers branehes wheh end in the thoraeie duct. The pulmonary lymphatics, very numerous, are distinguished into superficial and deep-seated. The first take their rise from the surface of the lungs, ereep aloug under their enveloping membrane, and make for one or more of the bronehial glands. The deep set, which originate from the air-eells and from the areolæ of the parenchymatous tissue, follow the divisions of the pulmonary veins, run to the root of the bronehial tubes, there unite with the superficial, and pertorate one or two of the bronehial glands.

The cardiac lymphatics derive their origin, cither from the surfaees (both exterior and interior) of the heart, or from the museular substanee of the organ: they mome npon the eurvature of the posterior aorta, and disappear in the eardiae glands.

The lymphatics of the supcrior part of the mediastinum and of the œoophagus join, some the intereostal, others the bronchial: those coming from the anterior part of this membranons partition, from the thrmus, trachea, and cesophagus, mite cither with the peetoral, or clse with the cardiae and anterior intereostal.

3. Lymphatics of the liead.

The lymphaties of the head form two planes, a superficial and a deep one. The superficial pursue the eourse of the eutancous veins, and run in part into the sublingual, in part into the guttural glands. The deep ressels, which eome from the nostrils, fauces, palate, \&e., also rum to the sublingual and guttural glands,
in whieh they unite with the superfieial. From these two groups of glands, through whieh pass the lymphaties of the head, depart sereral large branches, two or three of which descend upon the anterior surface of the traehea; others follow the passage of the deep and subcutaneous reins, unite with those of the neck, and descend to the front of the thorax. Almost all these ressels terminate in the thoracic duet; some few alone on the right side ending in the right axillary trunk.

4. Lymphatics of the Left Fore Extremity.

The lymphatics of this member present the same disposition as those of the posterior limbs, and are divided into superficial and deep-seated. The former', consisting of divers ramifications, aecompany the superficial veins; the more considerable of them forming a plexus which aceompanies the eutaneous (superfieial brachial) rein of the limb. The deep vessels originate from the foot, museles, and bones, pursue the divisions of the deep veins, and plunge into the axillary glands, wherein they unite with the superficial, and whence they all proceed to the thoracie duct.

The right terminating Trunk of the Lymphatics.

This very short lymphatic canal is obliquely situated at the entrance of the thorax, upon the transverse proeess of the last vertebra of the neck, extending in a direction from above downward and from without inward, and terminating most commonly in the right axillary vein; though in some instances it joins the thoracie duct, or else ends close by the side of it. This lesser trunk is formed by the lymphatics coming from the right axillary glands, and by some from the right lung, and right side of the neek and traehca.

SECTION VII.

URINARY SYSTEM.

COMPRISING THE KIDNEYS, RENAL CAPSULES, URETERS, AND BLADDER.

OF THE KIDNEYS.

The kidneys are two ovoid reddish bodies, occupying the lumbar regions of the abdomen, performing the function of the seeretion of urine.

Relative Situation and Attachment. In consequence of the kidneys not recciving the same complete covering from the peritoncum as the abdominal visecra in general,* they have been regarded as extru abdominal organs; custom, however, appears to be somewhat capricious in this particular, for they are certainly as much within the eavity as the pancreas* (which, no more than the kidneys, gets but a covering on one side from the peritoncum), and may, anatomically considered, with equal propriety, be included among the visecra of the abdomen. Indeed, they cannot be properly examined in situ but from within the abdominal cavity. Herein they are found a little further backward than the pancreas, immediately above (or concealed by, as the horse lies upon his back) the small intestines. They repose, one upon either side of the spine, close to the bodies of the lumbar vertebre, or rather minderncath the psore museles, to which they are firmly attached by a surrounding and enveloping mass of adipose and cellular substance, as well as to the vertebree themselves. Their anterior ends reach under the last ribs; posteriorly they come in contact with the eristre of the ilea; and to both these parts they are tied by eellular tissuc. They reccise some support from the peritoncum as it passes under them, and are attached by it to the contiguous viscera; but their strongest connection is to the spine through the medium of their blood-vessels. The right kidney has peritoneal attachments to the right lobe of the liver, and to the head of the pancreas: the left has a similar connection with the blind pouch of the stomach, from the pressure of which in a state of distension it is pushed a little further backward than the right; the left is also connected with the pancreas and the spleen.

Figure. The figure of the kidncy varies remarkably in different subjects; nay, the right is commonly unlike the left, is less elongated and broader : in fact, it is a gland that does not appear to possess any very determinate form. Gencrally speaking, it may be said to represent an irregular flattened oval: but it is an imperfect oval; one side is interrupted by an inlet or deficiency of substance, technically called the notch, into whieh the blood-vessels are received.

Maynitude. The magnitude of the gland, not less undeterminable than its form, estimated by its weight, may be stated in round numbers to average about forty omees.

Division. The kidney may be divided into its upper and under surfaces, its border, and its noteh. The under surface, the part covered by peritoncum. (underneath which is interposed

[^24]a layer of soft yellow fat), is partially divided into two unequal lobes by a fissure rumning direetly across from the noteh towards the circumferenee: in many subjeets the upper division is in part subdivided by a smaller fissure, whieh also proeceds transversely from the notch, into two portions: still it is one continuous or conglobate body, which is not the ease in bears and in the cat tribe, where these lobes, being perfeetly distinet, constitute it a conglomerate gland. The under surface has likewise a middle transrcrse fissure, but it is less in extent: sometimes we find two or threc others, but small and unworthy of notiee. This is the part bedded in adipose matter: the quantity of adeps, however, though eonsiderable in very fat subjects, is inferior to what is found in the herbivorous ruminant, in whom it concretes after death into a remarkably whitc, firm mass, well known by the name of suet. Now, that the gland is inverted, the notch is brouglit more into view: in some subjeets this forms a eonsiderable breaeh in the body of the gland, in others it makes only a part of the transrerse fissure aforementioned: it is designed, like the porta of the liver, to give ingress to the blood-vesscls and egress to the duct belonging to the gland. The border, thick and rounded, narrows and deseribes the segment of a eirele antcriorly ; broadcns and extends into a larger are postcriorly : by adverting to this eircumstanee, and attcnding to the distinguishing charaeters of the surfaees, the kidney of onc side may be known from that of the other, although both should have been removed from the body.

Capsule. The kidncy has a eapsule of its orm, everywhere adherent to its surfaces through the intervention of a very delieate eellular tissue, whieh tissue may be traeed in places into the glandular substance itself: at the notch also processes leave the eapsule to aecompany the renal vessels and nerves throughout their ramifieation, and serve at onee as an additional tunic to them, and a suitable eonneeting medium between them and other parts.

Structure. The intcrior substance of the kidncy is most broadly exposed to view by carrying a horizontal scction through its middle in the line of its long axis. The surface exposed by this scetion exhibits two distinct shades of colour, minted by a broad intervening cirele of dark red: the outcr part las a brownish-red tint, and is denominated the cortical substance, bccause it surrounds the medullary or tubular substance, as it is called, which has a earnation hue, growing lighter as it cxtends inward. These substanees not only differ in hue; they differ in eonsistcnee, in disposition, and in strueture. The eortical part possesses a uniformity of aspeet something like that of the liver,
and a texture comparatively soft and casily lacerable: the medullary is much closer and tongher in its composition, and eridently exhibits a fibrons texture. The two substances are not conjoined in any regular line ; but dark-red denticular prolongations of cortical, shoot in between the lobulated portions of medullary substance,

Though the ultimate or intimate structure of the kidney may not be demonstrable with absolute certainty, it would appear, from the results of researches of anatomists in gencral, that there is less speculation interwoven with the accounts commonly rendered of it, than is but too often found blended with those of other complicated glandular organs. Injections sent into the emulgent arteries colour the cortical substance, but are not to be detected in the inedullary; a simple fact that has led to the conclusion, that the former is principally composed of blood-vessels; at least this is the common result of the experiment. To pass over the detail of the means, however, wherely we have attained our knowledge, the minute structure of the kidney apiears to be this:-The several divisions into which the cmulgent artery splits in penctrating the substance of the gland, end in a multiplied number of smaller arteries; and these form arches within the cortical substance from whose convexitics a still smaller set come off'; which minute vessels procced inward, few (if any) of them reaching into the medullary part, and end in little globular bodies that have been resembled to the acini of the liver, and named the corpora globosu; a sort of arterial arrangement altogether that has been compared to grapes as they grow upon their slenderstalks. The corpora globosa were at first supposed to be cellular: but later researches afford us reason for believing that they are constituted of the vessels running into them: instead of terminating within them, they are contimed and coiled into these globular forms. From the corpora globosa proceed inward, in convergent radii, fasciculi of minute ressels, named, from their office, the tubuli uriniferi; which fasciculi are so disposed in sets (commonly six or seven in mumber) as to admit of a resemblance to so many paps or dags, and hence have been denominated the processus mammillares. These conical fascienli, which take their rise in the cortical part, constitute the medullary sul)stance of the kidney. The papillce, the apices of the mammillary processes, are received into little membranous saes, varying in form and size, denominated the infundibulu, into which the seereted fluid is distilled through the orifices of the tubuli uriniferi perforating the papille: the number of infundibula, however, is not regulated by that of the processus mammillares, for one sac may embrace two or even three papille. The in-
fundibula (cach one contracting in its course) converge towards a common eentre, and open commonly by three eanals into the pelvis, whose orifices are large enough to admit the small end of a common blowpipe. The pelies, then, is the common receptacle of the fluids transmitted through the infundibula: it is a cavity in the centre of the gland, almost survounded by medullary matter, and cousists of a dense, firm, membranous substance, forming an extender sae, which is continuous towards the interior with the infundibula, but towards the noteh contracted intó a small funnel-shaped outlet, having one continued passage with the ureter. This continuity of contponent parts has led some to consider the infundibula, pelvis, and ureter as one and the same extended-structure: whether this be the ease or not, they possess a common mucous lining that puts on the same aspect, examine it in which of these parts we may.

THE URETER (the tube conveying the urine from the kidney into the bladder), emerging from the posterior end of the pelvis, makes its exit through the noteh, and then suddenly turus backward under the posterior extremity of the gland, passing between it and the capsula renalis; it then takes its course directly backward, a little distance laterally removed from the bodies of the lumbar vertebra, crossing obliquely the psoas parrus and afterwards the great jliae ressels ; here it enters the pelvis by a sweep upward and outward (embraeing within its coneavity the vas deferens and ligamentum rotundum), and becomes included within the fold of the ligamentum latum, by which it is conducted to the lateral and superior part of the bladder : latterly, it rums in close connection, from the middle of the bladder half-way to its neek, where it imperecptibly vanishes between its tunies. Though we insensibly lose sight of the tube, however, it does not end here ; for after having obliquely penetrated the muscular coat, it travels onward for the space of an inch between that and the internal coat, and at leneth terminates by piereing the latter iu the same oblique line of direction. The diameter of the ureter near its origin is equal to that of a largesized black-lead pencil ; from which it so insensibly diminishes in caliber throughout its course, that we are only assured of the fact by comparing the anterior with the posterior portion. That part of the tube not ineluded within the broad ligament, is invested with ecllular and adipose tissue binding it down in its course. The ureter is composed of two tumics. The external one is thick, resisting, and longitudinally fibrous, and is believed to be museular : the intermal is soft and fine in its texture; is commonly rugose lengthwise ; is loosely adherent to the other;
and is constantly besmeared within with a mueous secretion, to shicld it from the acrimony of the urinc.

Organization.-The cmulgent arteries, right and left, arise immediately in front of their respective glands fiom the sides of the postcrior aorta : cach enters the notch, and there divides into three, or four, or ceen five principal branches, which, unlike the trunk, become flexuous in their course and then penctrate the glandular substanec: the outer branches turning in contrary dircetions, one forward, the other backward, to cuter the cortical part at once; those in the middle traversing the tubular to arrive at it ; in which they all subdivide and ramify to terminate as afore described.

The emulgent veins, which excced in volume, though not ordinarily in number, the arterics, correspond in their ramification to those vessels : their terminating branches, threc, four, five, or upwards in number, converging within the noteh, there unite into one trunk, which accompanics its artery and ends in the posterior vena cava.

The nerves supplying the kidncy are derived principally from the remal plexus, and very numcrous they are : notwithstanding their numbers, however, and notwithstanding the acute pain which accompanics active inflammation in it, the organ in the healthy eondition is by no mcans remarkable for its sensibility.

OF THE CAPSULE RENALES.

Thesc are two small, elongated, irregularly formed, brownish bodies, a right and a left, placed oppositc to the kidneys, between those glands and the spinc. The right, the longer one, lics in contact with the posterior vena cava, and reaches forward to the liver; the left, the broader one, and rather obliquely placed, is opposed to the aorta ; and, anteriorly, is contiguous to the pancreas: they are respectively connected to these screral parts by loosc cnvcloping cellular substance, and are furthcrmore retained in their places by the peritoncum, which covers their under surfaces. Their magnitude varies with age : in carly fœtality they are equal in volume to the kidneys themselves ; their subsequent growth, however, being less rapid than that of the kidneys, this equality in the coursc of time becomes destroyed. Their outward borders are partially cleft by several little notehes, giving them a lobulated appearance. They possess tunies of their own of eondensed cellular tissuc, processes from whieh penctrate their substance and enter into their composition.

Structure. Divided by a perpendicular section, the renal capsule shows a palish brown substanee above and bclow, in-
terspersed with vessels and nerves, soft and uniform in its texture, and constituting full two thirds of its whole; and, in the middle, a longitudinal whitish part, whieh, though of a very loose texture, is evidently not a vacuity ; for, after some yellowish fluid it eommonly contains is expressed, there still remains some internal cellular structure. The fluid expressible from this part is said to vary in its appearance and quantity with the time of life: in the foetus it is said to be red and abundant; yellowish and sparing in the adult; yellower still and more scanty as age advances. This body receives two or three small vessels, either fiom the emulgent artery or the aorta, or from both; and these have their full proportion of veins. It has also an adequate supply of nerves eoming prineipally firom the renal plexus. What the disposition or arrangement of these several eomponent parts may be, remains yet to be developed. M. Girard says, concerning them, that, although these bodies are plentifully furnished with blood-vessels and nerves, "ils n'offient dans leur organisation aucune disposition qui puisse faire presumer une sécrétion particulière."

The physiology of the eapsulx renales remains to this day an unsolved problem. Not one faet has been broached to lead to any rational hypothesis. All that Haller's indefatigable research and penctrating mind could diseover for certain about them, was, that they seerete a fluid more required in foetal than adult life, and that their funetions are probably important since they are found in so many animals.

OF TIIE BLADDER.

The museulo-membranous bag that receives the urine from the ureters.

Situation. The bladder occupies the middle and inferior regions of the pelvis, taking the oblique axis of that cavity, and resting upon the symplysis pubis, with the rectum above it in the male, the vagina in the fomale. In the undistended state, this viseus is wholly eonfined to the pelvie cavity ; but when full, its fundus advances before the pubes into the abdomen, the advancement being in ratio with the degree of distension: in the fotus it rises still more into the abdominal cavity, as a neeessary conscquence of its proportionally greater development, as well as of the narrowness and shallowness of the pelvis at that period.

Figure. In a state of distension the bladder is pretty regularly pyriform, and its parietes are thin and semi-transparent; but when completely empty, it assumes the spheroid figure, be-
comes thick in substance, and cxhibits no vacuity intcrnally: in fact, it is (in that statc) a little, white, round, firm, and, I may add, solid body.

Volume. Its capacity will vary much in different subjects; and this we have some reason to ascribe (from a corrclative fact in human anatomy) to the habit the animal had of retaining the urine: for it is found that women (whom we know from motives of delicacy are oftentimes compelled to restrain their inclinations to void their urinc) have gencrally larger bladders than men; and now and then in such subjects, bladders are found of extraordinary volume.

Connections. The bladder is connceted by loose cellular adhesions to the pubes, the walls of the pelvis, the rectum in the male, the vagina in the femalc ; and is kept and balanced in its proper place and position by two broad productions of peritoneum expanded across the cavity from its sides to the walls of the pelvis, called its broad liyaments. Thesc ligaments are formed thus:-the peritoncum being reflected upward from the recti muscles upon the body of the bladder, about its middle, procecds forward upon the fundus, then turns back again and covers still more cxtensively the upper surface; at the sides, these (under and upper) layers of the membrane, mecting together, unite, and afterwards procecd in union to the walls of the pelvis, where they once more split and take opposite dircetions. The middle portion of the upper layer of peritoneum is reflected upward from the hind part of the body of the bladder upon the rectum in the male, the vagina in the female, and thus a peritoncal pouch is formed between the two. In addition to these comections, the neck of the bladder is attached to the pubes by a thin fibrous expansion, denominated the triangular ligament; and the fundus reccives the inscrtion of two round chords which run within the folds of the broad ligaments, named the round ligaments.

Division. The bladder may be distinguished into its fundus, body, and cervix or neck. The fundus is the round prominent part prescuted forward, completcly covered by peritoncum, occasionally protruding into the abdomen, receiving the attachments of the round ligaments, and the insertion of the degencrated urachus (which is in the foetus a mimary conduit continued along the umbilical chord to the membranes of the womb). The borly is the bulky or capacious part of the bag. Only one thind of its under surface is covered by peritoncum; nearly the whole of its upper. It is supported by the broad ligaments; has along its sides in the male the vesicula seminales and vasa deferentia; and behind, grows suddenly contracted, and ends in the neck.

The cervix is the small, cireular, posterior part of the bladder. It has a light-pinkish hue, and is eomparatively thiek and substantial to the feel. The triangular ligament attaches it to the pubes, and it is eontinuous at the posterior end with the urethra.

Structure. The bladder has three eoats: an external one, whieh is derived from the peritoncum; a mueous membrane, to whieh it mainly owes its integrity and eonsistenee ; and a diffuse fibrous texture interposed between the two, which is of a museular nature. The peritoneal cout, whieh forms but a partial eovering, is smooth, polished, and moistened with scrous exudation externally; but found rough and pilous internally, when torn from its adhesions with the muscular: in a word, it in no wise differs in its propertics from the peritoncal tunies of the abdominal visecra in gencral. It serves to hold the bladder in its proper plaee and position, and to a certain degree to counteraet preternatural distension.

The muscular cout, though it may be demonstrated through the pellueid peritoncum, is brought more distinetly into view by stripping off that membrane, to whieh it is closely and firmly attaehed by finc ecllular tissuc. Pale faseieuli are then seen ruming irregularly in a longitudinal manner ; aud, underneath them, others which are smaller, taking an equally irregular eourse in the eireular direetion : in the empty or half-distended state of the organ, however, both these orders of fibres assume spiral eourses ; which enables them to bear considerable extension without the risk of rupture, while their eellular eomeetions, being loose, admit of their being drawn apart with equal faeility. The longitudinal faseieuli are thiekest about the fundus, where they all converge to its central point; the eireular are strongest around the ecrvix: the former exert a speeial eontraetion in foreing the urine towards the ncek, eonstituting what has been ealled the detrusor urince: the lattcr, which are mingled with eellular tissue and some small veins, giving them the feel of greater substanec than they really possess, form the sphincter vesice of those who (with no more reason in my opinion) make a separate musele of this part. By the simultancous eontraction of both orders of fibres the parietes of the bladder may be drawn towards one common eentre, so as to diminish its eapacity gradually in every part, until the eavity is even altogether amihilated.

The mucous coat shows itself exteriorly in the interspaees between the faseienli of the museular, eovered only by the interposed eellular tissue whieh serves as the common uniting medium of all three tunies. While the bladder remains empty, the eontractions of the museular eoat throw this one into ruyce, and
in cases of extreme contraction these folds assume rather a remarkable appearance ; the cellular tissuc interposed between this and the middle tunic being loose cnough to admit of this. It is this same cellular intertexture which, from its being pressed into a pretty regular layer wherein the vessels and nerves ramify, has been descrilued by some as the nervous coat. The internal membrane is white, soft in its texture, and highly organized. It possesses numerous follicles from whose exeretory pores issuc a plentiful mucous secretion to defend it from the aerimony of the saline matters contained in the urine : this mucous matter being perpetually washed off the surface by the mrine, is kept continnally renewed; and it is occasionally voided in considerable quantities, especially when any calculi or other irritants are within the bladder. About an inch anterior to the cervix, in the sides of the bag, are secn the orifices of the ureters, whose oblique insinuations in perforating the parietes operate in preventing any reflux of the urine at the time that the bladder is contracting, and thereby possess all the effect of valves.

SEC'IION VIII.

GENERATIYE SYSTEM.

COMPRISING THE MALE AND FEMALE ORGANS OF GENERATION.

MALE ORGANS OF GENIRATION.

Tine male animal, although the part he appears to contribute towards the work of procreation appears but insignificant, when contrasted with the lengthened, tedious, critical process performed by the female, is, nevertheless, provided with an assemblage of organs whose individual structures and functions may be ranked among the most complicated in the system. These organs consist of the testicles-whose office it is to prepare the fluid necessary for impregnation; of the vasa deferentia and vesicule seminales-canals and receptacles for this fluid; and of the penis - the instrument by which this same fluid is transmitted into the parts destined for its reception in the female body.

OF THE TESTICLES ANI SCROTUM.

The testes or testicles (the truly cissential organs of procreation in the male species) are the two oval glandular bodies suspended
from the hollow between the thighs, within a case or bag, denominated the scrotum.

THE SCROTUM, or purse, as it is sometimes called, is mainly constituted of a loose production of the common integuments, which is, on cither side, continuous with the skin covering the flanks and thighs; in front, with the sheath of the penis; and behind, with the perinceum: a term under which may be compreliended the space included between the scrotum and anus. The skin forming the scrotum is thin and soft in its texture, gencrally black, and is clothed with finc downy hair, long and bushy around its sides, short, scanty, and hardly perceptible about its infcrior parts. The testicles, by their prominences, produce a longitudinal crease along the middle of the scrotum, named the raphe, of which a faint trace cxtends into the perineum : this crease denotes the line of attaclment of the septum scroti. Prior to the appearance of the testicles, the purse is comparatively small and insignificant, consisting mercly of some loose folds of skin : during their descent from the belly it is that the serotum becomes gradually developed, and the wrinkles, in consequence of its cxtension, as gradually cffaced.

Dartos. On cutting through the integuments of the serotum, we expose a pale, ycllowish, fibrous layer of substance, which by some is regarded and described as a musele, and named the dartos; while others view it but as a continuation of the faschia superficialis abdominis. Its fibres, which run longitudinally, are strongest where they cover the testes. Anteriorly, they are continued into the cellular substance of the sheath, wherein they are lost : postcriorly they are spread upon the root of the penis. This substance looscly adheres to the skin by cellular membrane, and is still more loosely counceted by the same tissuc to the parts within. It is certainly distinctly fibrous in composition, but its fibres possess a density and toughness and a yellow cast, which, to my cyc, accord more with the properties of ligament than muscle : to which I may add, I am acquainted with no physiological fact that warrants such an inference. The scrotum of the horse does not corrugate from the application of cold or other stimuli, as that of a man is known to do ; we cannot, therefore, avail ourselves of the contractile power of the scrotum-at least not to the same extent as some human anatomists have done-to strengthen suppositions of the presence of a dartos. The fibrous substance is most loose and abundant along the middle of the bag, where its expansions from cither side unite and become reflected upward in inseparable union with each other, through the interspace between the testes, forming in this manner a partition through the middle of the
purse, denominated the septum scroti; which consequently extends from the raphe to the under and posterior part of the penis, and serves to prevent one testicle from encroaching upon or interfering with the other.

Cellular Structure. The cellular membrane of the scrotum (which may be considered as the third layer of substance entering into its composition) is interposed in the greatest abundance between the fibrous expansion and the peritoneal corerings of the testicles. Being very long and loose in its texture, and destitute of any adipose matter, the parts it conncets are extremely moveable upon each other, at the same time that it admits itsclf of considerable extension.

Testicles.

Coverinys. The first or external covering of the testicle, one common both to it and the chord, is a borrowed one from the peritonenm, known as the tenica vayinulis. The aequisition and reflection of this covering will not be clearly understood until the deseent of the testicle has been explained ; though it may be observed here, that it is a production of peritoneum formed into a loose vagina or sheath, which originates at the internal ring, proceeds with and loosely envelopes the chord, and, lastly, covers, in the same lax manner, the testicle and epididymis; so that if the lage (it forms) be punctured, and air or liquid be impelled into the cavity, the fluid will not only distend $i t$, but mounst into the abdomen, since both carities have a free communication at the internal ring. The elongated membrane, howerer, does not end in single investment of the testicle. Along the superior and anterior border of the epididymis, we find it firmly attached, but not terminated ; for here it becomes reflected, first upon the epididymis itself, next over the testicle, and lastly upon the chord, so as to give them all a second covering, which only differs from the first in being everywhere in close adhesion with the parts it inrests: this last production is called, by way of distinetion, the tunica reflexa or tunica vaginalis testis : it must not be forgotten, howerer, that they are both peritoneal productions-one and the same continuous membranc. The raginal cavity possesses a smooth polished surface, and this is constantly bedewed with a limpid, colourless, scrous fluid, which in the operation for castration spirts out the instant the kinife or eantery has penetrated the tunica raginalis. It is an accumulation of this fluid that constitutes lindrocele; a disease that has no existence, I beliere, in the horse, abstractedly from abdominal dropsy.

THE JLS'LICLES, with their appendages, the epididymes,
constitute the glandular apparatus for the secretion of the male sperm or semen ; the penis, as was stated before, being simply the instrument of transmission. We have already seen that these bodies, although loose and pendulous, are not inattached within the carity of the serotum : we have found them enclosed within peritoneal tunies; coufined by cellular and fibrous envelopes; and fenced in their respective apartments by the septum scroti.

Figure, Magnitude, Division. The gencral figure of the testicle is that of an oral flattened at the sides; the magnitude, that of the egg of a hen: M. Girard says, that the left is generally a little larger and more pendent than the right. The testicle is suspended within the serotum by the spermatic chord; and in such a position, that its long axis corresponds to that of the body. It possesses, therefore, anterior and posterior ends: to the latter is joined the termination of the chord, while the ras deferens departs from the globus major of the epididymis, which is attached by a ligamentous band to the former. It has also an inferior or convex border, along which are seen the tortuons windings of the spermatic artery ; "superior or straight border, to which is attached the epididymis; and two convex sides, free and unconnected.

Tiue Spermatic Ciord, the substance by means of which the testicle is comected with the abdomen, and by which it is suspended within its scrotal cavity, is composed in the following manner:-1st. It has four coverings :- there is, immediately underneath the skin, the faschia superficialis; next, the eremaster; thirdly, the tunica vaginalis; and, lastly, the tunica raginalis reflexa. Within the earity formed by the vaginal tunies it is that the intestine is protruded in inguinal and scrotal hernie: the hernial corerings, consequently, exclusive of the sac, will be the faschia aud the cremaster musele. 2dly. The constituent parts of the chord itself are-a. Tine arteries, which are two in number:-the artery of the chord, a small branch of the external iliac, which ramifies and expends itself upon the ehord; and the spermatic artery, which, as soon as it reaches the internal ring, enters the inguinal canal, runs down the posterior part of the chord, growing tortuous as it descends, serpentines along the superior border of the testis, between it and the epididymis, winds round the anterior end of the gland, and lastly reaches the convex border, where it becomes extremely convoluted, and whereto its branches are principally distributed. In its descent it detaches small unimportant twigs to the adjacent parts ; and as it approaches the testicle becomes surrounded by an assemblage of renous ressels. b. The renss accompany their correspoudent arteries ; and they indecd may be said to make up the
principal bulk of the chord, for they are not only numerous, but large and flexuous, and, as they approach the testiele, form a sort of plexus which has got the name of corpus pampiniforme: they return their blood into the posterior vena cara. c. The nerres, which are derived from the hypogastric plexus, also accompany the spermatic artery : they are small, but sufficiently numerous. Though the testicle does not possess any very great sensibility in health, we may rouch for its being acutely scusitive in a state of disease. d. Absorbents exist, both large and numerons, in the chord. They are readily found alongside of the renous trunks; and not infrequently may be filled by introducing mereury into the spermatic artery. e. The vas dererens, though a constituent of the chord, takes at first a solitary eourse, remote from the blood-ressels. The duct issues from the summit of the head of the epididymis, begimning in a series of convolutions gradually umwinding as it proceeds; it takes an oblique course nearly as high as the exterual ring, where it joins the blood-vessels, and contimues to accompany them posteriorly through the inguinal canal : at the internal ring it leaves them, turns inward and ascends into the pelvis, where we find it crecping along the side of the bladder infolded in peritoncum to get to the cervix, crossing under its course first the unbilical artery and then the ureter ; at length it terminates by rather a contracted orifice within the mouth of the duet of the resicula scminalis, just behind a little eminence in the urethra-the caput galinaginis, about an inch posteriorly to the cervix of the bladder. Within the inguinal passage the duct is accompanied by the artery of the vas deferens, a long slender branch of the epigastric. Its canal, flexuous until the duct has joined the chord, but straight in its subsequent course, is not uniform thronghout in caliber; the area of its tortnous part is large, but as it becomes straight it grows contracterl : having entered the pelvis, it gradually enlarges again, and aequires unusual volume in rumning along the side of the bladder; and the canal of the enlarged portion presents a reticulated structure, which gires its exterior an irregular, tubereulated appearance ; the most contracted part is that in mion with the duet of the resicula seminalis, which is a comparatively small cylindrical conduit. The parietes of the duct are so remarkably thick and firm to the fecl, that we distinguish it at ouce by the fingers from the other parts of the chord : they consist of two tumies; the external one (in whieh its main thickness consists) is white, fibrous, and approaches in appearance to cartilage ; the internal one is thim and fine in texture, muco-membranous in its nature, and here and there incloses a reticulated structure. The different constituent parts of the ehord
are connected altogether by cellular substance, destitute of any fat; and from the circumstance of the parts in gencral being more bulky below the ring, the ehord increases in breadth and thickness as it approaches the testicle.

Close Coverinys. The close or iutimate tunic of the testicle is perfectly distinct from its vaginal coats, and from its conspicuous whiteness is called the turica albnginea. Though it may be stripped off in places by the forecps, and the scparation may be also effeeted by diffusing quieksilver into the cellular texture uniting them, the tunica reflexa so intimatcly and uniformly adheres to this tunic, that, the former being transparent, they appear to constitute but one and the same covering. The albuginea, howerer, is mueh denser and firmer in its nature, and much resembles other fibrous membrancs, particularly the dura mater, both in appearance and texture : like that membrane, it is extensilc and contractilc, but neither suddenly nor greatly so, and imparts a compactness and firmness of fecl to the inclosed structure which the latter, deprived of it, is not found to possess. Orer the convex part of the gland this tunic is perforated by numerous holes for the transmission of the spermatie blood-vessels. Intcrnally, it is connceted to the substance of the testiele, by thesc vessels, by a fine cellular web, and by numerous little processes that traverse the gland perpendicularly, serving to hold the internal parts together, as well as aiding to preserve the form of the whole, and which are gencrally described as the septa or septulde tetis.

Structure. On cutting into the testicle, we find that it consists of a soft pulpy substance of a pale brown colour, and that this, by being nipped and drawn out by the forceps, is extensible into numerous whitish threads of extreme exility, which may occasionally be elongated to a considerable degrec : it is believed that these are the seminiferous tubes. Like other secreting organs, the testicle receives into its composition congeries of arteries, veins, nerves, and absorbents, the peculiarity of structure ehiefly residing in the arramigement of the sceretory and excretory parts of the apparatns. It is imagined, in the instance before us, that this consists in many vascular coils or complexures which are only separated from one another by the septule, and that these, independently one of the other, possess the power of secretion. After the spermatie trunk has dispersed its ramifications over the albuginea, numerous twigs are transmitted throngh that tmuic into the interior of the gland: from these, capillary arterics spring, which, it is presumed, communicate with the tubuli seminiferi, but in what manner anatomists lave not been able to detect; for in the old subject these tubes are constantly
plugged with secretion, and so foil all our attempts to injeet them: and in the young subject, before they begin to secrete, they are not sufficiently developed to admit of the examination. If quieksilver be suffered to pervade the arteries by its own weight, it is found to return by the reins; and in a preparation of the testicle of a dog at present before me, the absorbents have been filled from the same source. Towards the posterior end of the testicle, the seminifcrous tubes assemble from the different parts of the interior, and unite into a set of larger tubes of the same deseription, disposed after the manner of network, and hence lave got the name of the rete; then, from the rete proceed another set of similar tubes, still larger (about a dozen, I believe, in number), from the testis to the epididymis, constituting the sole medium of communication, and the principal one of eonncetion, between the two: these are the vasa efferentia. In addition to these minutire, we may notice that the superior border of the testicle is marked by a broad white line: this denotes the situation of a supposed canal, and is generally mentioned as the corpus Highmorianum.

The epididymis is extended along the superior border of the testicle, upon which it rests, and to which it is connceted by the tuniea raginalis refiexa. Its ends are bulky in comparison to its middle : that reeeiving the vasa efferentia, the smaller one, is the caput or globus minor; the other, giving rise to the vas deferens, is the globus major-the part farricrs call the mut. The interior of this appendage to the testiele exlibits a structure entirely vaseular. The vasa cfferentia unite and re-unite until they form a single duet, of whose numberless and very remarkable conrolutions the globus major is entirely eonstituted: these tortuosities (which, when squerzed, freely emit semen) will admit of boing unwound for a considerable extent, so as to have the length of the duct ealeulated with rery tolerable exactness from beginning to end, whieh has been found to amount to several yards. It is small at its formation, but grows impereeptibly larger in making its manifold windings and turnings, until at length it assumes the size of the vas deferens, in whieh it ends. Its various eonvolutions are eonnceted together by eellular membrane, and are interspersed with a sparing supply of blood-vessels.

The course of the semen is this:--It is secreted by the eapillary eoils of the spermatic artery, from which it is received by the tubuli seminiferi : these tubes carry it into the rete, and the rete discharges it through the vasa efferentia into the epididymis, from which it is condueted by the vas deferens into the urethra.

Formation and Descent. It is a singular faet, that the organs
whose structure we have been investigating, are originally formed in a situation remote from that in which they are destined to earry on their functions: " the colt has no testieles," is the eommon observation of the uninformed on these matters; and we know ourselves that the purse is without then, but we know, in addition, that they exist ready formed within the abdomen, and that they will descend at a certain period of age into their proper reecptaele, the serotum. During the foetal state, we find them more or less developed, tinged with a blush of red, lodged underneath the psore muscles, in contact with the inferior borders of the kidncys, eovered and retained in their situations by peritoneum, and concealed by the intestines around them. Here they receive their arteries from the eontiguous trunk--the posterior aorta; the vasa deferentia run forward to them; and the cremasters likewise turn forward instead of backward: there being at this time no such thing as a spermatic chord. Thus plaecd, the testiele may be regarded as one of the glands of the abdomen : indeed, it has considerable similarity to the kidneyreeeiving its vessels from the same eontiguous sourec, and sending a long duet baekward into the eavity of the polvis: nor does there appear any conelusive reason why it should not perform the same office in that situation that it docs in the scrotum, and particularly since it is known that in birds they remain within the belly during life. From the part where the blood-vessels enter, we find growing a whitish substanee, extended backward, diminishing in breadth as it reeedes, passing through the ring, where the fibres of the eremaster may be traeed upon it, and whenee it is prolonged into the serotum, growing narrower and narrower until it vanishes: this substance, regarded by some simply as a ligament, was considered by Mr. Hunter as the yubernaculum or pilot, by means of which the testiele is direeted in its passage from the abdomen into the serotum. Quitting the spot where it has been formed and matured, the testiele gradually retrocedes, guided by the gubernaculum, until it arrives at the internal ring, which, at this time (like every other part of the parictes), is closed by peritoneum : this temporary obstruction it overcomes by drawing the membrane down along with it through the ring, and carrying the pouch made thereby down into the serotum; the gubernaeulum at the time undergoing a complete inversion. This aecounts for the production of the tuniea vaginalis, and explains how that membrane eomes to be doubled or refleeted : the testiele, receiving originally (as an ab)dominal viseus) one close and adherent peritoneal tunic, and aequiring another, which forms a loose covering, as it passes through the ring, must neeessarily have two ; and sinee both are
derived from one and the same membranc, it follows that one must be a continuation of the other. These elongations of membrane, though everywhere in contact, are prevented from adhering together by a continual exhalation of the natural scrous sceretion. Any interval that might subsist between them, in course, communicates with the cavity of the abdomen, through the ring, a part that remains open through life : this, however, is not the ease with man-in his body the communication is cut off, after the testicles have desecnded, by a natural contraction and obliteration both of the ring and the inguinal passage. In many instances, one, in some few, both of the testicles, are known to have remained within the belly through life. As we are unacquainted with the immediate cause of their deseent, so we are unable to give any rational explanation of this phenomenon. I have understood, that in many of these eases the glands have been found to be but imperfectly developed : this, however, is not without exception.

Period of Descent. Most animals have their testicles within the scrotum at the period of birth. In the human foetus they begin to move about the seventh month ; about the eighth they reach the groins ; and before birth arrive in the serotum. In the horse, they pass through the ring about the sixth or seventh month before birth, and are found within the serotum at the period of parturition. In some cases, one testiele will not make its appearanee for some time after the other ; and as the operation for castration is seldom long delayed, this will aecount for the rigs (as horses having but one testicle are called) with which we meet every now and then. Again, instanees are not wanting in which one testicle has deseended to the ring and there remained through lifc.*

[^25]
The Vesiculce Seminales

Are two oblong, membranous saes, plaeed contiguously to the terminations of the vasa deferentia, which have been so denominated from a supposition that they were receptaeles for the semen. They oecupy the lateral intervals left between the bladder and the rectum, with their internal prominences, while their external are opposed to the sides of the pelvis. They are prineipally sustained in their plaees by the bladder. In relation to each other, they represent in situ the two sides of a triangle: for their posterior extremitics are nearly in contact, while their bases diverge as they advanec, and leave a considerable breadth of interspace. The longitudinal channel between the bladder and vesicula is occupied by the vas deferens. The resicula are confined in their situation by cellular connections with the bladder and reetum, the walls of the pelvis, and the vasa deferentia.

Form and Structure. These bodies have a near approach to the pyriform. Anteriorly they present broad round bases, whieh are elongated postcriorly into contracted circular necks, and the neeks end in duets of some length, which may (to carry the resemblanee on) be said to represent the stalks of the pears : they incline, however, to convexity superiorly and to flatness inferiorly, and their surfaces are rendered uneren by some tubereular eminences. The parietes of the vesicula are distinguislable into two textures. The external one, when eleared of the enveloping cellular substance, is white, and, though soft to the fecl and not so thick as the outer tunic of the vas deferens, possesses considerable density and toughness, and in some parts, partieularly around the base, assumes a fibrous texture : these fibres are deseribed as museular, and certainly the functions attributed to the vesieulæ appear to warrant sueh a supposition, even were we unconrineed of its truth from anatomical inspection-which, I should say, we eertainly are. This tunic is lined with a membrane, whose surface is of the papillary description-cverywhere presenting to view (through a magnifying-glass more plainly) numerous pinhole-like perforations, the orifices of subjaecut follieles furnishing the whitish, viscous, jelly-like sccretion peculiar to these bodies. Their ducts are of considerable volume, not greatly inferior even to the urethra itself: both proceed baekward in a eonvergent direction in union with the vasa deferentia, alongside of the membranous part of the urethra, and terminate behind the verumontanm.

OF THE PENIS.

The penis or yard is an organ of large dimensions in the horse species, capable of projection and retraction, but ordinarily concealed within a loose and pendulous doubling of skin, at the inferior and postcrior part of the belly, known by the name of the sheath. It is not only destined for the important office of impregnation, and made the seat of that enjoyment experienced by the male during the copulative act, but it serves the subordinate purpose of a convenient conduit for the discharge of urine.

THE SHEATH (in which the penis is inclosed, and by which, unless it be in a state towards crection, it is concealed from view) is nothing more than a prolongation of the common integuments, with one part drawn within the other, and puekered so as to form a sort of corrugated bag-corresponding to the prepuce in man-whose dimensions vary with the degree of retraction of the penis. Postcriorly, the sheath is continuous with the scrotum ; antcriorly, it is eleft, and has two large pendent folds of skin, proceeding from the sides of the vayina propria penis, with a broad deep furrow between them, which extends along the belly as far forward as the navel. In most horses, these parts are either dark-coloured or black: in some they are elothed with fine, long, downy hair ; in others they are inferiorly almost bare, having but a few seattered short hairs which are only perceptible on close inspection. But there is so much varicty in these unimportant particulars, that any single description, accurately and minutely drawn, will not apply with precision to another individual. Near the borders of reflection of the sides of the sheathin the ordinary state of the parts-grow two small papillae or teats, resembling the dugs of the mare, presenting, in a less perfect degree, the same internal structure, and being perforate at their apices: they are not to be found, however, I beliere, in all loorses, and it is the practice of some cutters to take them off at the time of eastration ; Girard observes, with truth, that they are largest in the ass species. The internal sheath-the vagina propria penis, exhibits two large, eircular, tegumental plications: the outer and larger one is formed by an involution of the external vagina, and exhibits internally mumerous corrugatious, which, though by no means regularly ranged, for the most part run in cireles around the inner plication, the veritable prepulium glandis penis, whose internal surface is also puckered into circular corrugations, but smaller, and still more numerous, and more irregularly disposed than those of the former. These pli-
cations are nothing but a continuation of the emmon integuments disposed after this manner to admit of the projection and erection of the penis-a state in which they, together with their corrugations, are extended and amihilated; though the skin composing them is of a kind remarkable for its fineness and softness of texture, for its black or marbled eomplexion, and for the exeretory pores of myriads of little suljaeent glands, whieh are so elosely packed that it is lardly possible to introduce the point of the scalpel through it without penctrating one or more of them. These involutions of skin are supported in their corrugated form and comnceted to the body of the penis by an interposed stratum of ecllular substance, which is so loose and abmendant as to readily admit of their sliding over each other, and of the penis being protraeted and retracted with the greatest faeility.

Reflection. From the inner plication the skin is refleeted upon the penis, cxtending forward and giving a complete covering to the part named the glans penis. This part exhibits a very remarkable eorrugated aspect, which I cannot resemble to anything so nearly as to the leaf of a eurled eabbage: its cellular substratium is shorter and more eondensed than that of the sheath, it not being designed to be protracted beyond the penis; and, like the inncr plication, it is destitute of those glands with which the outcr is so thiekly studded.

The glandula odoriferce are numberless little brown follicular bodies set in the internal part of the outer vaginal fold, for the purpose of diseharging a white eascous matter through their cxeretory pores upon the surface. This seeretion, which has a peculiar odour, preserves the sensibility of the parts, and facilitates their slipping baekward and forward. It is oeeasionally found eollected in eonsidcrable masses between the outer and inner plieations, cren, it has becu said, so as to plug the orifiee of the urethra, and eause retention of urine: knowing this, will put us upon our guard, and lead us to inspeet the part in eases where the cause of retention is not very apparent. The surfaces covered by the imner plication are lubricated by a mueous sccretion.

Cul-de-sac. There is yct another involution of the skin. This takes place at the extremity of the organ, where a little cul-desac is formed, in the centre of whieh protrudes the end of the urethra, a part also covered by a reflection of this thin, hairless, corrugated integument. Around the cud of the uretlira is a little recess, partially divided into two chambers, commonly containing eoncreted masses of a peculiar unctuous secretion; the use of which exearation is not rery apparent.

Faschial Covering. The penis, inferiorly, reecives a covering
from the faschia superficialis abdominis, lateral portions of which deseend from the flanks, and unite along its middle: as we approaeh its root the fasehia grows stronger, and exhibits a fibrous texture. The organ derives considerable support from this eovering.

THE PENIS is constituted of five distinet parts, whieh appear to view withont the aid of any dissection or disarrangement of the organ : viz., the two corpora cavernosa, whieh form the middle and sides, the largest proportion of the body; the glans penis or head, forming the anterior protuberanee ; the corpus musculosum urethre, making up the inferior portion; and the plexus venosus, surmounting the corpora eavernosa.

The museles belonging to the organ having been deseribed (at page 128), we proceed to the CORPORA CAVERNOSA PENIS, the prineipal parts in respeet to bulk in the constitution of the organ ; parts whose ereetile eapacity fits it as the instrument of eopulation, extending from the ischial areh to the glans penis, and insinuating their extremities for some little way under the flattened portion of the latter. They are attaehed by means of two branches, the crura penis, to the posterior ends of the tuberosities of the isehia, and to the sides of the isehial areh, where they are elothed by the erectores penis; from which attachments they eonverge along the branehes of the ischium, and under the summit of the isehial areh form a uniou. The attachment of the penis to the pelvis is considerably strengthened, just below this union of the erura, by two suspensory ligaments, whieh fasten the sides of the eavernous bodies to the pubes. These cylindrieal bodies, joined together in one eommon tumie, continue their-passage forward to the glans penis, within the substanec of which they terminate by two rounded protuberanees.

Structure. The corpora eavernosa are composed of a ligamentous ease, of unusual thiekness and tonglness, common to them both, whose fibres, ruming in every direetion, are so interlaeed and matted together, that it not only defies our industry to unravel it, but is even impenetrable; unless when sharp instruments, and they with no ordinary foree, are made use of. It is not everywhere uniform in thickness, however: it is eomparatively thin over the erura and where it is opposed to the urethra, those parts being suffieiently supported and proteeted by their muscular coverings. The internal structure of these bodies, spongy, reticular, or honeyeomb-like in its arrangement, is found to involve three different textures. First, numberless little tendinous ehords, which are processes detaehed from the ligamentous case, unequal in size, run irregularly from one side to the other : these are erossed in the middle by a perpendieular set, broader
and stronger, and so arranged as to resemble the tecth of a comb; on which accoment, thesc last, forming the partition between the two corpora, lave been collectirely named the pecten. Thus, pretcrnatural distension of the organ, and consequent liability to rupture, are guarded against both latcrally and perpendicularly. Secondly, the interspaces are filled with a palc-red spongy substance, in which may be distinguished cylindrical processes taking a longitudinal course : thesc M. Girard pronounces to be "évidemment musculaires;" and I sce reason for so considering them ; though I think it is a point which demands confirmation from physiological or experimental inquiry, and not entirely to be decided upon anatomical evidence. Thirdly, these cylindrical bands are surrounded and conneeted together by a cellular structure, that would appear to be the result or product of some peculiar renons arrangement: at least, the small veins, which are here far more mumcrous than the arterics, have everywhere the frecst communication with these apparent cells.

Orgamization. The cavernous structure is especially supplied with blood by a large ressel, the internal pudic artery, a branch of the obturator artcry, which enters the crus, giving off sereral small branches to the other parts of the organ. The pudic nerves, two in number, springing from under the ischial areh, are scen entering the corpus at the same place, one before, the other behind the artery. The internal pudic veins, which are large and numerous, divide here into two sets, one accompanying the arteries, the other the nerves, after they have quitted the penis.

THE GLANS PENIS is the large, irrcgular, fungns-like protuberance, forming the fore part of the organ, rulgarly called its head. This part puts on a very different appearance when distended from the state in which we find it in the dead animal: it then presents a broad surface anteriorly, surrounded by a prominent infleeted border, which is turned back for some distance abore, but altogether deficient below, where there is a notch or division of the glans. The lateral portions are prominent, incorporated in one superiorly, separate and divergent inferiorly : posteriorly, they are terminated by a contracted circular part, whose prominent border forms the corona glandis. From the corona extends along the dorsum penis, a fiattened substance of an oblong oval figure : this is the posterior or terminating portion of the glans. In the middle of the glans is a prominence, in front, marking the termination of the corpora cavemosa; and below this is a circular fossa having in its centre the projecting orifice of the urethra. Altogether, the glans may be regarded as a part by which the penis is surmomed in order to enable the anmal to dircet the semen with more certainty into the womb
of the female; the mouth of that organ being precisely its counterpart in form.

Structure. The internal corrugated production of sheath, as well as the reflected portion by which the glans is immediately covered, have already been described: underneath this last we find a fibrous case, of a ligamentary and cellular texture, holding together the internal structure. The interior exhibits a honeyeomb appearance, being throughout composed of a soft, spongy tissuc, in a high degree distensible and clastic, which some are of opinion is nothing more than a eongeries of veins: whether this be wholly or in part true, venous vessels are found running among the cells, becoming large and more conspicuous towards the posterior parts, from which spring those veins that afterwards so suddenly enlarge and multiply upon the dorsum penis, forming thereon that remarkable venous eonglomeration, the

PLEXUS VENOSUS PENIS, a structure that may, to all appearances, be regarded as a development of the glans; and one that, when distended with blood, in the ereet state of the organ, constitutes no ineonsiderable part of its volume. Though the reins composing it have free and frequent communication, yet, being furnished with valves, this communication is not such as will permit us to fill them with common injection contrary to the course of the blood; so that, when we mean to distend them with wax, we introduce the pipe into the substance of the glans. Towards the root of the penis these venous convolutions diminish in number and volume, and at length coalesce in front of the symphysis pubis in three or four veins of ordinary size, which are here joined by the cpigastric and superficial femoral vcins, and then proceed into the pelvis to end in the trunk of the internal iliac vein.

THE URETHRA is a membranous canal extended from the bladder to the extremity of the penis, to afford a passage for the urine and seminal fluid. Arising from the neck of the bladder, the urethra, in its way to the outlet of the pelvis, runs at first horizontally baekward, with a slight curve downward, between the lobes of the great prostate, cmbraced superiorly by the portio media of that body, and arrives at the small prostates, which are situated upon its sides: this intermediate portion is called the membranous part; incorrectly, however, for we find that it is cncircled by some of the fibres of the triangularis penis. Bchind the small prostates the urethra suddenly bulges or swells in volume, which part is named the bulb: it is here that the aceclerator urine begins-the muscle that incloses the canal during the remainder of its course, and is, in fact, a part itself of the urethra. Leaving the bulb, the urethra suddenly curves down-
ward, and shortly after turns sharply forward, passing under the ischial areh-the tuberosities bounding it laterally-at which place it is joined by the erura and subsequently surmounted by the corpora eavernosa. At the extremity of the penis the eanal is enveloped in the glans, terminating in the eentre of the front of that body-within a prolapsus of membrane eovered with a refleetion of fine skin-by an open orifice, which is insulated from the glans by the fossa rumning around it. In turning round the isehial areh, the urethra has extensive cellular attaehments to the bone; but it is prineipally retained at its eurvature by the suspensory ligaments of the penis. The length of the urethra is nearly two feet. It is a canal also of eonsiderable ealiber, so that I can with facility introduce the handle of the sealpel into the orifice, though that is the smallest part ; for, after it has passed the bull, it pretty regularly diminishes in ealiber all the way to the orifiee: the eanal at the eurvature measuring, when distended with wax, four inches in eireumference ; near the orifice, not more than two.

The interior of the eanal exhibits a smooth, polished, lubrieated surface, laving a pale blush upon it. In strueture it does not materially differ from other mueous membranes, unless it be that its follieles are larger and more numerous, and that their orifiees are ealled lacunce. It is eontimuous, and appears to be one and the same texture with the mueous membrane of the bladder. About an ineh and a half from the neek of that viseus, within the membranous part of the eanal, is a little eminenee named the verumontanum or caput galinaginis, at whose root open the ejaeulatory duets: the use of this tuberele (whieh I believe has not been noticed) appears to me to be, to perform the office of a valve to the orifiees of these ducts, preventing any influx of the urethral fluids. Upon either side of it are many small perforations through the membrane: these are the exeretory openings of the duets of the great prostate. A little in the rear of the verumontanmm are sereral small papillary eminenees, perforated through their eentres, and longitudinally ranged in two distinct sets; these are the openings throngh which the duets of the lesser prostates diseharge their secretion.

The bulb of the wrethra is a longitudinal prominenee, beginning immediately behind the lesser prostates, and proeeeding with the eanal around its enrvature; not indeed ending there, for it may be traced on, though eonsiderably slrunk in rolume, eren to the glans penis: the continuation of it being the part eorresponding to the corpus spongiosum in human anatomy, a name it hardly merits in this instance. It has a cellular arrangement internally, which we may regard in the same light
as the spongy structure of the glans itself: indeed, if I might be allowed here to draw a comparison between these parts in a man and in a horse (the spongy body being more developed in the penis of the former, the glans in that of the latter), I should say, that the glans was an expansion of the corpus spongiosum, and that the glans in the horse and the corpns spongiosum in man bore strong evidence of some peculiar venous arrangement.

OF THE PROSTATE GLANDS.

Thesc bodies are three in number : a single large one situated around the neek of the bladder, corresponding to the gland of the same name in the human subject; and two small ones, which answer in situation to two little glandular bodies oecasionally met with in man, named, from their discoverer, Cowper's glands.

THE GREAT PROSTATE embraces the neek of the bladder and incipient portion of the mrethra, both superiorly and laterally, being placed between those parts (by which it is supported) and the reetum. It is firmly attached to the parts it surrounds by cellular tissuc ; and has also a cellular eonnection in front with the vesicule seminales, and above with the rectum. We distinguish in this gland two lateral lobes, and a uniting middle portion; which, in man, Sir E. Home has described as the third lobe, in consequenee of its assuming fiequently the lobular form when in a state of disease. The lobes are enveloped in incompact cellular cases, have exteriorly a conglomerate disposition, and are of a palish brown colour. Internally, they possess a spongy or cellular structure, difflused through which are sets of thin membranous tubes, very large for the size of the gland, which are readily inflated, and then are seen to open, through orifices before described, around the base of the rerumontanum. The gland secretes a whitish liquor resembling thin mucus, and this mingles with the sperm at the time of its ejcetion ; but for what particular purpose has not been satisfaetorily determined.

THE LESSER PROSTATES are situated against the sides of the urethra, contiguously to the posterior part of the bulb, where they lie mpon the branehes of the ischium. Each of them is about equal in bulk to one of the lateral lobes of the large prostate. They are included in loose cellular sheaths, that are continuous with the substanee of the triangular musele. In figure, they are flattencd ovals. In colour, they are likewise a pale brown; but it is a lighter shade still than that of the large one. Their extcrior is eren, and such as indicates their structure to be of the conglobate kind. The interior
exhibits a more uniform appearance : a longitudinal seetion through the middle displays an arboreseent membranons strueture, whieh is demonstrated (by the use of the blowpipe) to be the system of exeretory duets, whose papillary terminations in the urethra have been already pointed out. These glands likewise seerete a peeuliar fluid, and that is also ejeeted in eommixture with the sperm.

FEMALE ORGANS OF GENERATION;

CONSISTING OF EXTERNAL AND INTERNAL PARTS, AND APPENDIX.

ENTERNAL PARTN.

Sucn as ean be examined without the aid of disseetion: comprehending the Vulva, the Clitoris, and the Meatus Urimarius.

OF THE VULVA.

THE VULVA, or mudendum, is the broad slit inchded between two prominenees of the eommon integuments, extending from a little below the anus down in a perpendieular direetion between the supero-posterior parts of the hind quarters. It is eonstituted of the fissure, in the middle, denominated the fissura magna; of the two latcral prominenees, or labia pudendi ; and of two angles, superior and inferior, ealled the commissures.

THE FISSURA MAGNA, or simus pudorus.-The external orifice of the vagina, several inehes in extent, is largest in mares that have borne foals, in eonscquence of the extension it undergoes in parturition. The short interspace between the fissure and the amus is termed the perinem.

TILE LABIA PUDENDI are eomposed exteriorly of dou. blings of the eommon skin, which here exhibits a partieularly fine and soft texture, is hairless, and in most mares black, and is preserved moist and supple by a sehaeeous secretion eontinually exuding from minute pores in their opposed surfaces. But the labia owe their bulk prineipally to adipose substance; whieh aceounts for the variations in regard to prominence they undergo in conformity with the age, as well as the embonpoint of the animal. With the fatty substanee is blended a fibrous texture, and so intrieately, that the one camot be demonstrated separately from the other, nor ean their mutual eommection and arrangement be at all aecurately made out: whiel fibrous texture it is that gives
the labia their firmness, resistance, and elasticity. Interposed between this mixed substance and the skin, we find seattered fasciculi of pale fieshy fibres: these come from the perineum, grow larger and more conspicuous as they descend, and form a union below the inferior commissure, with similar fascieuli coming from the opposite labium. Some consider these fasciculi, collectively, as forming a distinct muscle, and give it the name of sphincter rafince. They will, unquestionably, perform such an office; but I know of no oceasion on which they appear to be so manifestly called into action, as when a mare, just after staling, is cjecting the stagnating drops of urine from the vagina by repeated eversions of the labia and os vagine. The labia are lined by a mucous membrane (the same as that which lines the ragina), which is continuous with the skin covering them externally, has a smooth humid surfaec, a pinkish huc (unless it be at the season of the venereal oestrum, when it is decply reddened), and is perforated by the diseliarging mouths of numberless mueous follicles.

THE COMMISSURES are the angles uniting the labia, above and below. The superior commissure is extended into a sharp angle, and joins the perincum ; the inferior is obtuse or rounded off, and is bounded by a hollow, named the fossa navicularis, at the bottom of which is lodged the

CLITORIS.-This miniature resemblance of the male organ is brought into view by simply dilating the vulva. Not only in its appearanee is it strikingly like the penis, but it is found to bear the same close analogy in structurc. Its extremity is inrested in a doubling of thin and delicate skin, which is hairless, and commonly marbled ; or, if not, black, or cutirely white: a part that corresponds to the prepuce of the penis. It is firmly attached to the pubes by two short ligamentous prolongations, forming its roots. These unite into a cylindrical body, from two to three inches in length in a state of distension, and this consists of two spongy canals, separated by a peetinated fibrous partition, and inclosed within a dense, firm, white tunic: in fact, it is a structure altogether the countcrpart of the corpora cavernosu penis. To this is added a bulbous termination similar in form and composition to the glans penis; and through it is a perforation out of which may be squeezed a scbaceous matter that serves to anoint the part, and preserve its aptitude for that sensual enjoyment of which it (as well as the glans penis) is known to be peculiarly susceptible. To the clitoris belong a pair of museles, named the erectores clitoridis; they will be found deseribed at page 130 .

The Meatus Urinarius is also a part that can be shown
without the aid of dissection, and this is al stage of inquiry in which we ought to make ourselves well acquainted with its situation : but, as it is blended in composition with the vagina, I shall postpone the consideration of its structure until that canal has been deseribed.

INTERNAL PARTS.

THE VAGINA, UTERUS,
FALLOPIAN TUBES, FIMBRIA, AND
OVARIES.

OF THE VAGINA.

The Vagina is a musculo-membranous canal of large dimensions, extending from the vulva to the uterus.

Situation and Connection. It is situated within the eavity of the pelvis, having the bladder below and the rectum above it ; to botli of which it has broad cellular attachments, in addition to the reciprocal comnection of all three parts through the reflections of peritoncum. To the rectum it is closely and firmly attached, by cellular membrane, along its upper side; to the cervix, and to the upper half of the body of the bladder (which is not covered by peritoncum), its inferior and anterior part is connected by a broader and looser cellular band; and the extreme parts of the canal in front, both supcriorly and inferiorly, are applicd against the peritoncal pouches formed between the uterus and rectum above, and the utcrus and bladder below.

Fiyure and Volume. The figure of the vagina (when distended) is that of an oblong cylinder ; but in the eollapsed state its sides fall into contact, and it will then vary its form aecording to the full or empty condition of the bladder and reetum : when they, especially the latter, are distended, the long axis of the canal will prove from side to side, with the exeeption of its orifice, which will have the long vertieal diameter still preserved by its union with the rulva. The most capacions part of the canal is the posterior ; there it cren excceds the dimensions cither of the bladder or rectum : the part joined to the meatus urinarius is considerably contracted, but from thence it gradually widens to the outlct.

Length and Course. The length of the canal is about cighteen inches. Its course is horizontal ; its axis, however, does not exactly preserre the straight line ; it rather shows an inclination to a curve, the same as the rectum does.

Corpora Cavernosa Vagince. The vagina at its commencement from the rulva is mueh thicker in its parietes than else-
where ; a eircumstance partly owing to a coating of strong museular fibres, and partly to two cellular or eavernous membranous bodies, one upon either side, which have some resemblance in structure to the interior of the.glans penis. They are inclosed in membranous coverings, enveloped in adipose substance, and show signs internally of having, in life, contained bloor. I know of no appellation in use for these bodies: M. Girard calls them "bulbes vaginals." I see no impropricty in naming them the corpora cavernosa vayina.

Structure. The ragina in eomposition is partly muscular and partly membranous. The orifice of it is bound by the strong, red, cireular, fleshy band forming the sphineter vagine ; and the adjoining part of the eanal is also eneireled by some considerable fleslyy faseiculi : but the part most eompaeted, and most thickly and regularly eoated with muscular fibres, is that whieh is con-traeted-which receives the urine as it flows from the meatus urinarius; though the faseieuli hereabouts are not so red, nor so strong, as those blended with the sphincter. Farther forward than this, the vagina is substentially composed of membranc. There are, indeed, to be found eolourless fibres taking various directions scattcred over its surface ; but they present no very uncquivocal marks of museularity, though they are eommonly considered to be of that nature : fibres apparently similar to these are likewise discoverable underneath the red faseieuli postcriorly; but there they take a longitudinal course.

The membrane of the vagina, the part of which it is integrally eonstituted, is one of the mucous class, and one that possesses eonsiderable density, extensibility, and resistance. Its exterior surfaec is rough and floceulent from the adhesion of musele and other parts. Its interior is smooth and polished, humid from seeretion, and has a very pale pinkish east; unless the mare be under the influence of the venereal costrum, and then its redness is eonsiderably heightened and its sccretion abundantly augmented. In the ordinary state this membranc is thrown into folds, larger in breeding mares than in others, teehnieally ealled rugre, whieh eontinue without much regularity from its outlet to its utcrine end. Follicles furnishing the mucous secretion are scattered about underneath the membrane; and their orifices are gencrally most conspicuous within the more capaeious part of the eanal.

MEATUS URINARIUS.-Considerably in advance of the clitoris, altogether about four inelics in the collapsed state from the entrance of the vulva, is an opening leading from the lower part of the raginal eanal, large enoughto admit with ease any one of the fingers: this is the orifice of the meatus wrinarius, and it is a
part with the situation of which we cannot be too familiar, as upou sueh knowledge will principally depend our skill in passing the eatheter. The conduit-the meatus-into which it leads is about two inclies in length; and its course is downard and forward: it is surrounded below by the muscular fasciculi of the vagina, and covered albove by its lining membrane. The instrument thercfore (which should have more curve than is commonly given to it) must be introduced so as to follow this oblique direction, which will be accomplished by elevating the handle of it as soon as the point is pushed into the meatus. The orifice of the meatus is guarded by a doubling of the vaginal membrane, hanging over it like a eurtain, and scrving the purpose of a valve. Care must be taken to elevate this by means of the instrument; or, should there be any difficulty experienced in doing this, the left hand may be carricd per vayinam to the part itself as an assistant.

The large and conspicuous cauliflower protuberance at the bottom of the vagina, is the cervix uteri: it will be described with the uterus.

OF THE UTERUS.

The uterus or womb is a hollow musculo-membranous organ, united to the anterior part of the ragina, destined for the reception of the fruits of impregnation.

Fiyure and Volume. The uterns of the mare is one of striking and peculiar figurc. Its body (which is the bulky, oblong part) bifureates anteriorly into two cormua or horns. I hardly know what the whole is like in figure, unless the vagina be taken with it, and then (in a mare that has never been fecundated) the tout ensemble very much rescmbles an insect of the bectle tribe: the vagina represcuting the bottle or body; the utcrus, the head and neek; and the cormua, the horns. But, during the period of gestation, the womb undergoes an almost incredible augmentation in volume; and it never afterwards recovers either its identical original form or virgin state of contraction.

Division. We distinguish in the uterns, body, horns, neck, and mouth.

The body is the oblong or cylindrical part, growing out of the anterior portion of the ragina, into the centre of whose cavity it is presenting its posterior tcrmination, the os uteri, while it is giving origin in front to the horns. Its upper and under surfaces are convex, and most prominent towards the middle ; its corncrs or angles are round, it being eridently formed altogether for the
purpose of giving capaciousness within. This part of the utcrus lies wholly within the pelvis, between the bladder and rectum, and is entirely covered by peritoneum.

The cornua or horns, rising from the body at an acute angle with each other, take a progressively divergent course to the loins, under the broad plates of the ilea; they are consequently not entircly confined to the pelvic bason. Their length and volume will be much greater in brecding mares than in others, though their increase will be less than that of the capacity of the uterus: indecd, in virgin mares, the diameter of a single horn is little exceeded by that of the womb itself. In figure they are cylindrical ; they bend upward in their course, and they terminate in round extremities; to which is loosely appended the ovaries, through the medium of the Fallopian tubes.

The cervix or neck of the uterus is the rugose portion protruded backward into the eavity of the vagina. From its flowerlike appearanee, the French have fantastically named it " la fleur cpanouic :" it is a part, however, that can only be said to be demonstrable in a virgiu uterus in the mendistended state : inflate the womb, and the cervix will disappear ; also one that during gestation undergoes very remarkable changes. The vertical slit or oval-shaped aperture in its middle is the os uteri or mouth of the uterus. The peculiar florulent aspect of the cervix is owing to itsbeing enveloped in a prolongation from the lining membranc of the utcrus which is uniformly puekered into many ruge as it passes through the os utcri : around the sides of the cervix these rugre become continuous with those of the vaginal membrane. This is a part that receives an especial abundant supply of mucous secretion.

Ligaments. Independently of its connection with the vagina, the uterus is confined in its place ly two broad productions of peritoncum which attach it to the sides of the pelvis, named its broad ligaments. They are formed in this manner-one portion of peritoncum refleeted from the bladder covers the under parts of the body and horns of the utcrus, their upper parts receiving a similar covering from another portion of the same membrane derived from the rectum; the two portions subsequently unite at the sides of the utcrus, and contimuc in union to the opposite parts of the pelvie parictes : by which arrangement the membrane really divides the pelvis into two cavities, or rather blind pouches, one existing between the uterus and bladder, the other between the uterus and rectum; at the same time that it serves to conucet these parts mutually to one another. The cervix consequently reccives no peritoneal covering. These ligaments serve to sustain between their layers the vessels and nerves belonging to the
organ ; to preserve its equilibrium during gestation; and to aid in retaining it in its proper eentrieal situation.

Structure. Underneath the peritoneal tunie of the uterus, intimately united with it by a short eellular tissue, is a dense fibrous strueture, possessing a eonsiderable degree of strength and extensibility, and generally eonsidered to be museular : and the fibres eertainly assume that appearanee, though their direction is very various, some running eireularly, others deeperseated longitudinally, and others, again, deeussating these. But, about the eervix in partieular, where the fibres are strongest, most eolleeted, and often have a pale bloody tinge, the museular strueture is palpable. Still, however, were this disputed, proofs of its museularity might be drawn from a physiologieal as well as an anatomieal souree. During the period of gestation, this tunie not only experiences considerable extension, but may be proved to undergo veritable aeeretion. Inwardly, the museular is opposed and adherent to the internal tunie ; but their eonneetion, which is also eellular, is looser than that existing between it and the peritoneal eovering.

Cavity. The eavity of the uterus, having the same irregular form as the exterior, has three outlets-one of eonsiderable magnitude communieating with the vagina, through the os utcri; two others of very small size, through the extremities of the cornua, leading into the Fallopian tubes : the situations of whieh are denoted by two little whitish eminenees visible upon the internal surfaee. The membrane lining the cavity is one of the mueous description. It assumes a more vaseular and villous aspeet than that eoating the vagina, but, like it, is thrown in the collapsed state of the organ into numerous rugæ, which pervade the eornua as well as the body, and bear some eomparison to an irregular network: these rugæ are larger and looser in mares who have bred foals. The surfaee is everywhere eopiously furnished with mueous seeretion by subjaeent folliees, whose orifices are here visible to the naked eye.

OF THE FALLOPIAN TUBES.

The Fallopian tubes are two trumpet-shaped or conieal eanals, running with a remarkably serpentine course, within the folds of the ligamenta lata, from the extremities of the cornua uteri to the ovaries.

Course. The tube on either side eommenees by an aperture in the eornu, eneireled by an elevated whitish margin, whieh is seareely large enough to admit a small silver probe : from this it procceds forward, folded in peritoneum, extremely eonvoluted in its eourse, until it reaehes the ovary, to whieh it beeomes
attached ; it then begins to enlarge in its diameter, grows less convoluted, and serpentines along the posterior side of the ovary, in order to reach the fissure of that body ; at which part it cuds in a fringed doubling of nombrane, named the corpus fimbriatum, by a funncl-shaped irregular opening, turned backwards, and large enough to admit an ordinary-sized black-lead pencil.

Structure. These tubes, when stripped of their peritoneal envelopes, show a fibrous texture ; and when opened, cxhibit a rugose, villous, mueous surface, very similar to that of the internal membrane of the utcrus. They are amply supplied with blood-vessels, whieh make their way to them between the layers of the broad ligaments.

OF THE FIMBRIE.

The fimbrie, or corpora fimbriata, are, then, nothing more than the fringed terminations of the F'allopian tubes, formed by doublings of the enveloping membrane around their open orifices. They spread over the ovarics, coneealing the posterior or cleft parts of those bodies from our view ; but are perfectly unattaehed and loose, and consequently ean follow the ovarics in any movements of place or position oecasioned by viseeral eommotion within the abdominal cavity.

OF THE OVARIES.

The ovaries, or femule testicles, are two egg-shaped bodies, situated further forward than the Fallopian tubes, within the cavity of the abdomen, at the distance of an inch and a half from the cornua uteri. They reccive close coverings from the anterior portions of the broad ligaments, by which they are loosely attached to the spine, in their situation beneath the ilea, and a little behind the kidncys; indeed, the left ovary has a peritoneal attachment to the left kidney. So that if it were our intention to extract them, the ineision should be carried along the crista of the ilcum, and the hand introduced in a dircetion backward and inward.

Maynitude and Form. These bodies are about the size of walnuts. They are not regularly oviform : they have decp fissures in their posterior sides, which are oceupied by the corpora fimbriata. Taking them and the Fallopian tubes together, they bear a striking resemblanee, at first view, to the testicles and their ducts in the male.

Structure. Underneath their peritoneal eoverings, the ovaries have whitish fibrous tunies, dense and inelastic in their texture, and which warrant the comparison gencrally made of
them to the albugincous tunics of the testicles. Internally, the ovarics are composed of a whitish spongy substanee, in which are, in some instances, found little vesicles containing a ycllowish glairy fluid, in others onc or more dark ycllow or brownish substanees, named corpora lutea: the vesieles are the ova, which from impregnation take on further development ; the eorpora lutea denote the parts from whieh vesicles have already burst, and consequently only cxist in the ovaries of mares whosc organs have been engaged in the generative process. Prior to the age ripe for sexual intcrcoursc thesc bodies are small and white ; but as soon as the time for copulation arrives, they grow large, redden externally, and present many ycllow spots or strcaks through their substance within.

Organization. The arterics supplying all these parts are1. The vaginal artery, a branch from the internal iliac, which aecompanies the obturator artery, and afterwards dips down by the side of the vagina, upon which it branches out in various directions, sending some ramifications in its way to the rectum, and transmitting others to the utcrus and bladder. 2. The uterine artery, a branch from the external iliac, eoming off after the ilio-lumbar, and distributing its branches prineipally upon the cornu uteri. 3. The spermatic artery, coming from the aorta, is convoluted in its course, and supplies the ovary, fimbriated body, and Fallopian tube.

The nerves are derived from the hypogastric plexus. Both the vessels and ncrecs take their passage between the layers of the broad ligaments, insinuate themsclves underneath the pcritoneal eovering, obliquely picree the substanec of the muscular tunic, and ramify extensively between it and the internal membrane.

APPENDIX

TO THE GENERATIVE ORGANS.

IHE UDDERS.

Although not immediatcly concerned in the process of generation, these organs co-operate towards the same important endthe continuation of the species.

The mamme, or udders, are two flattened oval-shaped bodies, formed for the purpose of secreting milk.

Situation. They depend between the thighs from the postcroinferior part of the belly, in quadrupeds in gencral ; but in the human species, and in the ape tribe, they are attaehed to the breast. The advantages resulting to the quadruped (who has no power of ereeting himself or handling his young) from this
situation of the mamma, are - that they are well proteeted, by the trunk above and the thigh on either side, from external injury, that they are conveniently plaecd for the foal, and that they do not in the least interfere with progression.

Volume. In fillies and virgin mares the udders are so small that there hardly appears to be any; and in mares who have not had more than one or two foals, they likewise regain nearly their original flatness; but in this last instance the teats are commonly left larger, looser, and more pendulous than before, in consequence of the reiterated extension of them by the foal ; a eircumstance on which we may rely with tolerable eertainty for a knowledge of this faet. In mares who have had several foals, the udders continue prominent and pendulous, and possess a flabby feel ; and this is a state we cannot well mistake. Towards the latter end of gestation this part undergoes further evolution, swells and grows firm to the feel, and beeomes distinctly visible as we stand behind the mare. Within a few days of parturition seeretion begins, and the udders grow turgid with milk: they do not, however, acquire their full distension until the foal has drawn them for a few days, from whieh time they maintain their volume with little variation during the period of lactation. Soon after the foal begins to forsake the teat, the seeretion of milk diminishes; and this is followed by a eontraction of the bag, which goes on gradually until it has resumed nearly or quite its former flatness. In a state of full evolution, the udders assume a hemispherieal form, and aequire a firm, plump feel ; at other times they are soft, flabby, more or less pendulous, and possess neither definite figure nor volume.

Coverings. The outcr eovering of the udders is an extension from the common integuments of the belly. This is thin and fine in its texture, is commonly blaek, and is elothed with a few long downy hairs, growing thinner as they approach the teat, immediately around which the skin is without any hair. Underneath the skin, adhering to it by intervening eellular membrane, is spread over the gland a white, clastic, ligamentous covering, interspersed with several fibrous bands, whieh is derived from the fasehia superficialis aldominis: this serves to give support and eompactness to the glandular structure, and, in consequenee of detaching processes into the interior among the lobules, to strengthen their inter-union one with another.

Structure. The interior of the udder exhibits a light-yellowish aspect, and evidently possesses a lobulated structure, held together by a fine ecllular tissuc, here and there interspersed with granules of fat. It is constituted of glandular masses, irregular in magnitude and form, and loosely conneeted one with another,
each of which masses is composed of a number of lobules elosely compacted and united together: a composition altogether that accounts for the loose or knotty feel which the gland is well known to possess. These insulated lobulous portions reeeive small arteries in numbers from the parent arterial trunk, from whose terminations arise (we do not precisely know in what manner) the tubuli lactiferi. These numberless little tubules, by repeatedly conjoining one with another, become at length several demonstrable canals, radiating from every part to assemble in the teat: still uniting one with another in their course, and oceasionally dilating into considerable reservoirs for holding the secretion. The lactifcrous conduits are continued through the substance of the teat, wherein during its relaxation they are so serpentined or coiled, that milk eannot spontaneously flow from them; but in the distended state of that body, or when it is drawn out in the act of suction or milking, these ducts are rendered straight, and the milk, either in eonsequence of internal or external pressure, readily runs out.

THE PAPILLA, teat, or dug, depending from the most prominent part of either udder, near its middle, is conical, black, and hairless. Its tegumental sheath is of the same description as that covering the bag from which it is derived, only it is perforated at the apex by three holes, to give issue to the milk ; and underneath this is a second tunic, which comes from the elastic ligamentous covering, also of the gland. Through these openings (one of which is commonly conspicuous for its size) the milk is diseharged from the conduits of the laetiferous tubes. When the udder becomes eharged with milk, it flows into the teat, and distends it; and as the secretion is probably influeneed in animals (as it is in the human subject) by anxiety for the young, the animal evinecs this feeling by a state of distension of these parts. The papilla, as has been remarked before, enlarges during the season of lactation, and it does not afterwards recover its original volume so nearly as the udder itself does : a fact, I repeat, that may lead, when the first sign is wanting, to the diseavery of mares that have bred.

Sucking is apparently an operation purely mechanical. The teat is scized, and so elosely compressed by the lips of the foal, that the imbibing effort which follows has a tendeney to produce a vacuum in the lactiferous tubes, now rendered straight from extension : this is comnteraeted by the pressure of the atmosphere upon the surface of the udder, and the consequence is, that the milk is foreed from its reservoirs into the month, on the same principle that water is impelled into the barrel of a syringe by raising the piston.

SEC'IION IX.

NERVOUS SYSTEM.

COMPRISING THE BRAIN; THE SPINAL MARROW; THE NERVES; AND THE GANGLIA.

OF THE BRAIN.

The brain is the soft white mass filling the eavity of the cranium.

Maynitude. In no animal is the cranium so large, in relation to the face, as in man; consequently, in none other is the brain (whose volume is always in muiformity with that of the cranium) of such magnitude. In horses the brain is but small, compared with the general bulk of the animal; and though there exists some difference in the dimensions, as well as form, of the heads of horses of different breeds, they are too trifling, in an anatomical point of view, to merit notice here.*

Division. In the brain are distinguished three divisions, though all three are continuous in one and the same substance: the cerebrum, so large that it occupies at least three fourths of the interior of the skull ; the cerebellum, or little brain; and the medulla oblonyata. That portion of medullary substance which extends from the brain through the whole length of the spinal eanal is called the medulla spinatis, or spinal marrow.

Situation. No viscus in the body is so well defended from external injury as the brain : on every side it is enclosed by bony walls, well constructed to make great resistance, and more especially so at those parts where external violence is likely to be received. The interior of the skull is variously furrowed and indented by the more projecting parts of the organ, to which, in every particular, its figure is nicely adapted; for it is by the shape of the brain that that of the cranium is moulded, inasmuch as the formation of the one precedes that of the other. The relative situation of the divisions of the brain differs in the horse from that of the eorresponding parts of the brain of the human

[^26]subjeet; though both organs, in regard to the hones of the cranium, are similarly lodged : e.g., the eerebrum, whieh forms the npper and anterior portion in the human subjeet, eonstitutes the lower and anterior in the horse; while the eerebellum, whieh in the former is placed below and behind the eercbrum, in the horse is placed above and behind it. This differenee, however, is but imaginary, being entirely referable to the position of the head ; for if we place the horse's head upon a table, so that it rest upon the branches of the lower jaw, we shall find no difference whatever in the relative situation of these parts.

Coverings. The brain las three coverings, ealled its membranes or meninges; the dura mater, the pia mater, and the tunica arachnoides. Of these, the exterior is the

DURA MATER.-Though ealled a membrane, this outer covering is a substanee, dense, tough, and inelastie in its texture, its component material being ehiefly tendinous fibre. It is firmly adherent to the interior of the cranium, offering eonsiderable resistance to the elevation of the skull-eap, even after the bone has been eompletely divided ; whieh union is the result of many little processes shooting from the membrane in between the teeth of the sutures of the eranium, as well as of numerous small blood-vessels passing from it into the pores of the inner table of the bone, to whieh it supplies the plaee of internal periosteum.

Surfaces. The external exhibits a smooth, dry, opaque, reddish aspeet, rendered uneven by the subjaeent prominenees of the brain. The internal is lighter in shade, shiny and slippery, and moist from the exudation of a serous seeretion. It has no conncetion with the membrane underneath ; at least, no other than it has with the brain itself-by means of the vessels passing between them.

Organization. The blood-vessels of the dura mater are not numerous, but of suffieient magnitude to admit of eoarse injeetion. The membrane itself affords a good example of the truth of the observation, "that the eapillaries are not abundant in fibrous texture." By some, nerves are denied to exist in the dura mater: others conceive that they have discovered nervous filaments in its texture. In a sound state, the membrane appears to possess very little if any sensibility; for it may be cut or irritated in various ways without seeming to eause the animal any paiu whatever.

Processes. The dura mater sends off detaehed portions or processes, whieh are extended across the eavity of the cranium, for the purpose (it would seem) of more steadily and effectually supporting the brain, and guarding against the pressure of one part or division upon another. These processes are two in mum-
ber, and each consists of a duplication (or two laycrs) of the membrane. They are named the $f a l x$ and the tentorium.

The falx, or longitudinal process, so called from its being rescmbled to the blade of a seythe (and indeed the comparison is a striking one), is that expansion of the membrane which descends for a short distance between the lobes of the eercbrum. It takes its rise from the erista galli, ineluding the projeetion betwcen its laminæ, from whieh it curves forward and upward, adhering in its way, first to the frontal, then to the entire length of the sagittal suture, growing broader as it procceds : at length it terminates upon a thin transversc plate of bonc, a process of the os occipitis antcrior, where its laminæ split, diverge, and end in eontinuity with the tentorium. Whatever may be the use of the falx, it seems to be a part whose presence can be dispensed with, for I have a cranium now before me in whieh it may be said to be defieient ; at least, all such appcarance eonsists in a small triangular picce of membranc which does not project more than an inch from the tentorium : and this cranium bclonged to a young horsc who was pcrfcctly free from any phrenetie disorder. The falx is commonly said, however, to stay onc lobe of the cerebrum from falling or pressing upon the other when the head is inelined to onc side.

The tentorium, or transversc proeess, is cxtended, after the manner of an areh, from the eerebral plate of the os oecipitis, along the sides of the cranium, to its base ; whence, greatly diminished in brearlth, it may be traced onward to the body of the os sphenoides, where it vanishes in the eommon eovering of the dura matcr. It is composed of two laminæ : onc is continuous with the falx; the other joins that portion of the membrane which eovers the cercbellum. The tentorium is cqually divided by the falx into two lateral portions. There is some variation to be seen in different subjects in the figure and cxtent of this process, but I have not remarked that it is cver deficient. It forms a transverse interscetion within the eavity of the eranium, or partial scptum between the ccrcbrum and eerebellum, and appcars to be of serviee in fcneing these important parts in their proper places, and kecping them, during the various motions and positions of the hcad, from pressing upon eaeh other.

Sinuses. These are triangular spaces, or eavitics, found to exist betwcen the two laycrs of mombrane forming the processcs. There are several of them. Those most worthy of notice are the following :-first,

The superior or longitudinal sinus, whieh runs within the duplieature of the falx, along its supcrior bordcr. It begins in a narrow channcl, gradually widening and assuming a triangular
figure as it extends backward, and terminates with the falx, at the cerebral proeess, where the lateral sinuses and it conjoin their canals. Internally, this sinus presents to view an uneven surface, upon whieh the voins are secn terminating by large open orifices discharging their blood in the same direction that the stream takes within the sinus itself. Here and there are seen slender chords, crossing the canal from side to side ; which serve to strengthen its parictes and prevent overdistension.

The two lateral sinuses are formed within the duplicature of that part of the tentorium which is attached to the temporal and occipital bones; one extending to the right side, the other to the left side. They begin at the ecrebral process, where the longitudinal sinus ends; and they terminate at the foramina laccra basis cranii in the jugular vcins. Their canals arc also triangular, and are intersceted by fibrous filaments. They receive veins both from the cerebrum and ccrebellum.

The cavernous sinuses, so named from thic eavernous appearance of their interior, which includes a structure having some rescmblance to the corpus eavcrnosum penis, are formed out of the dura mater upon the body of the os sphenoides. These cavities are remarkable from recciving some important nervous trunks in their passage from the brain, and from lodging the terminations of the internal carotid arterics. They commonly communicate with the

Sub-occipital sinuses.-These are likewise of the same formation, and arc found upon the cunciform process of the os oceipitis, running longitudinally to the foramen magnum. They reccive veins from the cerebellum and posterior parts of the cercbrum.

THE PIA MATER is the membranc immediately investing the brain, sending processes into its substance which separate the cortical portions of its convolutions, and having a further connection with the organ through the medium of the numerous interpassing blood-vesscls. The reticular arterial ramification we descry upon it, is for the purpose of transmitting vessels of minute dimensions into the interior of the brain; which, though they ean be traced by us no decper than the cortical, are ultimately destined for the cercbral substance. The pia mater not only clothes the convoluted part of the cercbral mass, passing from one hemisphere to the other, but it gains admission into the ventricles, and gives them a lining. It differs altogether in its aspect and structure from the dura mater; presenting a smooth surface extcriorly, but a rough aud villons one next to the brain, and being eomposed of a beautiful network of blood-
vessels, united together by a delicate cellular tissue: it is, in fact, the immediate souree from whieh the brain derives its blood, and, at the same time, the medium through whieh the unexpended blood is returned to the sinuses of the dura mater.

THE ARACHNOID MEMBRANE (so ealled from being resembled to the spider's web) is of a texture so fine, and of a nature so perfectly transparent, that, under ordinary eircumstanees, it is hardly demonstrable from the pia mater underneath it, to which it is everywhere elosely and intimately applied, exeepting that it does not (like that membrane) dip down between the convolutions. With pains, it is occasionally demonstrable in plaees about the base of the brain. Physiologieally considered, we have no right to doubt of its being organized; although, hitherto, the most suecessful injections have not demonstrated the existenee of blood-vessels in it. In the human subject (in whom these parts are more developed) it has been said to have shown vascularity in eases where the membranes have reeently undergone the effeets of inflammation. Coneerning its use, no writer has been bold enough to speak : physiologists are unable to say for what purpose so delicate and transparent a structure is here interposed

Vascular communication. From the vaseular conneetion whieh subsists between the scalp, upon the exterior of the skull, and the dura mata, upon its interior, we have at onee an explanation of that apparent anomaly in pathology, viz., that external injuries of the skull frequently induce symptoms of inflammation of the brain, or its membranes: in the humau subjeet, sueh wounds are always eonsidered, on this aeeount, as dangerous, and, indeed, it not very unfrequently happens that they prove mortal. Though we have never seen a ease of this deseription in the horse, there does not appear to be any good reason why we should not be cautious how we make or treat wounds of such a nature.

Effusion. A fluid, differing from serum in its properties, though like it in appearance, is oecasionally effused between the dura mater and tunica araehoides, or, more eommonly, underneath the latter membrane (as well as within the substanee of the brain itself), constituting a disease, termed hydrocephalus: it rarely happens in horses; but in the human subjeet, and more espeeially in children, it is by no means an unfrequent cause of dissolution.

BRAIN.-Having already given an outline of the situation and division of this organ, I shall now make some general observations in regard to its strueture.

Structure. If a vertical seetion is made of any part of the
brain, we pereeive that its interior presents two substances of different eolours: the outer of these, of a dirty grayish hue, is called the cineritious or cortical part ; the inner, whiel is white, and of whieh the chief bulk of the organ is eomposed, the medullary. The eortieal part (whiel is, proportionately to the medullary, more prevalent in the brain of the horse than in that of the human subjeet) is not always the outer-in some plaees, the relative disposition of the medullary and it being reversedit is that, however, in whieh the blood-vessels of the organ are most eonspicuous : for, in consequence of being elosely invested by the vascular pia mater, it reeeives the numerous ramifieations of arteries transmitted by that membrane for the nourishment of the interior parts of the brain. On the other hand, in the medullary portion, the blood-vessels, whieh in health only convey the colourless parts of the blood, are so minute that they eseape notice : unless, oceasionally, here and there, when it has been inflamed, the bloody speeks upon its divided surface denote the division of those that have beeome of sufficient magnitude to admit the red globules.

Aceording to the investigations of the most aceurate anatomists, the brains of animals appear to be of a fibrous nature ; and in many parts of the human brain (whiel is larger than that of any other animal) the disposition and course of its fibres have been traeed: sueh inquiries, however, have, unfortunately, not led to any elucidation of the sensorial funetions, nor are we aware that they have been attended with any advantageous result in regard to its pathology. After all, the truth is, that the intimate structure of this organ is still unknown to us. With regard to the eineritious or cortical part, there is mueh reason to believe, that it is almost wholly constituted of the ramifieations of blood-vessels of extreme exility ; from whieh others, still more minute, are distributed to the substance of the medulla.

It is here worthy of remark, that in no instanee does Nature so invariably present us with the same strueture and arrangement of parts as in this viseus: in almost every other in the body, we ean diseover some little variation, in this respeet, in different subjects; but in the brain, the same uniform appearanees ever present themselves on dissection : so intimately united do strueturre and function seem to be in this organ.

Duplicity. The eerebrum is divided into two laalves, ealled hemispheres, eaeh of whieh is formed of parts preeisely similar, in every partieular, to eaeh other ; so that, in faet, every part of the organ may be said to be double, i.e., its two halves are eonstituted of several small portions, whieh are not only perfectly
alike in structure, but arc of corresponding symmetrieal forms and dimensions : a remark that not only applies to the brain itself, but one that holds good, likewise, with regard to the spinal marrow. An animal, therefore, lias, to all intents and purposes, two brains: and, probably, for the same reason that he has two eyes, two ears, and a double tongue.

Arteries. The artcries which supply the brain, are the two vertcbrals, besides two other eonsiderable branches from the carotids, ealled the internal carotids : its blood is returned from the sinuses of the dura mater by the vertebral and jugular veins. It is on the supply from the vertebral arterics, howcyer, that this organ mainly depends for the preservation of that energy essential to the support of life: for if ligatures be put on these vessels, the animal specdily dies; whereas both the carotids may be tied without occasioning any apparent ill effects.

We shall now examinc the divisions of the brain (viz., the ecrebrum, eerebcllum, and medulla oblongata) separately ; commencing with the

Cerebrum.

The largest portion of the brain, and that which presents itself to our view immediately on raising the skull-cup, is the ccrebrum. It is lodged in that eapacious clliptical chamber which is formed, in front, by the parictal bones: behind, by the ethmoid, sphenoid, and posterior occipital boncs; latcrally, by the temporal bones : inferiorly, by thic roofs of the frontal sinuses, and by the ethmoidal plates : and, superiorly, by the tentorium. The visible surface of it (as the eranium is ordinarily sawn open) may be said to represent a convex semi-oval, of which the broader end is turned upward. It is equally divided by a longitudinal fissure along its middle, into which the falx cerelri deseends ; and its divisions, which are perfectly symmetrical, both internally and externally, are denominated hemispheres.

Corpus Callosum. In parting the hemispheres, so as to admit light between them (by whieh a few small interpassing vessels and some weak eellular conneetions beeome lacerated), we perceire a white longitudinal body, eovered by pia mater, uniting the hemispheres at the bottom of this fissure : this is the corpus callosum. Each hemisphere, separately regarded, has an outer surface, waved or convoluted, which is adapted to the modulated concavity of the skull-cap : an inner perpendicular plane, which is opposed to the one of the opposite hemisphere ; and a base, divided into lobes, the description of which I shall postpone until the interior parts have been examined.

Centrum Ovale. In the dissection of the brain I shall pursue the customary method of the sehools of anatomy ; and in deseribing its several parts, preserve the names used in human phrenology so long as I find them applicable to correspondent appearanees. The first step eonsists in making a elean horizontal scetion of the brain, parallel to its present convexity, by laying the knife flat upon the surface of the corpus eallosum, and making a sweeping eut (with its edge first inelined a little upward, afterwards a little downward) through one hemisphere at a time. There being no distinguishable parts in the abseised portions, they may be cast away; but the surface which their removal has exposed being one that presents the greatest superfieial extent of medullary substance that ean be shown at one view, the appearance altogether has been described as the centrum ovale.* The form and disposition of the corpus callosum beeome now demonstrable. It is placed in the centre of this medullary convexity, with whieh it is continuous in substance. It is narrower below than above. It unites the medulla of the two hemispheres in the middle. Inferiorly, it passes between the hemispheres, turns baekward and terminates at the base of the brain, in the erura eerebri ; superiorly, it joins the fornix, and spreads upon the hippoeampi ; and anteriorly, it may be said to form the roof of the lateral ventrieles. Rumning aloug its surface are seen two prominent lines of medullary matter, between whieh exists a longitudinal linear depression, named the raphe.

Lateral Ventricles. By making a longitudinal ineision through the eorpus callosum, on either side of the raphe, we penctrate a cavity oecupying the innermost part of the brain, whieh, with its fellow within the opposite hemisphere, eonstitutc the two lateral ventricles. Having freely opened it, we find a watery fluid within, which serves to keep its parietal surfaces eonstantly wet, and to prevent (it is said) adhesion of them. The figure of the ventriele, both from its eonstruction and from the inequalities of its contents, to which it is adapted, is extremely irregular. Its eavity extends as far forward as the frout incurvation of the corpus callosum, from whence a winding eanal is continued forward and downward to the base of the anterior lobe of the cerebrum, where it ends in a small circular conduit that leads into the cthmoidal ventriele : this eanal, from its being represented to

[^27]wind in its course like a horn, has got the name of the inferior cornu. From the supcrior part of the eavity, another flexuous passage, smaller than the former one, taking a dircetion at first outward, then downward, and lastly forward, leads to the base of the brain, through the substance of the middle lobe, and there ends in a blind termination : from which circumstanee, and from its eylindroid figure, some call it the digital cavity, others the superior cornu. The two ventrieles are lined (and the parts within them covered) by an extension of pia mater, which finds its way into them along with the vessels forming the ehoroid plexus. By this membrane, whose vaseularity appears to be lower than that of the pia mater elsewhere, the watery fluid, it is supposed, is seereted : unlike serous cavities in general, however, the ventrieles appear to hold water during life; for, if an animal is put to death suddenly, and these eavities are opened with all possible expedition, water, and not vapour, is uniformly found contained.

Contents. We now eome to what are eonsidered as the contents of the lateral ventricles. They are-the corpora striata, the hippocampi, the plexus choroides, the fornix, and the thalami nervorum opticorum. But a view of all these parts eannot be obtained until we have reflected the corpus eallosum ; prior to whieh being done, that body should be eautiously raised, in order to show the

Septum Lucidum, the translueent medullary partition between the ventrieles, whieh extends perpendicularly along the corpus eallosum in front, and is attaehed to the fornix behind. It is broad inferiorly, grows gradually narrow superiorly, where it ends in a point, at the angular junetion of the corpus eallosum with the fornix. It eonsists of two thin laminæ of medullary matter, ineluded between and supported by the membranous linings of the ventrieles, in the middle of which is a fissure or small eavity, by some deseribed as the fifth ventriele, but more generally known as the fossa Sylvii. Sometimes this fissure is very demonstrable, glistening interiorly with moisture ; at other times it is hardly pereeptible.

Corpora Striata. When the corpus eallosum is turned baek, four large and remarkable eminenees present themselves, two upon each side of the septum lueidum. The two inferior, and most bulky, are the corpora striata. They rise out of the lower and baek parts of the ventrieles, projeeting into the middle of the eavities, where they beeome broad and approaeh the septum; growing narrow and reeeding from each other, above ; below, extending along the anterior cornua. Externally, they have a thin lamina of medullary matter ; but this is partly obscurcd
by the cortical substance of which their interior is exclusively composed.

Hippocampi. The two superior eminences, smaller and whiter than the last, whose anterior extremitics lic between the posterior of the corpora striata, are the hippocampi. These bodies, remarkable for their promincuce and whiteness, oceupy the superior spaces of the ventricles, where they lie in contact with the scptum ; but, in procceding backward, they diverge, stretch first outward, then downward, and lastly forward; in fact, they descend into the supcrior cornua, and there cnd in bulbous extremitics, called the pedes hippocampi. This descent or clongationf, which may be denominated the crus hippocampi, is continuous above with the crus fornicis, but below it gets to the outward part of the crus fornicis, and gives off a thin, plaited, medullary border, which may be said to be an extension of the corpus fimbriatum. Their medullary covering appears to be continued from the corpus callosum ; their internal cortical substance, which is interspersed with medullary striæ, originates from the very middle of the hemispheres. If sliced, they will be found to consist of alternate laminæ of medullary and cortical mattcr.

Plexus Choroides. Decply lodged in the channel between the corpus striatum and hippocampus, lics a red, soft, vascular substance, consisting of a plexus or collcetion of minute blood-vesscls, invested in an extension of pia mater, called the plexus choroides. This plexus first makes its appcarance from behind the fornix: infcriorly, it ends abruptly in a round bulbous mass; supcriorly, it sends down a process into the supcrior cornu. The artcries composing it come from the postcrior arterics of the cercbrum : they entcr the interior of the brain along a fissurc, which in one place is a completc canal, cxisting betwcen the posterior lobes of the cercbrum, and gain admission into the rentricles around the sides of the formix. Its veins assemble and form a large branch, the vena Galeni, which branch mites with a similar one coming from the opposite plexus: the two conjoined make a single trunk, and that procceds upward, along the above-mentioned fissure.

The fornix is that part which receives the postcrior border of the septum lucidum. It is extended, after the manner of an arch, between the corpora striata, below, and the heads of the hippocampi, above; where it forms a junction with the corpus callosum, which it meets at an acute angle. It has four processes or crura. The two inferior crura spring from the corpus albicantium, at the base of the brain; in their course forward from whieh, they approximate and unite into onc main crus or pillar: thus united, they wind upward, describing an arc, and,
as soon as they make their appearance within the ventrieles, eonstitute the body of the fornix. The superior crura, whieh are eomparatively slender, proeeed from the upper end of the fornix, wind upward, and then deseend into the superior eornua of the lateral ventricles, where they grow tapering, and at length end in sharp-pointed extremities. Their anterior or eoneave edges, whieh are thin, unattached, and somewhat uneven, have been named the corpora fimbriata; their posterior borders are continuous with the erura hippoeampi : along their fimbriated edges run the lateral proeesses of the plexus ehoroides. The middle part or areh of the fornix is unattached; but its superior or broad part is contiguously applied behind to the thalami, and adheres to them through the intervention of a fine membrane, investing the vessels of the choroid plexus whieh are ramifying hereabouts, named the velum interpositum: from the eireumstance of the baek of the fornix being imprinted by these vessels with many minute linear grooves, mostly running obliquely, this surface of it is commonly deseribed as the lyra, psalterium, or harp.

Thalami. Having divided and refleeted the fornix, and turned back the heads of the hippoeampi, we bring into view the thalami nervorum opticorum. These bodies are also said to be in the lateral ventrieles : more properly speaking, they form the upper and baek parts of those eavities. They are white and eonoid in form ; narrow and approximated, inferiorly, where they lie between, and rather behind, the corpora striata; broad and direeted opposite ways, superiorly ; in front, they are opposed to the fornix, whieh they in a measure support; and behind, they eontract into medullary bands-the tractus optici, which turn round the erura ecrebri to the base of the brain. Upon these bodies the separate portions of the plexus ehoroides unite into a single vaseular ehord, whieh takes its course along the eanal between them, and makes its exit from the brain through the fissure left between the posterior lobes of the eerebrum. The thalami are firmer in their eomposition than the corpora striata: like those bodies, however, they are eortieal within, thinly striated with medullary matter.

Tenia. In the groove between the thalamus and eorpus striatum, partly eovered by the plexus ehoroides, runs a eonspieuously white, medullary band, designated the centrum semicirculare geminum, vel tænia semicircularis.

Commissures. The contiguous parts of the thalami, flattened and elosely applied, are united in one broad circular place by pulpy cortical matter, whieh union is called their commissura mollis. Immediately behind the fore part of the fornix, runs transversely a firm medullary chord, which is extended in a
curved direction, on either side, into the substance of the corpus striatum : this forms a band of connection between the hemispheres, and takes the name of commissura inferior cerebri. Superiorly, above the commissura mollis, is another medullary chord, similar to the one last mentioned, but shorter and smaller, which is the commissura superior cerebri.

Foramen. Just over the commissura inferior, between it and the commissura mollis, between and in front of the optie thalami, under the arch of the fornix, is a triangular hole, called the foramen commune inferius. Now, since the lateral ventricles communicate underneath the arch of the fornix, it is cvident that both of them must open into this foramen; and since this foramen leads into the third ventriele, it follows that this eavity and the lateral sinuses must reciprocally eommunicate through its medium.

Between the commissura mollis and the commissura superior is another foramen, which would also be one of like eommunication were it not covered and elosed by the velum interpositum, which is here spread over the surfaces of the thalami, and traversed by the vessels of the choroid plexuses.

The third ventricle, as it is called, is nothing more than the fissure existing between the thalami, in consequence of their partial divergence, below and behind the commissura mollis, in the medium line of the brain. The floor or back part of this narrow oblong cavity is constituted of the crura cerebri.

Infundibutum. Leading from the inferior part of this ventricle, is the infundibulum, a passage small at its commencement, but gradually enlarging to its termination, which takes place in a blind extremity, in front of the corpus albicantium, at the pituitary gland. Superiorly, under the superior commissure, is a passage leading from this cavity into the fourth ventricle (situated within the cerebellum), the iter a tertio ad quartum ventriculum.

Pineal Gland. Over the third ventricle, deeply lodged between the summits of the thalami, above and rather before the superior commissure, we find the pineal gland-a little, eonoid, greyish body, marked by a slight dcpression along its middle; enveloped in pia mater, dcrived from the vessels of the ehoroid plexus; and attached by that membrane to the thalami, and to the tubercula quadrigemina, whieh are placed behind it. From its base or inferior part proceed two little pechuncles or foot-stalks, which run along the top of the superior commissure, and are implanted into the crura cerebri. The structure of this little organ remains unknown. It is possessed of considerable firmness, and is deeply reddened and highly vascular within; but I have
not remarked that it contains earthy matter, as is the ease so frequently with that of the human brain.

Nates and Testes. Above the third ventricle, behind the pineal gland, and immediately over the iter a tertio ad quartum ventriculum, are four considerable eminences, the tubercula qua-drigemina-or ratlucr bigemina, since they are divided into the тwo nates and two testes. The nates, the formost and by much the largest of thesc bodics, scparated by a groove from the testes, and by a deep perpendicular fissure from each other, present semi-oval extcriors, of a mixed composition, cincritious and medullary, and are in intimate mion with cach other and with the testcs. The testes, much smaller than the nates, are also ovoid in figure, but their long diameters are placed contrariwise -transverscly. In their composition they are alike also, as well as in their connections, both being joined to the crura cerebri, by which they are supported.

Cerebellum.

In order to guard against a common misconeeption of the relative position of this part, I shall repeat here what I took occasion to lay some stress upon in a former place-that the three divisions of the horsc's brain are similarly lodged, in regard to their craniel case, to what the correspondent parts in man are : but that when we view them as the animals naturally stand, their relative situation is altogether altcred. The ecrebcllum (as in man) oceupies that compartment in the basis of the eranium which is formed, above and behind, by the anterior occipital bones; laterally, by the petrous portions of the temporal bones; and superiorly and anteriorly, by the tentorium : that septim being deficient inferiorly and anteriorly, to give passage to the crura cerebri to form a junction with the cerebellum ; while the vacuity admits also of the projection of the anterior vermiform process, which is the only portion of the latter that does not rest upon the tentorium.

Peculiarities. In volıme, figure, and aspeet, the cerebellhun is at onee distinguishable from the cerebrum. It is only oncsixth of the volume of the cerchrum. Its figure is irregular-it has two oval ends, placed transversely, united in the middle by a broad and prominent vermiform belt, its lateral dimension cxeccrling its longitudinal. Its aspect is lobular or convoluted: but, in addition, it is everywhere so striated with deep transverse fissures, that its appearance is altogether different from any other part of the brain.

Loles. The cerebellum is superficially divided into three oblong lobes-a middle lobe, and two luteral lobes. The lateral
lobes, which are opposed to the posterior lobes of the eerebrum, are small and ovoid. The middle lobe is prominent, arehed, and subdivided into lobuli by several sulci, eonspicuous for their depth, erossing its upper and under surfaces. The anterior and more prominent part of this lobe, whiel is received into the great fissure of the ecrebrum, is denominated the unterior vermiform process ; the continuation of it, along the summit of the head, forming the posterior vermiform process.

Arrangement of component Substances. In the eerebellum, the disposition and proportionate quantities of medullary and cortical matters are reversed, with regard to the eerebrum. Herein the cortical substanee execeds the medullary in quantity, aud, instead of forming the outward parts, pervades the imnermost. Slice the cerebellum horizontally, and these substanees present a laminated appearance : on the other hand, make a vertieal seetion of it, and they are found so disposed as to give the surface an arboreseent representation, usually denominated the arbor vita.

Fourth Ventricle. Within the cerebellum, or rather between it and the tuber annulare and medulla oblongata (whieh two last form its back part), is situated the fourth ventricle. Beginning above the testes, where it is perforated by the iter a tertio, it extends upward and backward to the extremity of the medulla oblongata, where it ends in a sharp angular point, which, with a groove issuing from it and continued along the floor of the ventriele, anatomists have resembled to a pen, and thenee ealled the calamus scriptorius.

Valvula Vieussenii. Extended aeross the inferior and anterior part of the ventricle, elosing the eavity between the testes and lower extremity of the anterior vermiform process is a membranomedullary eurtain, the velum vel valvula Vieussenii. It is supported at the sides by two medullary productions, remarkable for their whiteness, the processus a cerebello ad testes, whieh some regard as the columns of the valve.

The choroid plexus of the cerebellum is found, lying crosswise, within the posterior part of the fourth ventriele, betweeu the cerebellum and medulla oblongata. It no wise differs in its eomposition from the plexuses of the lateral ventrieles. It is distributed into three prineipal divisions: one lies in the middle of the ealamus; the other two (lateral) are lodged within fissures in the cerebellum, oceupying the spaces between it and the tuber aunulare.

Base of the Brain.

The base or posterior part of the eerebrum is divided into six lobes: two inferior or anterior, reposing upon the alæ of the ethmoid bone ; two middle, upon those of the sphenoid; and two superior or posterior, lodged in the fosse of the squamors portions of the temporal bones.

Over the middle lobes are two broad prominenees whose surfaees are remarkably even and smooth: these are the bases of the eorpora striata, the parts from which the olfaetory nerves are seen taking their origin.

Crura Cerebri. Above these bodies, again, in the middle of the brain, are two oblong medullary eminenees, intimately united together: these are the crura cerebri. They rest upon the alæ of the sphenoid bone. They take their rise from the inferior and middle lobes of the eerebrum, and are continued into an ovoid protuberanee above them, named the tuber amnulare. Though medullary without, the erus, when cut deeply into, exhibits a eineritious hue, and the part of the interior the most darkly shaded has been termed the locus niger.

Corpus Albicantium. Seated between the erura, is a small, hemispherieal, medullary eminenee, distinguished as the corpus albicantium. In the human subjeet this body is double; and there is some appearance of a depression along its middle in the horse. It is medullary without, but has a tinge of eortieal matter within.

Tractus Optici. Winding obliquely downward, around the erura, proceeding from the terminations of the thalami, are the tractus optici: they are to be regarded as the roots of the optie nerves, with whieh they are continuous. They are entirely medullary.

Cirura Cerebelli. Higher up and more outward than the crura eerebri, are the crura cerebelli-two stout, eylindroid, medullary ehords, joining the lateral lobes of the eerebellum to the tuber annulare. These parts consist of a prolongation of that portion of medullary substance whieh forms the trunks of the arbor vitæ.

The tuber annulare vel pons Varolir (whose situation now nced not be pointed out) may be said to be eonstituted of the united substanees of the erura eerebri and erura eerebelli : it is, in faet, the eommon termination or medium of junetion of the eerebrum with the eerebellum. It is supported by the eunciform process of the posterior oeeipital bone. Its surfaee is marked by a shallow depressiou along its middle, whieh gives it the appearanee of having lateral eminenees. Internally, the tuber exhibits a misture of eortieal and medullary matter.

Foramina Creca. Above aud below the tuber, centrieally situated, are little round depressions or blind holes, which are generally deseribed as the foramina caca, superior et inferior. They serve as plaecs of lodgment for small plexuses of the blood-vesscls.

Still higher than the tuber is plaeed the

Medulla Oblonyata.*

The smallest division of the eerebral mass; more properly speaking, it is the commencement of the spinal marrow. It rests upon the eunciform process of the oceipital bone, and is continued upward and backward to the foramen magnum. Regarded in an exeised or separate state, it is of an oblong, quadrilateral figure. It has a deep fissure along its middle (in which runs the basilar artery) that divides it into lateral portions. Contiguous to this fissure, rising from the sides of it, are two longitudinal eminenees, called the Eminentice pyramidales. From the lateral parts projeet two other eminenees, named the Eminentice Olivares. The upper surface of the medulla oblongata forms, with the tuber annulare, the floor of the fourth ventriele. Though, like the tuber, it is composed internally of a mixture of eortieal and medullary substances, its shade is lighter than that body.

Lastly, remains to be considered the

Pituitary Gland.

A reddish body, of an ovoid form, seated upon the sella tursiea, within a fold of the dura mater. It has a membranous capsule, surrounded by eellular adhesions, by whieh it is firmly retained in its place; whenee it is not dislodged, cven though the cerebral mass be taken out. It has the appearanee of being lighly vascular ; it is, however, of a lighter colour internally than externally, and assumes, in places, a mottled aspeet. The aneients entertained a notion that it imbibed some fluid from the brain, whieh they called pituita, through the infundibulum, and transmitted it to the nose ; but we find that these parts have no communieation whatever: in short, its real use is unknown.

OF THE SPINAL MARROW. \dagger

The medulla spinatis, or spinal marrow, is that extended eylinder of brain-like substance which is continued from the

[^28]posterior part of the medulla oblongata through the entire length of the spinal canal. Lodged within a cavity whose form is contimually undergoing more or less variation, it neither fills nor fits that eavity: in some places it swells in volume, in others it grows contracted ; everywhere it has the appearance of having slırunk from, or of being disproportionably small for, the eanal, in which it is contained.

Coverings. It is inclosed in the same membranes that envelop the brain; but, in addition to them, the superior ligament of the spine serves as a covering and defence to it below. To this, and to the periostcum lining the canal, its proper theca is loosely attached by cellular, adipose, and gelatinous matter. Its dura mater is derived from that which covers the brain : in being continued through theforamen magnum, the membrane is eontracted into a cylindrical sheath, whiell loosely incases the marrow, and is generally deseribed under the denomination of theca vertebralis. About the beginning of the saerum, the theea narrows; it recedes from the sides of the canal, and, having inclosed the termination of the marrow, is extended into a point and lost upon the cauda equina. The dura mater is conneeted to the membranes uuderneath-the membrana arachnoides and pia mater, by a finc cellular tissue ; and these eoverings have the same relation to the marrow that the same membranes have to the brain-of which, indeed, they may be eonsidered prolongations.

Structure. The spinal marrow, stripped of its membranes, is cylindroid in form, but flattened along its upper and under surfaces, each of which is marked by a longitudinal linear fissure : these fissures, of which the inferior is the more conspicuons one, are continuations of those that traverse the medulla oblongata-dividing the marrow into two lateral portions, and serving as convenient tracts for the spinal blood-ressels. In places, also, some transrerse fissures or little wrinkles are apparent, which are evidently for the purpose of admitting of certain degrees of elongation and contraction, in order to guard against extension or laceration of the marrow under any motion or altered position of the spinc. The marrow varies in its dimensions at different parts ; and, also, somewhat in its form. At its continuation from the medulla oblongata, it is large, from whieh to the fifth eervical vertebra it gradually grows less in circumference ; here it swells again, but again diminishes in entering the first dorsal vertebra. Along the back it is small, and nearer approaehes the form of a perfect cylinder; but in the loins it grows flatter than ever, and, a third time, increases in size, until it reaches the last lumbar vertebra; from which it begins to taper, and continues so to do matil it at length ends in a pyramidal point, within the second piece of the
sacrum. Around its termination come off several large nervons chords, which are continued along the canal, and extend, some of them, into the coccyx: altogether, they have been resembled to a horse's tail, and thence denominated cauda equina.

In the year 1808, Mr. Sewell conveycd, in a letter to Sir E. Home (which was afterwards read to the Royal Socicty), the particulars of what he concciver to be a canal running from the fourth ventricle through the whole length of the spinal marrow, containing a limpid colourless fluid, and lined by the membrana aracknoides, or a membrane very like it; but, siuce this, M. Bellengeri, of the College of Mcdicine of Turin, has proved that this supposed canal is, in truth, a median furrow, dividing the spinal marrow into six columns: he has likewise shown, that the roots of the spinal nerves, both anterior and posterior, are triple. More recently, Sir Charles Bell has discovered, that of the three tracts or columns containcd in each latcral portion, the inferior column is for motion, the superior for scnsation, and the middle one for respiration. The two former extend up into the brain, and are dispersed or lost in it ; but the latter stops short in the medulla oblongata.

Origin of Nerves. The nerves given off by the spinal marrow are twenty-ninc pairs. They originate from the superior and inferior columns, by supcrior and inferior fasces, or bundles of filaments, piercing the theca vertebralis in screral places, from which they derive sheaths in their egress. The cervical and dorsal nerves, for the most part, arise from the marrow opposite to the foramina, through which they make their cxit from the spine ; but the posterior lumbar and sacral nerves procced obliqucly backward before they turn out; and some of the latter, and all the coceygeal nerves, run longitudinally down the canal before they quit it. The filaments composing the fasces are themsclies small ; they bear a proportion in size and number to the nerves of which they are the loots. Threads of communication may be seen, oftenest in the neck, ruming from one fascis to another. The superior fasces are separated from the inferior ones by a strong, white, fibrous band, which rmus along the side of the marrow, and has a puckered attachment in one particular place to the theca, between every pair of nerres, on cither side; inwardly, it being intimately joined to the pia mater'. This band, which is denominated from its sereral pointed comections, the ligamentum denticulatum, prevents any such injurious cxtension of the nerves, when the spinc is forcibly flexed, as might occasion laccration of their medulla. In the space between the vertebrec, the superior sct of filaments converge and form a ganglion, from the opposite side of which many filaments arise, and procced with the inferior and join them, and thus form the trunk of the nerve.

OF THE NERVES.

The nerves are dense, white, fibrous chords, proceeding from the brain and spinal marrow to all parts of the body.

Number. From the brain issue ten pairs, denominated cerebral nerves; from the spinal marrow, thirty-six, termed spinal: making, altogether, forty-six pairs.*

Maynitude. In some animals (among which may be numbered the horse) the nerves, taking them generally, are of larger size than they are in the human body, although the brain of the latter far preponderates in volume. Aecording to Richerand, "the spinal marrow and the nerves, in the different animals furnished with them, are larger in proportion to the brain, according as the animal is more distant from man in the seale of animation."

Coverinys. The nerves are covered by the same membranes as cover the brain : the one may be traced from the other. The pia mater, indeed, enters into the composition of the nerve, forming minute sleaths in which the nervous matter is contained. These external coverings, however, seem to proceed only to a short distance; for if we examine the outer cases in whieh they are subsequently inelosed, we shall find them to be nothing more than condensed cellular membrane. It is to the external corcring that the compactness and density of a nerve are entirely owing; when deprived of it, but a slight degree of pressure will destroy its texture: indeed, there are some nerves whose exposed situation would subjeet them to perpctual contusion and laceration, were it not for the protection afforded them by this compact cellular envelope.

Structure. The substance of the nerves is pulpy ; and their pulpy matter is eontained within minute membranous sheaths or tubes (composed either of simple cellular membrane or of pia mater), eonstituting in this manner so many filaments or funiculi, whieh form one continuous traet from their exit from the brain to their ending in the skin or musele. Every one of these filaments

[^29]or tracts of nervous matter (as we learn from the celebrated labours of Sir Charles Bell) "has its peculiar endowment, independently of the others which are bound up along with it; and this same endowment it continues to have throughout its whole length."

Elasticity. It has been generally supposed, that nerves arc inelastie in themselves, and that any extension or contraction they admitted of, arose from the elasticity of their component cellular membrane. Sir E. Home, however, has proved, by some ingenious experiments, that they posscss a power of retraction when divided in the living body : a circumstance which, of late, cannot altogether have escaped the obscrvations of those who have performed the operation of neurotomy. This retractiou does not seem entirely to depend on any inherent contractility of tissue, otherwise extension of the nerve would be a nccessary preparative ; on the contrary, it happens under the most complete state of relaxation : an effect that will not take place in the dead subject under similar circumstanees.

Mode of Origin. A nerve is said to have two extremitiesa cerebral, and a sentient : the former is that part by which it is comnected with the brain, or spinal marrow ; the latter, that by which it terminates in the various structures of the body. It has been usual to say, that the nerves arise, or have their beginniny, from the brain, though it would appear, from some recent investigations into their composition and functions, that we might, with equal propriety, regard them as deriving their origin from the organs to which they are said to be distributed, and as ending in the sensorium. Supposing, however, that they do issue from the brain, there still remains unsolvable mystery respeeting their beginning or roots. Some nerves may be followed through a tract or streak of pulpy matter, distinguishable from the surrounding medullary substance, until at length we lose the tract, from its vanishing in the cineritious substanec. So that, although we continue, for the sake of anatomical definition, to assign certain parts of the brain as the beds or origins of certain nerves, we are still, in truth, ignorant of the veritable sources of their original or radical fibres. It would appear, from many familiar facts (the result of expcriments and pathological obscrvations) that the nerves distributcd to one side of the body arise from or are connected with the opposite side of the brain ; and if this be truc, there must be somewhere a decussation of them : if an injury be received on the left side of the skull, the right side of the body will become paralytic ; an effect that eould not happen uulcss there was a ready eommunication between one side of the brain and the nerves of the opposite side of
the body, by means, in all probability, of direet continuity of fibre. If one of the latcral halves of the spinal marrow be eut through, the animal will beeome paralytic, not on the opposite, but on the sume sidc ; a faet whieh, although it at first view appears eontradictory to what we have just stated, in truth tends to confirm this opinion : for the medulla spinalis being eomposed of latcral portions, the fibres deeussate each other in the same manner as those of the nerves are supposed to do.

Ramification. The nerves of motion, before eutering the mnscles, form various eommunications with others in the vieinity; in many parts, by sueh frequent intereourse, that a kind of nerwous network is formed, to whiel the term plexus is applied. And the plexus is intrieate in proportion to the number of museles to be supplied, and the variety of combinations into which the museles enter.* In their course, the nerves generally proceed in straight lines to the parts to whieh they are distributed ; deviating only (like the arteries) for their own safety, or for some wise and cvident purpose. \dagger Sometimes they run with the blood-vessels, sometimes alone; we commonly find a nervous trunk, and in some places two, aceompanying the prineipal arteries and veins of the extremities. The branehes of the nerives, for the most part, come off at aeute angles : those springing immediately from the trunk send off others of smaller size, until filaments of sueh minuteness are formed, as to be invisible to the naked eye.

Termination. The twig-like ramifieations of nerves end in two different ways : either by inter-communieation-which is similar to the anastomosis of arterics, or by sentient extremitics within the substanee of those organs to whieh they are distributed. In the retina (a part of the cyc entirely eomposed of the expanded termination of the optie ncrve) an extremely delicate tissuc, of a pulpy eonsistenec, and semi-pellueid yellowish appearance, is obscrvable; from which it has been eonjectured, that the extremities of other nerves may be somewhat similar: but, to confess the truth, we do not know what form they aetually assume-we think it very probable, that their mode of termination may vary aceording to the nature and texture of the part in whieh they are

[^30]expended.* The nerves are very unequally distribnted to different parts : the organs of sense, the skin, museles, and mucous membranes are plentifully supplied with them: the scrous, fibrous, and medullary membranes reccive but few ; and none have yet been detected in either eartilage or tendon. \dagger

Ganglion. A ganglion is a little knot or swelling upon a nerve, perfectly natural to it. We find them in various parts of the body; more especially about the neek, ehest, and abdomen. They will be pointed out in tracing the distribution of those nerves to which they appertain. Biehat discovered that neither the sympathetic nerve nor the ganglia it forms, possess sensibility.

Origin and Distribution of the Nerves.

It has been observed, that the ten pairs of nerves conneeted with the brain are denominated cerebral; while the thirty-six pairs conneeted with the spinal marrow, are eontra-distinguished as the spinal. All the nerves being symmetrieal in number and distribution, on either side of the body, take their origins by pairs, and these pairs are mumbered, and so distinguished from one another, according to the order in which they rise-proceeding from below upward within the head, from before backward within the spine. In addition to this distinetion of ordinal number, however, every pair of eerebral nerves has obtained a partieular epithet significant of the speeific purpose they scrve, the part they supply, or else some peeuliarity in their division or distribution.

[^31]TABLE OF THE CEREBRAL NERVES.

distribution.
To the Under lid and Lachrymal Duct
Antrum and Molar Teeth

Sphæno-palatine $\left\{\begin{array}{l}\text { To the Nasal Chamber } \\ \text { Sinuses and Roof of the Mouth }\end{array}\right.$
To the Velum Palati
Palato-Maxillary $\left\{\begin{array}{l}\text { To the Soft Palate }\end{array}\right.$
Pes Anserinus-Disperscd upo
Pes Anserinus-Disperscd upon the Face.
Buccal
Reflected Branch to the Portio Dura
Inf. Maxillary $\left\{\begin{array}{l}\text { Pterygoideal }\end{array}\right.$
Terminating in the Papillx of the Tongue
Tranating Branchics to the Under Lip.
To the Abductor Oculi-Branches also to the Retractor.

Facial.
CEREBRAL CONNECTION.
Crura Cerebelli Sup. Maxillary
Medulla Oblongata . .

4th Ventricle . . .
nerves.
5th Pair (continued). . . .

NERVES
-

NERVES.

Medulla Spinalis.

Superficial
Sup. Branches . . Deep Muscular Anterior Auricular
(Deep Muscular
To the Anterior
To the Lingual
Terminating

First Pair, or Olfactory Nerves.

These arise from the eorpora striata, along the posterior borders of whieh bodies the medullary bands or roots of them may be traced as high up as the middle lobes of the ecrebrum. These are the largest of the cerebral nerves: are bulbous at their origin; pulpy in texture ; and exhibit, when cut into (comparatively to their size) large cavities, which are walled in by a layer of medullary matter, inclosed within a thinner one of cortieal substanee. These cavities some (erroncously) describe as ventricles of the brain: but they evidently belong exclusively to these nerves. They are conieal in figure ; are eapacious inferiorly, and gencrally distended with fluid; but contraet upward into small eireular canals, which lead through the trunks of the nerves into the anterior eornua of the lateral ventrieles. Girard ealls them the ethmoidal sinuses: but, as this would create confusion in our nomenclature, it would be better to name them the olfuctory sinuses. This, the tubular portion of the nerve, is sheathed in dura mater. From its abrupt or truncated termination against the cribriform plate of the ethmoid bone, are transmitted nume rous, soft, nervous filaments, which pieree the foramina of this bony plate, and enter the nose; where they undergo a further subdivision, and are at length widely dispersed over the sehneiderian membrane.

Second Pair, or Optic Nerves.

If we may be allowed to estimate the importance of nerves by their volume, the optie will hold the third rank among those of the brain, being exceeded in size only by the first and fifth pairs. They take their rise from the posterior, contraeted, and ineurvated parts of the thalami nervorum optieorum. At first they wind forward and downward, around the crura eerebri, which incipient parts of them have obtained the name of tractus optici: in doing this they approach each other (in which relative course they are singnlar, all other pairs diverging), and at length form a junction-an intermixture, some say a deeussation-of their fibres (in whieh they are also singular), just below the corpus albicantium. After this, they become again two separate nerves, proceed downward and forward throngh the foramina optiea, and enter the cavities of the orbits. Here eaelı nerve continues the same oblique eourse, surrounded by the museles of the eye, and penetrates the inmer, inferior, and posterior part of the eyeball, within the interior of which it expands and forms the retina. In its whole eourse, it is inclosed within a slieatl, prolonged from the dura mater, forming one more peeuliarity in its distribution.

Third Pair, or Motores Oculorum,

Take their origin, by several filaments, from the inward parts of the crura eerebri, about their middle. The trunk of either nerve, thus formed, first runs obliqucly outward, across the back of the erus, then turns downward and enters the eavernous sinus, wherein it is covered by a sheath of dura mater, and continucs its course through the foramen lacerum orbitale, inwardly placed to the other nerves, into the orbit. In entering the eavity, the nerve divides into two branehes. The smaller is generally received by a single muselc-the levator oculi. The larger braneh subdivides into several others: the longest of these runs round the eyc-ball and penetrates the obliquus inferior: the two or three others run to the adduetor and depressor muscles.

Ophthalmic Ganglion. Upon the outward side of the optic nerve, betwcen it and that part of the motor oculi from which the branch nerves spring, is situated the ophthalmic ganglion. This little body is principally constituted of branches from the third pair' ; but it also receives a filament or two from the sixth. The nervous threads transmitted by the ganglion, surround the sheath of the optie nerve, and, pursuing their course over it, penetrate the globe of the eye, and run to-be dispersed upon the iris.

Fourth Pair, or Pathetic.

These, the slenderest of the eerebral nerves, take a filamentous origin from the summits of the testes, whence they proeeed outward between those bodies and the crura eerebelli, ereep round the eura ecrebri, and are seen at the border of the tentorium entering the cavernous sinus. Having eoursed the anterior boundary of the sinus, eneased in dura mater, the nerve takes refuge again in a small bony canal, constructed for its passage, in front and rather to the outward side of the foramen lacerum, which eonducts it into the orbit. Its destination is the superior oblique musele of the eye, to which it exelusively distributes its ramifieations.

Fifth Pair, or Par Trigeminum.

These are the largest of the nerves of the brain. They take their beginning by a multitude of filaments from the erura cerebelli, and forthwith run for seeurity into the cavernous sinuses, where they are eovered and proteeted by distinct sheaths of dura mater. Eaeh nerve within the sinus suddenly swells in bulk, and thus is said to form a ganglion: and eertainly the enlarged portion is darker coloured than the nerve itself, albeit, it does not put on the eommon appearance of, nor is it of the same
texture as, those little knots or swellings in other parts whieh we are in the labit of ealling ganylia. Waiving this remark, however, and ealling it a ganglion, we say that three nerves depart from it; and to these we give names from the parts they are destined prineipally to supply, viz., the ophthalmic, the superior maxillary, and the inferior maxillary nerve.

The ophthalmic nerve, the smallest of the three divisions, proeeeds for a short way down the sinus in union with the superior maxillary; inelining forward, however, it soon leaves that nerve, and takes its passage through the foramen laeerum orbitale into the orbit. As it emerges from this opening it splits into three branehes-the lachrymal, the supra-orbitar; and the lateral nasal branch.

The lachrymal branch, at its origin, eomprehends two divisions. One is a long single nerve that ascends behind the museles of the eye, through the fatty matter at the bottom of the orbit, winds over the angle formed between the zygoma and the frontal orbital proeess, and ends in subeutaneous and anastomosing branehes about the forehead. The other eonsists of several filaments whieh run forward over the fatty matter euveloping the eye, and are distributed to the laehrymal gland, eonjunetiva, and eiliary glands of the upper eyelid.

The supra-orbitar branch takes the same superfieial eourse aeross the roof of the orbit to the inner angle of the orbitar ridge, where it passes through the foramen supra-orbitarium, and afterwards ramifies upou the skin eovering the forehead. It gives off a twig or two to the adipose matter of the eye, and sends a braneh to the upper lid.

The lateral nasal branch, the largest of the three, makes a sudden turn inward, and runs between the levator and retraetor oeuli; and, after having detaehed a eonsiderable branch to the membrana nietitans, enters again the eavity of the eranium, through the foramen orbitale internum, from whieh it takes its passage, through one of the holes in the eribriform plate, into the chamber of the nose. Herein it ereeps along the top of the anterior turbinated bone, within a bony and membranous eanal, immediately covered by the more prominent part of the os nasi ; and sends its ultimate branches to the false nostril and wing of the nose. Near its origin, this nerve sends a twig or two to the ophthalmie ganglion.

The second division, or superior maxillary nerve, mueh larger than the ophthalmie, leaves the eranium through the foramen rotundum of the sphenoid bone, and takes its passage along the eanalis infra-orbitarius, whenee it emerges, eovered by the levator labii superioris, upon the faee: here it
splits into several large branches, denominater the facial nerves; or, altogether, from their being imagined to sprout from the trunk, after the manner of the claws of the foot of a goose, the pes anserinus. But, prior to its entering this canal, it detaches several branches of importance. 1. A branch which pursues the same course, along the floor of the orbit, to the inner canthus, where it sends twigs to the under cyelid and lachrymal duct, and disperses its remaining ramifications upon the contiguous skin. 2. Several long filaments, which deseend upon the tuberosity of the superior maxilla, penetrate the bone, and furnish twigs to the antrim and the two superior molar teeth. 3. The largest branch is the spheno-palatine or lateral nasal nerve, to which the foramen spheno-palatinum gives passage into the nose, wherein it divides into two sets of filaments. One of these fasces is spread over the lateral parictes of the nasal cavity; the other ramifies over the sinuses, and transmits a filament of considerable length along the posterior border of the septum, which passes through the foramen incisivum superius to the roof of the mouth. 4. A slender branch to the velum palati. 5. The pulutomaxillary nerve, a considerable branch traversing the canal of that name in company with the palatine blood-vessels, and dispersing the majority of its ramifications over the soft palate; though some of its longer ones may be followed through the foramen incisivum inferius into the upper lip.

The terminatiny or facial branches of this division, which remain to be described, in general comprehend, at their exit from the foramen infra-orbitarium, two large and two small nerves. The principal branch descends in a straight line upon the side of the face, and, about midway between the foramen and front of the lip, shoots forth into many smaller branches, which are dispersed orer the side and surrounding border of the upper lip. These nerves receive communicating filaments from the anterior facial branch of the portio dura, and, with them, form an intrieate and important plexus upon the fore and lateral parts of the facc. The brauch next in size to this takes a similar course, anteriorly, to the last, and distributes its ramifications to the nares and muscles, clothing them externally. It detaches one long filament, which turns round the smooth eresecntic border of the superior maxillary bone, and goes to the museles interually situated. One of the small branches, which takes its course anteriorly to all the others, runs directly to the levator labii superioris. The smallest branch of the four is one of communication with the portio dura.

Tine thind division, the inferior maxiliary nerve, the largest of the three, leaves the cranium through the lowermost nook in
the foramen lacerum basis cranii, and runs forward, defended by the branch of the posterior jaw, across the middle of the pterygoideus, and enters the foramen maxillare anterius. Its brauches are-1. A reflected branch which runs up in front of the parotid gland, and joins the portio dura as the latter turns round the border of the massetcr. 2. The buccal nerve, which pierees the superior portion of the pterygoidcus, crosses behind the tuberosity of the superior maxilla, penetrates the buccinator, and buries itself in the substance of the chcek, through which it may be traced into the lower lip. 3. Twigs to the pterygoideus. 4. The gustatory nerve, a branch nearly equal in size to the trunk itself. This, which by itselfmay be consideredas a trunk, and one of importance too, descends by the side of the tongue, penetrates that organ about its middle, and vanishes in its tip. a. Its first branch is a long one, that takes the same direction as the main (maxillary) trunk, and enters a medullary foramen in the branch of the jaw. b. The gustatory then gives off the dental, a long slender ncrve which courses the side of the inferior maxilla, concealed by the submaxillary gland (to which it sends twigs) as far as the symphysis, where it enters a small foramen, and sends its ultimate ramifieations to the roots of the incisive teeth. c. Many twigs detached laterally by the nerve as it courses the substance of the tongue: they take an oblique direction, and are destined for the supply of the gustatory papillæ.

The inferior maxillary nerve itself, having entered the interior of the bone, takes a longitudinal coursc close to the roots of the teeth, into the fangs of which it detaches branches as it passes them, while others ramify in the diploe. Through the foramen maxillare anterius, the remaining portion of this nerve emerges from its bony conduit, and then splits into two branches; of which the superior subdivides into several smaller ones, which ramify upon the integument of the under lip : the inferior runs for some way without giving off a single twig; it then ends in four or five long filaments, which expend their ramifications in the substance of the lip.

Sixth Pair, or Abducent,

Arise, by radical filaments, from the medulla oblongata, by the side of the fissure along its middle, near to its junction with the tuber annulare. This nerve penetrates the cavernous sinus behind the fifth pair, and therein, running between them and the carotid artery, it meets with the ophthalmic nerve, and accompanies it through the foramen lacerum into the orbit. Here, it gives off two or three filaments to the retractor oculi ; but its
prineipal destination is to the abductor, among the fleshy fasciculi of which its ramifications are pretty equally distributed.

Seventh Puir, or Auditory.

This pair ineludes two separate nerves on either side: one, from its remarkable softness, is denominated the portio mollis; the other, in contradistinction, the portio dura.

THE PORTIO MOLLIS takes its rise from the floor of the fourth ventricle, by the side of the crena of the ealamus scriptorius. It turns round the medulla oblongata, and then passes directly outward, and enters the foramen auditorum internum. Having gained admission into the vestibule of the internal ear, it resolves itself into divers pulpy filaments, which pieree a perforated bony plate, and ramify over the various parts of the labyrinth.

THE PORTIO DURA arises from the place of union of the medulla oblongata, tuber annulare, and crus cerebelli; and takes its passage through the foramen auditorium internum, inclosed in the same sheath of dura mater along with the portio mollis. At the bottom of the meatis auditorius internus, it detaches two slender but important branches. 1. The chorda tympani, a long slender filament which proceeds into the eavity of the tympanum, erosses therein the neek of the malleus, makes its exit again by a small foramen, and, deseending to the root of the tongue, forms a remarkable union with the lingual nerve. 2. The other also rums in the vieinity of the tympanum, but subsequently pursucs the course of the Eustachian tube: decply seated within the fauces at its exit, its branches become distributed over the parts in the immerliate vieinity.

The portio dura leaves the internal ear through the spiral eanal, and is decply buried at its issue underneath the parotid gland, giving off there the auricular nerves, of which there are three principal divisions. 1. The anterior auricular nerve ascends over the fleshy root of the front of the ear, where it detaches some branches which unite with others eoming from the lachrymal branch of the first division of the fifth pair, and form a sort of plexus-the anterior auricular plexus. Its remaining branches are dispersed upon the skin thereabouts. 2. The posterior arricular nerve, less in size, mounts the back of the car, in company with the blood-vessels, distributing branches to the musele about its root, and vanishing in ramifications upon the skin of the ear. 3. The internal auricular, the least eonsiderable of the three, enters the concha for the supply of the parts contained in the external ear. 4. Parotideal branches, two, three, or four in number, ramifying within the substance of the gland,
and transmitting other smaller filaments to the superjacent skin. Against the articulation of the posterior jaw, the portio dura is joined by a considerable branch from the posterior maxillary nerve. Augmented in sizc by this contribution, the portio dura emerges from the substance of the gland and turns round the cervix of the jaw, along the outward side of the temporal artery. Having mounted upon the masseter, it divides into two principal branches. The posterior one obliquely crosses the muscle a little anteriorly to its middlc, enveloped in cellular membrane, detaching many filaments in its passage to the fibres of the muscle, but more and larger oncs to the skin, and some few of communication with the antcrior branch, and ultimately ramifies subcutaneously upon the muscles of the lower lip, and side of the lower jaw. The anterior branch descends over the forc part of the masscter, a little posteriorly to the zygoma, likewise clothed in cellular substance, furnishing, in its coursc, muscular, cutaneous, and communicating filaments. Leaving the masseter, it inclines forward, undiminished in size, from the ramifications it has already issued, and, shortly after, ends in an arborescent expansion, which spreads its fibrils over the inferior and anterior parts of the face. It sends some twigs to the museles thereabouts, and to the upper lip; but the principal ramifications run to join those of the anterior maxillary nerve.

Eighth Pair, or Par Vayum.

This pair is constituted of two nerves on either side, so that it may be said to be double:- the accessory, or additional one, is denominated the glosso-pharynyeus; the other is the proper par vagum. They arise by many filaments from the corpora olivaria, and make their exit through the foramina lacera basis cranii, in company with the nerves next to be described. Having left the skull, we find them lodged, secure from injury, along with the nerve of the ninth pair, in a hollow space to the inward side of the condyloid process of the occiput.

THE GLOSSO-PHARYNGEUS, by much the smaller of the two, now quits the par vagum, and, turning round the intcrnal carotid artery, ruus forward and downward upon the side of the pharynx, insinuating itself among the constrictors, whence it procecds to the root of the tonguc, and there disappears. Its branches are-l. At its origin, a reflected branch, which joins the portio dura just before that nerve pierees the parotid gland. 2. Tiwo branches to the constrictors of the pharynx. 3. Before it reaches the tongue, the nerve splits into three or four branches, which ramify and vanish in the base or root of that organ.

THIE PAR VAGUM, being disunited from the glosso-pharyngcal nerve, procceds downward and backward to join the carotid artery, in the same cellular sheath with which, to the outward side of the vessel, it takes its course along the neck to the chest. Its cervical branches arc- 1 . Two or three twigs, to the superior cervical ganglion. 2. The pharynyeal branch, reflected upon the side of the pharynx ; whose filaments are- a. To the œsophagus. b. Onc received from the sympathetic. c. The continuation of the nerve, which is expended in the substance of the pharynx. 3. Two slender branches to the carotid artery, upon the coats of which they ramify, mite, and ultimatcly split into twigs, forming a sort of plexus around the vessel at its bifurcation, from which other filaments are sent along the parietes both of the external and internal carotids. 4. The laryngeal branch, crossing above the carotid artery, then winding downward upon the side of the pharynx, in its way to the larynx, and entering a perforation through the posterior ala of the thyroid cartilage.

Along the posterior part of the neck the par vagum inclines upward, and is found above the carotid artery, between which vessel and the axillary arteryit continues its course, through the space between the first two ribs, into the chest. Having entered the thoracic cavity, it runs within the superior mediastinum; but it has a somewhat different relative situation on one side from what it has on the other: the right nerve adheres in its passage to the side of the trachea, crosses above the root of the right lung, alongside of the œesophagus, and gains the under surface of that tube before it leaves the chest; whereas, on the left side, the nerve accompanies the anterior aorta, and crosses the root of the posterior aorta to reach the œesophagus, to the left and upper side of which it pursucs its coursc as far as the diaphragm.

Its branches within the chest are-1. Filaments to the tracheal plexus, consisting of an asscmblage and intcrcommunication of nerves, mostly from the sympathetic, around the lower part of the trachea, within the space between the first two ribs. 2. Two or three smaller branches to the cardiac plexus. 3. A single branch, of considerable importance, denominated the recurrent nerve. 4. Branches to the antcrior pulmonary plexus. 5. Reflected branches to the postcrior pulmonary plexus. And, on the right side, in addition to these, the nerve furnishes a still larger branch, which is directed forthwith to the heart: in its passage it subdivides into two chords, and these branch out as they approach the base of the organ, and penctrate the parietes of the auricles.

The recurment nerve of the left side originates from the par vagum, by the side of the anterior aorta, and coils round the root of the posterior aorta, including that vessel in a sling as it were; but, on the right side, it leaves the trunk as the latter passes the first rib, winding forward within the augle formed between the anterior aorta and its first large branch-the posterior cervical artery. The recurrent nerve (so denominated from its retrograde course) then takes the first part of its reflected passage, situated above and outwardly to the par vagum ; by degrees, however, in rumning up the neek, it approaches the trunk, gains the inner side of it, and along the anterior half of the neck is found concealed between the earotid artery and the traehea. Having reached the top of the air-tube, it spreads into many fine terminating branches, sereral of which run to the muscles of the larynx, though the principal of them creep along the sides of the thyroid cartilage, and end in ramifications upon the membrane of the glottis. Its branches are-l. Twigs to the pulmonary plexus; and, on the left side, some also to the cardiac plexus. 2. Twigs to the posterior cerrieal ganglion. 3. Lung slender ramifications both to the œesophagus and trachea, in its passage up the neek.

The pulmonary flexuses, inferior and superior, consist of netrorks of nerrous filaments, some of which are of large size, surrounding the great vessels constituting the roots of the lungs. They are composed of branches and threads of nerves from the par vagum and recurrent on one side, and of similar ramifications from the opposite side : the inferior plexus clings to the trachea at its division, and spreads under the bronchial tubes and pulmonary vessels; the superior, which receives several reflected branches from the par vagum, lies behind the roots of the lungs, and is less considerable than the inferior. From these plexuses the numerous nervous filaments are derived which cling to the bronchial ramifications and pulmonary ressels, for the supply of the parcnchymatous and vascular structures, and lining membrane of the lungs. Moreover, the par vagum, in the chest, detaches many twigs to the cesophagus, which interlace its muscular coat by uniting with others from the opposite nerve: in this manner another plexus is produeed, whieh is named the osophayeal.

The par vagum having entered the abdomen, clinging to the sides of the cesophagus, the nerve on one side is differently distributed to that on the other. They both rm to the stomach; but the left nerve, prior to reaching it, divides into two sets of branches. One of these pursue their eourse hackward, and spread over the upper part of the organ, sending some twigs to the cardia, others along the small curvature, which communi-
cate with the ramifications of the right nerve: the other set cross above the stomach to the left side, taking the course of the gastric artery, and join the great semilunar ganglion. The right nerve, smaller than the left, as soon as it rcaches the cardia, splits into many branches which traverse the small curvature, where they form communications with the left, and spread their ramifications upon the under part of the organ : some of them run to the pylorus likewise, and others go to join the hepatic plexus.

Accessory Nerves to the Eighth Pair.

These nerves are considcred as accessory to the two former, in consequence of their beingall three found together in close connection at theirissue from the cranium. The accessory nerve itself isformed within the vertebral canal, by the concurrence and union of severalfilaments derived from the side of the medulla spinalis, one or two of which may generally be traced down to the place of origin of the fourth or fifth cervical nerve. Along its coursc into the head it receives many other fine threads from the marrow, and in the cranial cavity joins the par vagum ; with which, and with the nervus glosso-pharyngeus, all inclosed in one and the same sheath, it descends through the foramen lacerum basis cranii. Beneath the atlas, the accessory nerve leaves its companions, and splits into two divisions. The anterior division runs downward and forward, and penetrates the belly of the sterno-maxillaris, among the fasciculi of which it may be followed, transmitting numerous lateral twigs in its course, down to the very origin of the muscle. The posterior division turns round the transverse process of the atlas, and takes a waving course between the levator humeri and splenius, obliquely across the side of the neck, to the top of the scapula; where it plunges into the rhomboideus brevis, and vanishes in the muscular substance. This division receives filaments of communication from several of the cervical nerves, and furnishes ramifications to the muscles over which it passes. The branches of the trunk of the accessory nerve arc-l. To the par vagum, at its exit from the skull. 2. Some twigs to the anterior cervical ganglion. 3. A filament of communication with the sub-occipital nerve.

Ninth Pair, or Lingual,

Arise, bchind the eighth pair, from the corpora olivaria; pass out of the cranium throngh the foramina condyloidea anteriora; and are first found, in company with the par vagum, against the
inward sides of the coronoid processes. This nerve takes its course obliquely downward, along the branch of the lower jaw, runs between the pterygoideus and the larynx, and afterwards insinuates itself between the museles forming the root of the tongue. Having penetrated the substance of this organ, the nerve pervades its middle, aceompanied by the lingual artery, and ends in a ramous expansion in its tip. The branehes of this nerve are-1. Some small ones in its course to the hyo-glossus longus; one of which, remarkable for its length, runs to the termination of that musele, detaching many twigs in its way. 2. Lateral branches, which come off in a half-penniform manner, within the substance of the tongue, and ramify extensively among the fibres of the other lingual museles.

Tenth Pair, or Sub-occipital,

Possessing all the attributes of a spinal nerve, probably should rather be considered as the first of the cervical. It has a filamentous origin from the place of junetion at the medulla oblongata with the medulla spinalis, and passes out through a foramen in the anterior part of the body of the atlas. It then splits into a superior and an inferior division. The superior division, larger than the inferior, we find deeply buried in muscle upon the transverse process of the atlas, where it spreads into several small branehes, of whieh two only are worthy of remark, the others being quiekly expended in the eontiguous museles. Onc of these is a deep museular branch, which penetrates the mass of musele upon the oeeiput. The other aseends over the vertex, and lamifies upon the inner and baek part of the ear.

The inferior division, the longer one, turns round the transverse proeess of the atlas, and runs through a foramen in the anterior wing of the bone; after which it turns down towards the traehea, transmitting its ulterior ramifieations to the thyroid gland, top of the trachea, and some lymphatie glands in the vicinity; also to the sterno-maxillaris and sterno-thyro-hyoideus. Its branches are-a. Some to the deep-seated muscles in front of the atlas. b. Two or three to the anterior cervical ganglion. c. One of communieation with the lingual nerve.

SPINAL NERVES.

The thirty-six pairs of spinal nerves are divided into classes eorrespondent with thie vertebre eomposing the spine, viz., cervical, dorsal, lumbar, sacral, and coccygeal. Likewise, the several pairs of nerves in eaeh class are numbered aecording to the order in which they originate, so that the number and name of
the nerve corresponds to the vertcbra, posterior to which it makes its cxit from the spinal canal. Furthermore, every pair of nerves in the several classes present two divisions or fusces, a superior and an inferior fascis.

CERVICAL NERVES,

Consisting of seven pairs.

First Cervical Nerve

Makes its exit from the spinal eanal by that large interrortebral gap existing between the atlas and vertebra dentata. The superior fascis of it consists of several branehes: I shall notice only one, however, which is larger and longer than the restthe others speedily penetrating the contiguous deep-scated muscles. This branch is reflected baekward upon the side of the second vertcbra, and is continued obliquely upward under the complexus, to whieh muscle its ramifications are distributed. It sends backward a ramus of communication to the second cervical nerve. The injerior fascis is composed of two prineipal branches. The superior branel, more considerable than the inferior, turns forward and becomes superficial. It erosses the transverse proeess of the atlas, and there sends a subeutancous ramification along the panniculus, to the angle of the jaw. The main branch is then continued upward, detaches anothera posterior ramification - to the panniculus, and ascends to the root of the ear: where it ends in several small branches, the shorter of which supply the muscles of that part, while the longer crecp up the concha, and ramify upon its outward surface. In its course it communicates with the accessory nerve. The infcrior branch passes downward and forward upon the longus colli, to which it sends filaments, leaves that muscle to ramify in the levator humeri, and ultimately disappears among the fibres of the panniculus. This braneh has also a communieation with the

Second Cervical Nerve.

This is a nerve whose distribution is involved in a degrec of complexity, owing to the number and diversity of its ramifications. The superior fascis includes three or four branches of considerable size. 1. Is found ramifying orer the inward surface of the splenius. 2. Runs to the spinalis colli. 3. To the complexus. 4. To the first cervical nerre, and to the complexus minor, extending to the occiput. The inferior fascis furnishes mostly superficial branches. 1. One thrus forward and communicates with the accessory nerve. 2. Winds backward
and ramifies superficially over the splenius. 3. Pierces the levator humeri, and expends itsclf in sulbcutaneons ramifications. 4. Creeps along the under surface of the levator humeri, sending off one or two subcutancous filaments. 5. Is a filament of communication with the

Third Cervical Nerve.

This is likewise a nerve whose branches are numerous and intricate. The superior fascis is split at its exit into several large and some small branches. 1. Some short twigs to the spinalis colli. 2. A large branch to the splenius. 3. and 4. Long winding branches, which ramify upon the ligamentum subflarum and vanish in the substance of the complexus. 5. A single branch to the spinalis colli. The inferior fascis is composed of two principal branches. The inferior branch turns round the articulation formed between the third and fourth vertebræ, and spreads its ramifications upon the longus colli. The superior branch winds upward for a short way, and subdivides into three smaller ones, of which two run to the levator humeri, and the third pierces that muscle, and ends in subcutaneous ramifications : from one of the former branches a filament of communieation runs to the

Fourth Cervical Nerve.

Its superior fascis turns round the vertebre and scparates into three or four large branches, which supply the contiguous parts of the spinalis colli, splenius, and complexus. The inferior fascis, the more considerable and important one, gives off, at its origin, some twigs to the longus colli : it then runs down a short distance and detaches-1. A large branch to the splenius. 2. A sinall one to the longus colli. 3. A long filament which passes backward, covered by the levator humeri, to assist in composing the plurenic nervc. 4. Sevcral long terminating branches, which may be traced upon the levator humeri, over the point of the shoulder. This nerve communicates with the fifth cervical by a small circumflex filament, and sends a considerable branch backward which also joins it.

Fifth Cervical Nerve

Makes its appearance between the fifth and sixth vertcbree. Its superior fascis forms a set of deep muscular branches, mostly destined to the splenius. The inferior fascis comprehends three principal branches. 1. Runs to the point of the shoulder, where its ramifications are principally expended in the levator humeri : at its origin it scnds a twig to the longus colli.
2. A large branch to the serratus magnus. 3. The most important of the three, takes a decp-seated course to the point of the shoulder: there it sends off-a. A filament to the phrenie nerve. b. One of communication to the sixth cervical nerve. c. One that deseends obliquely outward to contribute to the formation of the humeral plexus.

Sixth Cervical Nerve,

At its exit, bifureates. The superior fascis, comparatively small, turns round the articulation, runs upward, and penetrates the scrratus magnus. The inferior fascis, remarkable for the number and large size of its branches, passes backward under the transverse process of the seventh vertebra. It furmishes1. Twigs to the longus colli. 2. A long filament to the posterior cervical ganglion. 3. A filament to the phrenic nerve. 4. Large branches running to the formation of the humeral plexus.

Seventh Cervical Nerve.

The last of these nerves comes out between the last cervical vertebra and the first dorsal. Its superior fascis, very inconsiderable, consists of a small branch only which is expended in the serratus magnus. The inferior fascis comprises a large, flat nerve, directed backward to join the humeral plexus. In its way, it forms a broad union with the first of the dorsal nerves, and detaches a branch to the sympathetie nerve.

The Diaphragmatic, or Phrenic Nerve,

Principally formed by the union of branches from the fifth and sixth eervical nerves, and gencrally by the addition of a small filament from the fourth, takes a solitary course down the neek, along the inferior border of the scalenus, enters the thorax just above the root of the axillary artery, and traverses the side of the pericardium to reach the tendinous centre of the diaphragm, where it divides and spreads out into many divergent ramifications.

Dorsal Nerves.

Of these nerves there are cighteen pairs. In issuing from the spine they are directed obliquely backward. Like the cervical nerves, they are regularly numbered in suceession ; and present, at their exit, superior and inferior fasees; but the fasees are less in size, and evolve fewer ramifications. The inferior branches acquire the name of intercostal nerves; because they correspond with the intercostal blood-vessels, which they accompany along the shallow furrows in the posterior edges of the ribs, between the internal and external intereostal museles, directing their course to the sternum.

The superior branches turn direetly upward between the transverse proeesses, piereing the intereostal museles and mounting upon the baek, where they proeeed obliquely upward, decply buried in musele, until at length they grow very small, and become superficial, and end in subeutaneous ramifieations upon the fasehia of the baek.

The dorsal nerves grow smaller aecordingly as they are given off more posteriorly. The antcrior divisions of them furnish branches to the museles of the dorso-seapular region; the middle and posterior, to the muscles of the dorsal region : the hinder nerves also send a few filaments to the loins.

The intercostal nerves require that we enter further into particulars.

The first nerve is of large size, and its principal portion is destined to the humeral plexus. The proper intereostal nerve is but a slender branch. It is remarkable for its solitary course : the other intereostals, for the most part, aecompany the intereostal vessels, whereas this maintains a middle course between the first and seeond ribs, and ramifies upon their lower extremities. It is also distinguishable from all others but the seeond, in not furnishing any eutancous ramifieation.

The second nerve detaches, near its origin, a considerable braneh, which deseribes an areh downward in its course over the belly of the longus colli, and afterwards joins the first nerve. Its intercostal braneh, whieh is rather larger than the first intereostal nerve, runs for some distanee along the museular space, and then aceompanies the intereostal blood-vessels, and, like the first, ends in ramifieations near the sternum.

The third, fourth, fifth, sixth, and seventh intercostal nerves, furnish, eaeh of them, a long eutaneous filament which ramifies among those museles of the costal region exterior to the ribs; they then pursue their course downward, ineline forward between the eartilages, and expend their ulterior ramifieations among the museles of the sternal region.

The remaining intercostal nerves, with the exeeption of the last, having reached the lower ends of the ribs, do not continue their course between the eartilages, but quit the intereostal spaces and traverse the under surfaces of the eartilages, to reach the muscular parietes of the abdomen, where we find them pursuing their way in parallel lines, nearly at equal distanees from one another, between the transverse and internal oblique museles, to the reetus, in the substance of which they braneh out and are lost. From the thirteenth nerve, and from every one posterior to it, hefore they leave the intereostal spaees, issues a large entaneous braneh, which, deviating from the continuation of the
trunk, takes an oblique direetion baekward, and ramifies extensively upon the aponeurosis of the external oblique musele.

The eighteenth and last intercostal nerve forms an exeeption to this general deseription. It quits the last rib at its origin, and stretehes obliquely baekward, passing elose under the extremity of the first lumbar transverse proeess. Soon after this it splits into two branehes: the smaller one is direeted baekward aeross the abdomen, passing at first between the external and internal oblique museles, but afterwards insinuating itself among the fibres of the former, and ending in subeutaneous ramifieations; the larger one traverses the flank, and proeeeds for a considerable way between the internal oblique and transverse museles.

LUMBAR NERVES

Correspond in number to that of the lumbar vertebre. They issue through the spinal foramina in the loins, and are, at their exit, distinguishable into superior and inferior divisions. The superior fasces, of minor importance, are refleeted upward, and direeted into the mass of musele forming the loin ; and, having. distributed the majority of their branehes therein, picree the fasehia lumborum, and terminate in subeutaneous filaments. The inferior divisions require to be distinetly eonsidered.

The first nerve runs obliquely aeross the transverse proeess of the seeond vertebra, under the saero-lumbalis, and at the end of the third transverse proeess divides into two braneles. The inner one makes direetly for the anterior spine of the lip-bone, over whieh it passes, and disperses its ulterior filaments in an arboreseent manner upon the iliaeus, eovered by its fasehia. The outer braneh takes a sweep outward, between the external and internal oblique museles, around the spine of the same bone, and extends along the anterior border of the tensor vagina nearly to the stifle, and there ends in subeutancous ramifieations upon the fasehia lata. Its other branehes are-1. To the last dorsal nerve. 2. To the sympathetic. 3. To the seeond lumbar nerve.

The second nerve, though generally double from its origin, is smaller than the first. It has communieations with the first nerve and sympathetie, and sends baek a small braneh that eontributes to the formation of the erural nerve. It also sends twigs to the psox. Its prineipal divisions are two. One is stretehed along the iliaeus outwardly, and continues its passage along the fore part of the hauneh, where it beeomes subentaneous, and ramifies over the stifle. The other division erosses the ilio-lumbar artery, just below its origin, and takes nearly a similar eourse to the inward part of the hauneh, where it disperses its ramifieations upon the skin and fasehia: in its way, it detaehes a consi-
derable branch-the spermuticus externus, which passes throngh the abdominal ring, and sends twigs, in the male, to the scrotum, and a filament along the chord to the testicle; in the female, filaments go from it to the uterus, udder, and external labia.

The third nerve is almost wholly consumed in forming the crural nerve. It sends a small branch to the sympathetic, another to the psoas, and a third backward to the obturator nerve.

The fourth nerve detaehes a filament of communication to the sympathetic, and then joins the others in contributing to the production of the crural nerve ; but, in addition, it sends a considerable braneh to the obturator nerve.

The fifth nerve communieates with the sympathetic, and afterwards subdivides into three considcrable branches: one assists in the formation of the erural ; another joins the obturator; and a third splits and sonds one portion to the gluteal, but a much larger one to the seiatie nerve.

SACRAL NERVES.

Of these nerves we reckon five pairs. The foremost nerves are of very large size; the last two are much diminished in volume: they all take an oblique direction backward, and traverse the lateral parietes of the pelvis.

To facilitate their deseription, we may consider these nerves also as consisting of superior and inferior fasees.

The superior fasces make their exit through distinct foramina upon the upper part of the sacrum, and are there buried under a thick mass of muscle: a fcw filaments from them pieree the faschia above and become subcutaneous, and ramify upon the outer part of the haunch.

The inferior fusces, remarkable for their large size, are of more importance. The first nerve largely contributes to the origin of the sciatic ; but it also sends a considerable branch to the glatcal nerve, It commmicates with the sympathetic and second lumbar nerve.

The second nerve communicates with the third and sympathetic, and afterwards sends off two large branches. One joins the sciatie; the other continues backward, and disappears among the coceygeal museles.

The third nerve has similar connections, and likewise joins the sciatic; but the major part runs baekward, along the side of the pelvis, and penetrates the muscles of the hameh.

The fourth nerve, similarly conneeted, is prineipally destined to the supply of the bladder and rectum, and muscles of the anal region.

The fifth nerve runs backward, and plunges into the heads of the coccygeal muscles.

COCCYGEAL NERVES.

Generally speaking, we find four pairs of them. Like the sacral, they issue from the spine by two sets of foramina, and are therefore best considered as divided into superior and inferior sets. The sympathetic not extending thus far, they have no connection with it. In other respects they do not importantly differ from the other spinal nerves.

The superior fasces pass out obliquely backward ; communicate with the last of the sacral and with one another, distribute many muscular branches, and end in subcutaneous filaments. From the two or threc last originates a considerable nervous chord, which penetrates the crector coceygis, and may be traced among its fibres to the extremity of the tail.

The inferior fasces likewise communicate with one another. The first nerve receives a branch from the last sacral, and detaches one to the perinæum. Posteriorly, they all end in one common nervous chord, somewhat larger than the one above, which runs between the depressor and curvator coccygis, branching out in its course, and ending in filamentous ramifications at the point of the dock.

NERVES OF THE FORE EXTREMITY.

With the exception of some cutancous filaments ramifying over the point of the shoulder and extending thence to the arm, the fore extremity receives all its nerves (which are comparatively large and numerous, not to add complicated) from the axillary plexus ; and this plexus is constituted, in a manner that has already been shown, by a small branch from the fiftlh, by the principal portions of the sixth and seventh cervical nerves, and by the main division of the first dorsal nerve. The plexus, thus formed, resolves itself into several large nervous trunks, generally about seven or cight; and these surround the axillary artery. They are as follow:

The external thoracic nerves, commonly six or seven in number, arise from the axillary plexus, and are dispersed upon the breast and side. Three or four of them run obliquely downward, to give branches to the pectoral museles. The others take a backward course, and send branches to the serratus and latissimus dorsi. One branch is found turning round the posterior border of the triceps, where it becomes superfitial and ramifies among the fibres of the panniculus, extending thence into the skin.

The scapular nerves may be distinguished into the anterior, the posterior, and the subscapular nerves.

The anterior scapular nerve is reflected upward and forward, in company with the artcry of that name; winds round the antcrior costa of the scapula, between the subscapularis and anteaspinatus, to which muscles it sends off branches in crossing the dorsum scapulæ, and stretches its ultimate filaments into the triceps.

The posterior scamular nerve, after detaching a branch to the subscapularis, dips between that muscle and the triceps. There the trunk splits into several branches which penctrate the triceps, teres minor, and shoulder-joint: one of them is continued upon. the outside, round the cervix humeri, where it becomes subcutancous, and ends in the insertion of the levator humeri.

The subscapular nerves, two, three, or four in number, issue from the top of the plexus, and ascend between the scapula and the ribs, and enter the substance of the subseapularis.

The spiral nerve, the largest of the nervous trunks furnished by the axillary plexus, arises behind the humeral artcry, and for a short distance accompanics the vessel. It then leaves the artery and turns round the back of the os humeri, between the bone and the large head of the triceps, and is to be found, covered by that muscle, coursing the outward surface of the body of the same bonc. Next, it plunges deep among the heads of the extensors ; afterwards, much diminished in size, it insidiously creeps round the neck of the radius, and penctrates the head of the flexor metacarpi externus, among the fibres of which its remaining ramifications are expended. Its branches are-1. Near its origin, three or four long branches are sent down to the triceps. 2. Lower down, a branch is separated which pierees that musele and gains the front of the clbow-joint, where it escapes through the faschia and takes its course under the skin covering the arm, and ramifies upon the fore and outward part of the knee: this nerve may be distinguished as the external cutaneous nerve. 3. Several considerable branches that penetrate the heads of the extensor museles.

The radial nerve clings to the humcral artery, with which it descends to the inward side of the elbow-joint, and runs down behind the vessel, along the back of the radius, to the knce; there it passes under the posterior anmular ligament, and contimues its course with the artery, and, as soon as it has descended upon the leg, takes the name of the internal metacarpal nerve. Its branches are-l. Which comes off the trunk a little below its origin, from its size and importance is distinguished as the mus-culo-cutroneous nerve. After accompanying the trink for a short
way, it leares the parent nerve and crosses obliquely behind the flexor brachii, passing between that musele and the coraco-humeralis, to both of which it sends filaments ; it then winds forward and reappears upon the upper and fore part of the arm, where it becomes subcutancous, ramifying upon the faschia, and prolonging its ramifications orer the knee upon the metacarpus. 2. A small slip detached opposite to the elbow-joint, distributed to the heads of the flexor muscles. 3. In its course down the arm, screral small twigs to the flexor museles. 4. Above the knec, a communicating slip scparates, which obliquely erosses over the fleshy terminations of the flexors, and joins the ulnar nerve as it passes the joint.

The ulnar nerve, which, at its origin from the plexus, holds a middle situation between the radial and the nerve before described-the spinal-also accompanies for a short distance the humeral artery. In its course to the elbow it preserves the line of the os humeri ; there it runs over the inner and back part of the joint, glides down the arm concealed by the posterior borders of the flexores metacarpi, inclines a little inward before the tendon of the flexor medius to reach the back of the knee, where it is found under the posterior annular ligament, within a dense faschial sheath, erceping along elose to the imner edge of the trapezium. From this, it gains the border of the tendo perforans, and becomes the external metacarpal nerve. Its branches are1. Soon after its origin, one that may be called the internal cutancous nerve, which runs over the elbow-joint and ramifies in the loose cellular substanec about the inward part of the olceranon. 2. Three or four considerable branches which penetrate the heads of the flexors, also destined to the joint. 3. A little abore the knec eomes off a branch which pierees the fasehia and becomes subeutaneous. After having detached some twigs to the back part of the knee, this nerve runs along the outer and postcrior part of the cannon to the fetlock, where it disperses its ramifications. 4. A short but considerable branch to the back of the knee, sending twigs into the joint. 5. A branch is scnt off immediately below the knce, which turns suddenly forward and disperses its ramifications in front of the leg.

The metacarpal nerves, internal and external, continue down the leg along the borders of the flexor tendons, over the fctlock-joint, where they become the plantar nerves; these pursue their course, behind their corresponding blood-vessels, to the posterior part of the foot, which they penctrate to the inner sides of the lateral eartilages. About midway between the knee and fetlock, the internal nerve sends a branch obliquely over the flexor tendons, which joins the external nerve: with this excep-
tion, their branches and ultimate destination are the same on either side. Their branehes are-1. Filaments dispersed upron the flexor tendons. 2. A large and important braneh that eomes off just above the fetlock-joint, and runs obliquely forward, and distributes its ramifications to the outward and fore part of the pasterns, and then ramifics upon the eoronct.

The plantar nerve detaches-1. A branch opposite to the fct-loek-joint, that runs, before the trunk, direetly to the lateral eartilage, over whieh its divisions are dispersed. 2. A large branch from the posterior part of the trunk, just before it dips behind the eartilage, which passes backward, and sends its filaments intn the fatty frog. 3. Bchind the cartilage comes off a branch that winds forward through a foramen in the ala of the eoffin-bonc, to go to supply the lamine. The trunk then enters the foramen in the postcrior coneavity of the eoffin-bone, in company with the plantar artery, and there divides, and distributes its ultimate branches through the foramina around its edge to the sole.

Nerves of the hind extremity.

The following nerves owe their formation to the eoncurrence and union of several of the lumbar and saeral nerves, in a way that has already been pointed out: nevertheless, in eommeneing the deseriptions of them individually, I shall again briefly revert to the manner in whieh they are constituted.

The crural nerve is derived partly from the sceond, but prineipally from the third, fourth, and fifth lumbar nerves. It is conecaled at its origin by the psore museles; shortly afterwards, however, it makes its appearance under the last transverse proeess of the loins, whieh it erosses obliquely, and proceeds direetly backward, in a line with the external iliae artery, to the outward side of, and rather higher than, the vessel, but not in contact with it. In erossing the tendinous and fleshy insertions of the psoas magnus and iliaeus, it splits into scveral parts, and these plunge into the thigh betwecn the reetus and vastus internus, distributing their branehes laterally to them and to the vastus exteruus behind them. Its branches are-l. Which comes off at its root and runs still more obliquely outward than the trunk, and distributes its filaments to the iliaens, psoas magnus, and peetincus. 2. The most considerable and important branch takes its course along with the trunk, between it and the artery; but, instead of leaving the vessel, continues to accompany it for a short distance below the pubes; it then strikes forward upon the fasehia lata, and divides into two entaneous filaments : of whieh, one runs into the stifle and ends in ramifications upon the fore part of the thigh; the other is continued
down, in company with the vena saphena, distributing twigs to the skin covering the inward and anterior part of the thigh and leg, where it often splits into two branehes, and is traceable with the vein as low as the fetlock.

The obturator nerve, contributed to by the third, but principally formed by the fourth lumbar nerve, sweens round the brim of the pelvis, first above, afterwards to the inner side of, the external iliae artery, and passes through the anterior nook of the foramen magnum isehii, detaching some twigs to the obturator museles in its passage, and is subsequently found sunk in the haunch, bchind the pcetincus, but before the short and long heads of the trieeps; to which muscles it gives branches, and afterwards ereeps under the gracilis, upon whose inner surface it spreads and expends its ultimate filaments.

The gluteal nerve receives a tributary filament from the last lumbar, but owes its formation principally to the first sacral nerve. It leaves the cavity of the pelvis through the foramen in the anterior part of the sacro-sciatic ligament, and winds round upon the dorsum ilii, in company with the gluteal artery, and is entircly expended in the substanee of the gluteus maximus.

The sciatic nerve, the largest in the body, derived from the union of the last of the lumbar with the thrce anterior of the sacral nerves, immediately after its formation quits the eavity of the pelvis, through a hole in the antcrior part of the sacro-sciatic ligament, proceeds backward in eontact with that ligament, passes between the hip-joint and the tuberosity of the ischium, and plunges deep into the substance of the haunch. Here we find it split into three large branches-the popliteal nerveswhieh are lodged in an inter-muscular hollow, imbedded in adipose membrane, having the semi-tendinosus and scmi-membranosus posteriorly, the bieeps to the outward sidc, and the large head of the triceps to the inward side: in passing through the foramen it detaches three or four branches to the head of the biceps, about the same number to the semi-tendinosus, and two or three to the semi-membranosus. Of the three large nerves into which the trunk divides-The first and principal one takes an oblique eourse between the bellies of the gastrocnemii, leaves those muscles at the place where they become tendinous, and runs to the hoek between their tendons and the muscles of the deep posterior crural region, clinging to the faschia enveloping the latter. At the hock it separates into two nerves-the internal and external metatarsal nerves: the former runs over the tendon of the flexor pedis, and upon the leg ereeps along the inner and anterior border of the flexor tendons; the latter passes between the tendon and the base of the os calcis, and pursues a
like course upon the outer side. Their subsequent eourse and ultimate distribution are the same as those of the plantar nerves of the fore extremity. Its branches are-1. A long branch which at first aceompanies the popliteal trunks, then passes between the gastroencmius externus and lower end of the semimembranosus, and makes its appearanee upon the fashia covering the outcr side of the thigh, where it sends off many eutancous filaments, and ramifies over the outer part of the hock. 2. A long slender branch to the gastroenemius internus. 3. Several filaments to the skin and faschia, above and about the hoek.

The second popliteal nerve passes also between the bellies of the gastrocnemii, above the first, detaching twigs to them in its passage, and then expaids into many branches, which"penctrate the heads of the flexor museles of the foot, and sends filaments into the stifle-joint.

The third popliteal nerve, leaving the others, winds round to the outcr part of the thigh, betwcen the gastrocnemius externus and the semi-membranosus ; there it crosses the head of the peroncus, and then suddenly turns down, running between that muscle and the extensor pedis, along with the anterior tibial artery, and takes its course with it to the middle of the eannon, whence (instead of accompanying that vessel between the metatarsal bones) it pursues its way along the side of the large metatarsal bone, over the fctlock-joint, and terminates subcutancously upon the side of the pastern. Its branches are-l. A small one to the semi-membranosus. 2. A filament, or two, to the gastrocnemius extcrnus. 3. A large branch that runs along the peroneus, under the faschia, and ends superficially in front of the hock. 4. Branehes to the flexor metatarsi and extensor pedis. 5. Various small subeutaneous filaments during the remainder of its course.

Sympathetic Nerve.

This nerve (designated sympathetic, from the universal iufluence whieh it possesses in the ncrvous system) is one no less remarkable for its vast and vital importance in the animal economy than for its extensive distribution all over the body, from the head to the tail ; for its ganglia; its plexuses; the number and complication of its branches; and its frequent interconrse and connection with other nerves belonging to the head, neck, ehest, abdomen, and pelvis. Indeed, late experimental researches lead us to consider it as a nervous system of itself, or at least one that renders the parts to which it furnishes nerves, constitutional organs less under the influcnce of the sensorium,
and altogether free from the control of the will.* The sympathetie nerve may be said to take its begiming from an oblong reddish borly, lodged at the base of the eranium, beneath and in front of the atlas, denominated the anterior cervical ganglion. It is to be obscrved here, however, that the several neryes conneeted with the ganglia (however they may be treated of in this deseription) may be considered either as emanating from the substance of the ganglion, or as contributing to its formation.

The anterior cervical ganglion may be said to be formed principally by two branches sent down from the fifth pair, the larger of which accompanics the internal carotid; by two or more fine filaments traccable to the edges of the petrous portion of the temporal bone, and probably derived from the sixth pair ; and by two or three other nervous threads accompanying the cighth pair, which seem to spring from the medulla oblongata. \dagger These branches, then, we will say, it receives. It transmits filaments of communication to the par vagum and its laryngcal branch, to the glosso-pharyngcus, the accessory, and the inferior branches of the sub-oceipital and first cervical nerves. Posteriorly, it sends off a filament which crosses to the earotid artery, where it divides and anastomoses with the earotid branches of the par ragum. At its postcrior extremity, the ganglion grows smaller, and ends in the sympathetic nerve, which puts on the appearance of being a continuation of it. At first the nerve is deeply lodged between the carotid artery and par vagum ; it takes its course along the neck likewise between them : indeed, it is so elosely united with the latter, that, being invested in the same cellular sheath, at first view they appear but as one nerve : they are readily distinguished,

[^32]however, in being disunited, by the comparative small size of the sympathetic. At the bottom of the neck, the nerve lies within the angle formed betwecn the carotid and vertebral arterics; it then runs outward above the vertebral artery, over which we find a bulbous enlargement of it, which takes the name of the posterior cervical ganglion. The only branches given off by the cervieal portion of the sympathctic, are several threads of communieation with the par vagum, as they proceed baekward together.

The posterior cervical ganglion, smaller than the anterior, is seated under the first dorsal vertebra. From it pass-1. A large branch, and sometimes a smaller one along with it, to the sixth cervieal nerve, by which it has a mediate communication with the five anterior cervical nerves. 2. A branch to the seventh cervical nerve. 3. A filament to the first dorsal nerve. 4. Another to the second dorsal nerve. 5. Branches to the tracheal plexus. 6. Filaments to the recurrent nerve. 7. To the eardiae plexus.

The tracheal plexus is an assemblage and intcreommunieation of nerves, derived from the par vagum and recurrent as well as the sympathetie, ramifying upon the under surface of the trachea, as it passes between the first two ribs, from whieh filaments are transmitted to the cardiae plexus. It supplies this part of the air-tube, and also the contiguous portion of the œsophagus.

The cardiac plexus, constituted of larger branches from the same nervous trunks, and also of filaments from the tracheal plexus, which are readily traceable to the roots of the large blood-vessels, is formed for the supply of the heart.

From the posterior cervieal ganglion, the sympathetie eontinues its course backward, under the articulations of the ribs with the spine, to the diaphragm, which it pierces in company with the posterior aorta. Between the heads of the ribs it presents little knots-dorsal ganylia-whielı correspond in number to the intercostal spaces. These ganglia are of very small size when compared with the ecrrical, and give off, each of them, two filaments to every intercostal nerve.-As the sympathetie nerve pursues its route along the spine, it grows flat, spreads out its fibres, and at length separates into two branehes, one of which, by means of frequent reinforcements from the ganglia as it passes by them, ultimately attains a larger size than the original parent nerve : this, from being destined to supply the abdominal viscera, is named the greater splancunic nerve. Before it laves the chest, while running along the crus of the diaphragm, the sympathetic detaches another branch : this turns baekward upon the crus, describing an arch in cseaping from the eavity, and is
denominated the lesser, secondary, or accessory splanchnic nerve, whose destination is nearly similar to that of the former.

These three nerves, the two splanchnies and the sympathetic, make their entry into the abdomen along the under surface of the erus of the diaphragm. The splanehnies are then thus distributed :-The greater splanehnie turns downward, and eontributes its branches to the formation of the semi-lunar ganglion; the lesser splanehmie likewise sends nost of its branches to that sumglion, but it also transmits two or three long filaments backward to the renal plexus : and both the splanchnies detach commumieating filaments to the sympathetic.

The semi-lunar ganglion, consequently, is constituted of bianches from the left division of the par vagum, and of almost all those of the splanchnic divisions of the sympathetie. This ganglion partakes of the semi-lunar figure, lies elose underneath the posterior aorta, at the root of the celiae artery, and occupies the space between that vessel and the anterior mesenteric artery. It eonsists of a number of small ganglia, comected one to another, and is surrounded by a plexus of nervous filaments; which little ganglia have been denominated the ceeliuc. From the irregular convex border of the semi-lunar ganglion, nervous filaments shoot in various directions, and these, from having been likened to the rays of the sun, have been denominated, altogether, the solar plexus: from which divergent filaments the several minor plexuses of the abdomen may be said to derive their formation, taking names according to the viscera they are particularly designed to furnish with nerves. The first to be noticed is

The splenic plexus - a network of small nerves surrounding the splenic artery. It sends some filaments to the panereas, but the majority of its detachments run to the spleen.

The hepatic plexus consists of a similar nervous interlacement around the hepatic artery: it is very extensive, for it winds round the vessel from its origin to its termination in the porta of the liver. It transmits filaments-1. Along with the plirenic arteries to the diaphragm. 2. To the stomach. 3. To the pancreas. 4. It then divides into right and left hepatic plexuses, which cling to the arteries of the same names, and aecompany them in their ramifieations through the liver.

The anterior mesenteric plexus includes a vast assemblage of nervous filaments intricately wound round the trurks of the anterior mesenteric arteries, and furnishing numerous filaments that proceed along with these vessels, greatly exceeding them in number, to ramify within the substance of the small intestines, crecum, and ceccal portion of the colon.

The cortic plexus is a name given to the frequent intercommunication of some fine filaments sent baekward along the posterior aorta from the solar plexus, with the addition of two or three branches from the trunk of the sympathetic. Most of the filaments derived from it pass on to form-

The posteriar mesenteric plexus ; one that is likewise reinforeed by branehes (comparatively large in size) from the sympathetie. It transmits nerves to that part of the eolon left unsupplied by the anterior mesenterie plexus, and to the reetum : some few of them also ramify in the substanee of the mesoeolon, while others penetrate the lymphatic glands scated within the folds of that membrane.

The hypogastric plexus, situated still further baekward than the posterior mesenterie plexus, eonsists of divers delieate nervons filaments ramifying upon the aorta, and spreading themselves, entangled in eellular substance, about its bifurcation. This plexus is also multiplied by branehes eoming from the sympathetie. The filaments departing from it run to the pelvie visecra and the organs of generation.

The renal plexus is a more important one : it is produced by the intereommunieation of a few filaments from the lesser splanehnie nerve with the addition of numerous others from the solar plexus. It is found elose to the aorta, immediately behind the antcrior mesenterie plexus. It eoneeals the origins of the cmulgent arteries, spreads around them in their passage, and sends filaments in eompany with their branehes into the substanee of the kidncys. It also furnishes with nerves the eapsule renales, the renal glands, and the beginnings of the ureters.

The sympathetic nerve in the abdomen travels over the sides of the bodies of the lumbar vertebre, below the artieulations of the ribs, eovered by the crura of the diaphragm, and thus pursucs its eourse into the pelvis. Herc likewise it forms gangha, corresponding in number to that of the lumbar nerves; and from every ganglion issue two filaments, one of whieh runs to the eorrespondent lumbar nerve; the other erosses the aorta, and, by joining the aortie plexus, eommunieates with nerves eoming from the sympathetie of the other side.

From the loins, the sympathetie deseends into the pelvis, where it takes its course, laterally, along the body of the sacrum. Five saeral ganglia, eorresponding to the five saeral nerves with whieh they eommunicate, are found here, and between them run in arehes aeross the saerum several intereommunieating filaments. In quitting this bone, the nerve grows so small, and becomes so firmly adherent to the ligamentous eovering of the os eoccygis, that I have not yet sueceeded, to my mind, in asecrtaining the
precise manner in which it finishes its course : it is said, however, to do so by forming a union with its fellow.

[^33]
SECTION X.

SENSITIVE SYSTEM.
INCLUDING THE NOSE; THE EYE; AND THE EAK.

OF THE NOSE.

The nose compreliends the apparatus of the organ of smell; a sense so acute and cognoseent in the horse-species, as greatly to make up for the deficiency of that of touch.

Division. The component parts of the nose are divisible into such as are hard in their nature, and such as are soft.

THE IIARD PARTS comprise the bones and the cartilages.
THE SOFT PARTS are comprehended in thee membrane lining the various nasal cavitics and passages.

Cavities. The cavities of the nose consist of the nasal fosse and the diffcrent sinuses of the head.

Nasal Fosse.

The nasal fosse are the two chambers or latcral cavities, whose external openings are the nostrils. Their walls or external parietes are almost entirely osseous; and to the osseous system (page 45) the reader must turn for a description of the manner in which the fosse are formed, and of the bones entering into their formation. But in addition to bone, they are cartilayinous in their constitution.

THE CARTILAGES OF THE NOSE are five in num-ber:-of which one (the septum nasi) is situated internally ; the other four (entering into the composition of the nostrils) externally.

THE SEPTUM NASI is the vertical cartilaginous partition interposed between the nasal fosse. It exhibits four borders. The inferior one is received into the groove of the vomer; while the superior presents a lengthened channel between two clevated edges, into which is admitted the internal crest formed by the union of the nasal bones. Its posterior border is affixed to the
ethmoidal plate: its anterior serves to sustain the eartilages forming the nostrils. Both its sides are eompletely eovered by the Schneiderian membrane.

NOSTRILS.-Four in number :- two on each side, distinguished by the epithets true and false.
The true nostrils are the large, ovoid, and ever-open orifices so eonspieuous externally. They have for the base of their structure four pieees of fibro-eartilage, whiel are involved in doublings of the common integument. Each nostril is formed of two flexible alce or wings :-a superior or internal one; and an inferior or external : the former is supported by a broad cireular eartilaginous plate ; the latter is ereseentie in shape, and forms a flexure outward, within which is pereeptible the orifiee of the lachrymal duet. They are attached to, and supported by, the nasal peak and septum nasi.

The false nostrils are two little pouehes or cavities (having the semblance of culs -(le-sacs), situated internally, above the true nostrils, into which an external opening is found within the eommissure formed by the union of the two alæ. They are formed out of duplieatures of the skin, which is here thinner, and finer, and softer in its texture ; and, exeept at their entranec, are without hair upon their surfaces. Their use is not known.

SCHNEIDERIAN MEMBRANE.-The eavity of the nose is not only divided into the two nasal fossæ, but each fossa is subdivided into the three meatus (for a deseription of whieh, vide page 45). Every part of these eavities and passages is covered by the Schneiderian or pituitary membrane. This is a membrane of the mucous class, distinguished for its thickness of substanec, for its vaseularity, and for its olfactory papilli. It has two surfaces:-an exposed or seereting one: and an unexposed or adherent one. The secreting surface is smooth; and is rendered glib and sliny by the varnish it derives from the mucous secretion emitted by the numerous small rounded pores everywhere visible in the membranc, but more partieularly upon the lower part of the septum, and upon the inferior turbinated bone. This surface exlibits a pale pink blush, the effeet of the blood-vessels spread over it, which are here so superficial as to owe their prineipal defenee to the mueous exudation : hence it is that the complexion of the membrane (varying with the influenee of the atmosphere and other agents) is extremely fugitive and uneertain. The adherent surface of the membrane eontracts a elose and firm adherence to the parts it eovers, through the insimuation of its fibres into them : indeed, to the bone it appears to supply the place of perioste1m ; to the eartilage, of perichondrium. The substance of the membrane cxhibits a fibrous struc-
ture, interwoven with cellular tissue; and upon that-as a sub-stratum-is spread a glandular and vascular apparatus, from which issues the mueous secretion ; together with numerous papillce, of small size, eonstituted of the terminations of those nerves from whieh the membrane derives ordinary sensation, as well as those that endow it with the peculiar sense of smelling. The Schneiderian membrane, inferiorly, within the nostrils, is continuous with the duplicatures of skin lining those parts; superiorly, with the membrane lining the pharynx ; besides which, it is continued into the several sinuses of the head, through the openings leading from them into the nose, and likewise gives them a eomplete covering: it is to be observed, however, that in the sinuses the membrane is thinner, and assumes a paler and more delicate aspeet; its natural seeretion is also found more sparing. The membrane is abundantly supplied with bloodvessels, as well as nerves; and also possesses its share of absorbent vessels. Its arteries, which ramify and anastomose so as to form a spreading network upon the seereting surfaec, are derived supcriorly from the lateral nasal; inferiorly, from the facial and palato-maxillary. Its nerves are furnished by the first and fifth pairs.

SINUSES.-These cavitics are formed in the interior of sevcral of the bones of the eranium and faee: in fact, with the exception of the membrane lining them, they are entirely osscous in their composition. This will aecount for their description having been already given (at page 46), to whieh we must again refer.

DUCTS.-There are two duets belonging to, or comected with, the nose. One is the ductus ad nasum-a tube partly osseous and partly membranous in its composition, commencing at the inner angle or corner of the eyc, within the substance of the lachrymal bone, running within a canal continued from this bone through the supcrior maxillary bone, and terminating at the inner and inferior part of the nasal fossa, underneath the duplieature of the inferior ala, upon the surfaee of the common skin, about onc fourth of an inch from its junction with the Schneiderian membrane, by an orifice large enough to admit a crow-quill. The other duet is the ductis communis narium, which pursues its course along underneath the vomer to the pharynx ; after arising from two lateral branches springing from oblong apertures in the floor of the nostrils.

OF THE EYE.

The parts comprehended under this organ of sense are commonly divided into those immerliately concerned in the production
of vision, and those that are but uuxiliary to the function: in other words, into the Eyeball and its Appendages.

Of the Appendages.

Regarded in a general view in relation to their several funetions, the appendages will be found to answer the subsidiary purposes to the cyc itself of protection, motion, and abstersion.

The appendages eomprise-the eyebrows; the eyelids; the cyelashes; the muscles of the cyelids; the tarsal cartilages; the meibomian glands; the tunica conjunctiva; the membrana nictitans; the lachrymal gland; the caruncula lachrymalis; the pancta lachrymalia; the lachrymal sac; the ductus ad nasum; and the muscles of the eyeball.

Eyebrow.

The supercilium or cyebrow is a part whieh eharaeteristieally attracts attention in man, but one that is denied to animals.* It is that ornamental arehed eminenee, elothed with hair, upon the supereiliary ridge of the frontal bone, which forms so striking a feature and marks such expression in the human countenance, while it serves as a shade to proteet the eye from deseending glares of light, and from forcign bodies eoming in the same direetion. Although cyebrows are not allowed to the horse by writers, the elevations formed by the orbital processes of the frontal bones have similar relation to the eyes to what the same parts have in man; and these eminenees, in addition to their common pilous eoverings, are furnished with many long hairs, which, though they are rather stragglingly planted, for the most part slant outward and are disposed in arches: call them, therefore, by what name we may, they are cridently designed to intereept vivid rays of light, and any foreign matters deseending upon the eye.

Eyelids.

The pulpebre or eyelids are the moveable eurtains in front of the eye occupying the space comprehended within the circular ridge of the orbit. There are two of them;-an upper and a lower lid. The upper being mueh the larger and more moveable one, will cover a proportionably broader segment of the cychall. Both being eapable of retraction and expansion, we find them in the former or ordinary statc, particularly the upper, drawn into

[^34]wrinkles, which run in curves, and have some effect in the expression of the eye; in gencral these wrinkles are more strongly marked in old horses. The lids are separated by a transverse aperture or slit, at the extremitics of which they have angular junctions denominated the canthi or angles of the eye: the superior or temporal angle is sharp, is situated in respect to the otlecr in the direction of an oblique line drawn upward and inclined outward, and has a loose and moveable attachment to the tarsal ligament ; the inferior angle is cxtended and rounded off, and is firmly fixed to the tendon of the orbicularis. The palpebral aperture exposes more or less of the cyc in different animals and individuals: in man and in the pig much of the white of the eyc is seen; but in the horse and in quadrupeds in gencral the transparent part only is exposed, unless when the eye happens to be turned to one side. The extent of this opening will likewise account for the impression made upon us that one individual has a large or full cyc, another a small or sunk eye; for I believe that the magnitude of the cycball itself will be found to vary but inconsiderably, or at least not sufficiently to amount to this apparent diversity. The loose portion of integument cutering into the composition of the upper lid is a prolongation from the skin covering the forchead ; that of the lower lid is derived from the face. . Many short horse-hairs, but not more than three or four long ones, are obscrvable in the upper lid, growing in the same direction as those upon the orbital prominence above; but from the lower lid stand crect six or seven hairs of considerable length, without any regular arrangement, which appear to be stationed there as sentincls to give the alarm to the organ of approaching danger ; for, if by any accident one of them happen to be touched by an insect or any foreign body, the lids are throm, involuntarily, into a convulsive twinkle, with such alcrtness as almost for a certainty to shicld the eyeball from impingement. The internal surfaces of the lids are shaped into uniform concaves, to adapt them to the globe of the eye, with which they are everywhere in close apposition. They are lined by the conjunctive membranc. The hems of the lids, the ciliary borders as they are called, are considerably firmer and something thicker than the other parts, but this augmentation of substance diminishes towards the temporal angle: they limit our view of the cyeball, across which the upper border swells into a curve, while the lower proceeds nearly in a straight line. Each of these borders has two facings or maryins: the centerior margin is set with a row of horsc-hairs, denominated eyelushes; the posterior is hairless and smooth, broadens as it approaches the inferior canthus, and slopes a
little inward in such manner, that, when the lids are closed, a triangular-shaped conduit is formed by their approximation, by which the tears arc conducted into the puncta. The edye of the lid, the boundary line between the two margins, presents a scries of pinholes, which are the orifices of the ciliary glands: they give issuc to a scbaceous secretion which serves to prevent adhesion of the lids during slecp, as woll as to kecp the tcars from escaping as they run along the triangular canal.

Eyelashes.

The cilia or cyclashes are the long, finc-pointed horse-hairs growing from the anterior margins of the lids. They are gencrally black, unequal in their lengths, and arc implanted in ranks, two, three, and four deep. They are much longer, and their ranks are more regular, in the upper than in the lower lid: in the former they grow thin towards the upper canthus, and ultimately become discontinued altogether; in the latter the same thing happens as they approach the lower canthus. It requires but little discrimination to perceive that this is the most advantageous arrangement they could possibly have in both of the lids : it being olbvious, from the position of the hearl, that light coming from above must dart upon the temple, while that which is reffected from the ground will be directed to the nasal canthus; consequently, the cilia are suitably disposed to intercept rays in cither dircction.

Structure of the Eyelids.

The cyclids in composition arc cuticular, muscular, cartilaginous, and membranous; also, it may be added, glandular, rascular, and nerrous. These sereral parts and textures are most developed in the upper lid.

The skin, covering and in part composing the lids, is thin, fine, soft, and very extensible in its texture ; it becomes more attenuated as it approaches the ciliary borders, around which, to a broader extent in the lower than in the upper lid, it is destitute of hair. This marginal portion (which is commonly black, though in some horses pied) is piereed by the eyclashes, perforated by the ciliary holes, and turns in to join the conjmetive membrane, from which it can only be distinguished along the line of mion by their respective colours.

The orbicularis palpebrarum, consisting of a broad stratum of fleshy fibres encircling the lids, and lying immediately underneath the skin, has been already described (at page 8(6).

Underneath the muscle is found a dense, tough, fibrous expension; and interposed between the two is a long, loose, cellular
tissuc, which admits of very free motion between them. This fibrous substance is the expanded tendon of the levator palpebra superioris. It may be traced completely orer the tarsal cartilages : indeed, we only lose sight of it when we come to the border of the lid.

Tarsal Cartilayes.

The tarsi or tarsal cartilages are the substanecs imparting that firmness and elastieity to the borders of the lids which we have already had oceasion to notice. There are two of them, a superior and an inferior: the superior tarsus is the broader and more convex eartilage; for, in faet, they correspond nearly in shape and size to their respective lids. They are conver outwardly; coneave, in order to embrace the ball, inwardly. They possess thick and firm ciliary margins; but grow thin as they recede from the borders of the lids, and end in fibrous expansions, which, from connecting them to the rim of the orbit, have got the name of the tarsal ligaments. The tarsus is fibro-cartilaginous in texture ; but it is so intimately united with the tendon of the levator and beset with the duets of the ciliary glands, that it can searcely be said to be demonstrable in a separate and perfeet state: in short, the tarsi are the flexible shapes upon which the other soft parts are stretehed and moulded, preserving by their clastieity the form of the lids, kecping them in constant apposition with the eychall, and scrving to approximate them when not counteracted by muscular forec. The stiffening thus imparted to the lid also proves the means of preserving the arrangement of the eyelash; for, without it, the hairs would be apt to run across one another. At this stage of the disscetion we gain a view of

The Ciliary or Meibomian Glands.

These are so many little white follicular bodies, whose canals are large enough to admit a juin, vertically ranged in parallel lines like the pipes of an organ along the borders of the lids, within grooves made for their reeeption in the coneare part of the tarsal cartilages. They are distinetly visible, when the lids are creited, through the thin lining membrane. They vary somewhat in ealiber, but more in length; being longer in the upper than in the lower lid. Viewed through a mieroseope cach row (upper and under) is found to consist of a congerics of very small spheroid bodies, every one of whieh is considered to be a distinet gland, and to possess an excretory duet. They secrete an unetuous matter-a suety sort of oil, which may be squeczed out from the mouth of their duets, the ciliary orifices,
in taper portions resembling small white worms. This seeretion serves to prevent the gumming or agglutination of the lids together by the mueilaginous matter contained in the tears.

Cellular Tissue. The several textures we have been examining, ineluding the lining membrane (yet to be deseribed), are all eonneeted together by a fine eellular tissue, destitute of fat; adipose substanee here would not only have proved burdensome and ineonvenient to motion, but by accumulation must inevitably have permanently elosed up the cyelids; an effeet that does oeeasionally happen from serous effusion, to whieh they are from their loose eontexture partieularly liable.

Tunica Conjunctiva.

The tunica conjunctiva is the membrane lining the lids, and from them refleeted upon the eyeball-henee the derivation of the epithet conjunctiva: it has been styled also the tunica adnata, from a notion that it arises from, or grows to, the globe of the eye. To eonvey a familiar notion of its extent and reflections, it may be remarked, that if I introduce a probe or my finger between the lid and the eyeball, and attempt to push it to the baek of the orbit, I find that I am suddenly arrested, and that I eannot effect my purpose, try what point I may, in consequence of meeting with a duplieature of eonjunetiva: nay, more, I find I am unable even to touch any part but what is covered by this membrane. For, after it has given an entire lining to both the lids, even to their edges, where it is piereed by the duets of the Meibomian glands, and after it has given eoverings to the membrana nietitans, caruneula lachrymalis, and puneta laehrymalia, it leaves the lids and beeomes refleeted upon the globe, to the anterior hemisphere of which it likewise gives a eomplete covering; so that it is the angle of refleetion of this membrane that forms the boundary between the elosed and open eavities of the orbit-between the tangible and intangible parts of the globe, and that which prevents the probe or finger from reaching the bottom of the eye. Being the common investing and conneeting substance of such moveable parts as these, we find the membrane running into loose folds in passing from one part to another, and these folds furnished with abundanee of cellular tissue. In tracing its eonneetions, we may begin along the line of the eilia, where it forms a union with the common skin; in passing baekward it adheres elosely to the tarsi, and afterwards has a loose eonncetion with the tarsal ligaments ; it gives the membrana nietitans a elose, tense eovering, but is thrown into folds around its base; lastly, it adheres butloosely to the opaque cornea, but is intimately and inseparably united with the transparent part:
indeed, so perfeetly is the membrane ineorporated with the latter, that the existence of such a covering has been doubted; the continuation, however, las obtained, of late years, the passport of our best human anatomists, which, with the corroboration of some remarkable circumstanees connected both with health and disease, appear to have set the much-agitated question at rest. The conjunctiva is not thrown into wrinkles (the same as the skin is) when the lids are opened : the elasticity of its cellular connections in general, particularly the one it has with the adipose matter at the bottom of the orbit-which from being stretehed will reeede again-being such as to prevent any corrugation. The conjunctiva presents two ample surfaces: the adherent one is rough, lax in texture, and floceulent; the inner surface is smooth, glossy, and humid with secretion. In texture, it is no more than a finer sort of cellular membrane condensed so as to be rendered firm aud resisting, in whose substance are distributed numerous blood-vessels, that give it a carnation hue. There are some striking varieties, however, in its organization, notwithstanding it is everywhere one and the same coutinuous membrane: e. g. the conjunctiva palpebralis possesses numerous blood-vessels, from which, as we know, it appears commonly red ; the conjunctiva sclerotice is comparatively thick and pulpy in texture, only slowing a straggling red vessel or two, and, from the nature of the part it eovers, ordinarily appears immaculately white; whereas, the conjunctiva cornece is particularly thin and dense, and is transparent, and in a perfeetly sound state has no appearance whatever of vaseularity: indeed, as was observed before, vessels were some years ago denied to it altogether, and their existence probably would be disputed yet, did not inflammation of the part oceasionally afford us ocular demonstration of them.

Organization of the Eyelids. The cyelids receive their vessels from the orbito-frontal, facial, and temporal arteries. Their veins terminate in the corresponding venous trunks. They derive their nerves from the fiftlo pair, and are very sensitive and irritable parts.

Use of the Eyelids. Comparing the eye to a window, the lids may be regarded as the shutters; their uses being to exclude light and to protect the organ from all violence or accident. Light being its natural excitant, exelusion puts the organ into a state of repose, and enables it to reeruit those energies which intense or long-contimed vision may have weakened or exhausted. During sleep, the lids are closed for this purpose : not, however, that this is absolutely necessary ; for let the nervous excitability be withheld or suspended, and the organ will be equally
in a state of repose, as is the ease with those individuals who sleep with their eyes open. Even the aet of winking has a refieshing effeet, from intereepting the light even but for an instant.

Membrana Nictitans.

The membrana nictipans (by farriers ealled the haw) is a eoneavo-eonvex eartilaginous body, lodged behind the inferior eanthus, between the eyeball and side of the orbit. In a perfeetly healthy eondition of these parts only the eutieular margin of this substance is naturally visible, and that preserves the line of the transparent cornea: but in a morbid or preternatural state of sensibility it is protruded forward, and eneroaehes more or less upon the transparent part of the eye. In a detaehed state, it approaches in figure to an extended triangle, of which the short side is turned forwards, the lengthened angle baekwards. The anterior part is thin, very elastie, and is bounded by a ereseentie edge, terminated by two salient angles, by which it is shaped to the inward third of the eireumferenee of the eornea; it inereases in substanee, but grows narrow posteriorly, and there ends in a thiek, obtuse, eonieal point, whieh is sunk into the adipose substance at the bottom of the orbit: thus it eovers the inner and inferior sides of theglobe-aboutonethird of its entire superfieies. Inwardly, it is evenly eoneave, to adapt itself to the globe; outwardly, it is unevenly convex, and elothed with adeps. With the exeeption of the posterior end, this body is enveloped in eonjunctiva, which, though it adheres elosely to the thin portion, so loosely invests the thiek part, that very free and extensive motion is admitted. The ereseentie margin is edged with eutiele, eommonly blaek, sometimes pied ; and this is the only part visible externally. Though it lias got the name of a membrana, it has a thin pieee of cartilage for its base, to which it owes its shape: this eartilage is thin and pliant, beeomes thieker and more resisting posteriorly, and is interposed between two rough brownish substances of a ligamentous nature, the outer of whieh is double the thiekness of the inner.

Use. Writers on comparative anatomy treat of this body as a third eyelid. In birds it eertainly answers this purpose in the ordinary way, and in some quadrupeds too; but it appears to have been given also for a purpose which the lids alone could not aceomplish, or at least not perform with the same ease and effeet. If one makes a feint to strike the eye of a horse, one pereeives that the convulsive twinkle of the lids is aeeompanied by the momentary sliding of the membrana nietitans over the eyeball, the same as a man would oppose his arm (or a shield if he had one) to ward off the blow : in this ease it affords greater protee-
tion to the organ than what the lids offer. But its chief operation appear's to be one for which the lids are by no means well adapted. If a foreign borly happens to lodge in the eye of a man, the lids frequently rather tend to retain than to dislodge it ; and, were it not for his hands, it would oceasionally remain there and create dreadful intitation : so it would be with a horse, were he not provided with a membrana nictitans, which here serves him ins the place of hands in performing an offiec to which the lids in a general way are of themselves inadequate. Why was the monkey not furnished with a membrana nietitans? Because he can make use of his fore paws after the manner of hands. The cye of a man therefore, as well as that of a monkey, is, cbstractedly considered, an imperfect organ eompared with the eye of a horsc. What supervenes upon the admission of any insect or forcigu substance into the eye (a rare oceurrence among horses) is this, the convulsive twinkle eonsequent upon the accident commonly carries the foreign body underneath the lid, where it soon creates irritation and pain; tears are then shed in profusion, and the membrana nietitans during the time is repeatedly slid across the eye ; in one of thesc efforts, the irritating substance is dislodged from its place, and in the next, probably withdrawn upon the convex part of the membrane, from which it beeomes subsequently washed off by the tears.-But (sinee this part has no muscle whatever in its composition, nor any attached to it) how is it put into motion? In this mamer-The spaec at the bottom of the orbit unoccupied by the globe is eompletely filled with adeps ; the globe consequently cannot be retracted without displacing some of this fat-that being liquid in the living subject, and on that account ineompressible ; and as the globe, when it is retracted, is drawn with an inclination inward, it is the fat next the nose, or that in which the membrana is cushioned, that must give way. It is quite evident what the result of this must be. The fat is forced against the membrana, and that being moreable becomes projected (guided by the cyelids and confined by the eonjunetiva) over the transparent eornea; whieh it more effcetually eovers, from the cireumstance of the globe being at the same instant turned inward. The retraeting museles relaxing, the adeps, from its own inherent clasticity, reeedes baek into its place, drawing the membrana nietitans along with it.

The Lachrymal Gland.

To obtain a full view of this part in situ, the orbital arch must be removed. Underneath this process of bone we find the gland, covered by the eommon aponcurotic lining of the orbit,
supported by the eyeball, cushioned upon the levator palpebree, and cnveloped in fat and cellular membranc, by which it is confined in its situation. It is a pale, yellowish, delicate mass, of an irrcgular figure, moderately convex superiorly, in accommodation to the bone, inclining to the concave infcriorly, to adapt it to the globe, of whose upper and outer surface it occupies the summit. Its thickest and broadest part is turned forward : it grows thin and narrow behind. It is a gland of the conglomerate class, being constituted of many lobules, resembling cxternally those of the salivary glands, connected together by a delicate and easily laccrable cellular tissue. These lobules are themselves composed of granules, which receive the terminating ramifications of the supplying arteries. From the granules spring the radicles of the excretory ducts, and they, by their inter-union with one another, form a set of tubes that open upon the surface of the conjunctiva lining the upper lid, not far from the superior angle, by seven distinctly visible orifices, large enough to admit an eyeprobe, whose margins are marked by slight eminences upon the smooth plane of the membrane. The office of this gland is to sccrete the tears; and they are conveyed and poured by its ducts upon the surface of the conjunctiva, where they become diffused, partly by their own weight and partly by the motion of the lids, over the transparent part of the eye. The tears consist of a watery fluid, posscssing a brackish flavour, from some saline impregnations they contain, and from the same cause having slightly irritating propertics ; so that, when loug or often discharged upon any undefended part, they are very apt to occasion excoriation.

Caruncula Lachrymalis.

The lachrymal caruncle is a little black or pied tubercle, whose magniturle varies somewhat in different horses, lodged within the inferior canthus, in the vacancy between the eyclids and the eycball. Only that part of it is black or pied, however, which is visible without disturbing the lids; and this is owing to a covering it reccives from the skin, which turns in for that purpose at the canthus ; for its base is clothed by conjunctiva, the nembrane being continuous with the cuticular covering. From its cuticular surface grow several very finc, short hairs. In the human subject, the carmele is said to be glandular in its composition, being constituted, it is asserted, of a structure which may be resolved into mucous follicles: be this the fact or not, in the horse it is found to yicld a mucous matter by expression after death, and it is not uncommon, during life, to find a little mucus collected within the canthus. It appears to serve
the mechanieal purpose of directing the tears into the puneta laehrymalia as they flow against it along the triangular canal.*

Lachrymal Puncta and Conduits.

The lachrymal puncta are two small, eircular holes, large enough to admit the end of a common silver probe, more distinet in the living than in the dead subject, piercing the inward margins of the two lids near the root of the caruncle. The superior punetum is ordinarily smaller than the inferior, and the latter is nearer to the earuncle. They are the openings of two little eanals, named-

The lachrymal conduits, which are formed within the substance of the lids. The superior conduit is somewhat longer than the inferior.

Thesc canals are both lined with conjunctiva, and the membrane assumes a finer texture at the entrance of the puncta. They take an oblique direction inward to terminate in the laehrymal sae: the superior one slanting downward, the inferior likewise inelining a little downward, but at the same time bending forward.

Lachrymal Sac.

The lachryamal sac is a small membranous bag lodged within the funnel-shaped bony hollow that leads into the canal in the lachrymal bone, behind and rather below the little eminenee upon the orbital ridge of that bonc, whieh forms a very convenient guide to find it. Our English veterinarians have denied the existenee of a sae: the best argument I ean offer of its presence is dissection-the same that has eonvinced myself. The front of the sac is crossed by the fibres of the orbicularis, which operate in discharging its contents; it has also a eounection with the tendon of that muscle. The posterior part of the sac adheres firmly to the lachrymal bone. It is eomposed of a dense, white, fibrous membrane, and this is furnished with a lining from the conjunctiva. The sae corresponds nearly in figure to the funnel-shaped hollow in which it lies: it is broad and capacious above, where it is perforated by the lachrymal conduits; but contraeted below, where it is joined to the duetus ad nasum. The internal surface is uneven, and is lubricated by a mueous secretion. This sae is the reservoir into which the tears flow

[^35]from the laehrymal conduits; and from which they are pressed, in the action of winking, into the duetus ad nasum. Gravitation also, in the ordinary position of ihe head, may assist their defluxion.

Ductus ad Nasum.

The ductus ad nasum is a long membranous canal, beginning from the contraeted bottom of the laehrymal sac, ruming within the groove through the lachrymal bone; then along a eanal in the superior maxillary bone, between it and the anterior turbinated bone, to terminate at the imer and inferior part of the nostril, upon the eutieular surfaee there, by an oblique oval orifiee, whieh, from being eonstantly open, eonspieuously strikes our view whenevcr we dilate the nostril. The preeaution of its termination upon the cuticular surfaee was evidently taken to prevent the tears from triekling upon and irritating the membranc of the nose. In the first part of its course the duet diminishes a little in its ealiber ; from about its middle, however, it begins to enlarge again, and soon after aequires its former diameter. After having emerged from its bony passages, the duct makes several flexures, whieh, though ineonsiderable, are sufficient to render the introduetion of a probe through it at this part an affair of some difficulty. The membrane composing the duet appears to be a continuation of that which lines the sae: in its passage through the bones it is strengthened by a fibrous sheath. Its internal surfaee is shiclded from the salineness of the tears by a mueous secretion. Its office is that of conveying away the tears collected within the sae, and of discharging them at the cxternal nostrils.

Course of the Tears.-The tears, as they issuc from the duets of the laehrymal gland, are dispersed, by the opcration of winking, over the front of the cye, for the purpose of prescrving the transparent part of it humid and bright ; and as they make their way to the bottom of the eyc by gravitation, they naturally rim along the triangular eanal to the inncr canthus, and beeome direeted by the earuncula into the puneta, which, it is thought, imbibe them by some peculiar vital action, and not by any supposed eapillary attraction*. When the tears overflow their

* Whecther do the puncta transmit the tears into that which leads to the lachrymal bag, in consequence of the fluid being impelled by forec, or whet her they have the power of absorbing the tears? We have reason to believe that the orbicularis does, jointly with other nowers, impel the tears onward. A person having a redundancy of tears, sluts his cyes, and gently impresses the fluid with that musele, in order to get rid of them. But yet there is reason to believe that there is an absorbing power. Dr. Fullerton was convineed that they (the puncta) lad this power, and I think it reasonable my-self.-Abernethy's • Lectures.'
proper channels, and trickle down the side of the face, the eye is said to be watery: this is commonly the condition of the organ on the approach of ophthalmia ; it arises also in states of common mechanical or chemical irritation; and in the human subject, weeping is induced by excessive pain, and by certain emotions of the mind, particularly grief. Augmented secretion of tears may be the effect of inflammatory action in the gland itself; but it is more frequently, perhaps, the result of sympathy.

The remaining muscle of the cyelids-the levator palpebre superioris internus-and also the

Muscles of the Eyeball.

Having been already described (at page 87), we pass on to the eyc itself; finishing the description of the Appendages with a few

Concluding Observations.

Contents of the Orbit.-In addition to the contents of the orbit already spoken of, viz. the lachrymal gland, the levator palpebre superioris, and the seven muscles belonging to the eyeball, there are (bcsides the globe of the eye itself) some vessels and several important ncrves met with therein. There is the optic nerve, sheathed in dura mater, in the middle, entering at the foramen opticum, and penetrating the back of the globe. The nerve of the third pair, supplying three of the recti, the inferior oblique, and the levator palpebre, besides contributing to the formation of the lenticular ganglion. The nerve of the fourth pair, running to the trochlearis. The nerve of the sixth pair, to the rectus externus. And the ophthalmic artery, whose ramifications are distributed to the globe and the various parts connected with it ; and also the ophthalmic vein, which returns the blood into the cavernous sinus.

These several parts arc cushioned and packed in an abundance of soft adeps, which serves to connect them together, and at the same time accurately fills up the interspaces. Being in a state of semi-fluidity during life, this substance readily accommodates itself to the various movements of the globe, which ordinarily it bolsters forward in front of the orbit; although it is every now and then forced to one side, and then drives before it the membrana nictitans. That this is one of its principal purposes is shown by there being comparatively much less of it in man. In cases of extreme emaciation, part of this fat becomes absorbed, producing that appearance called sunk-eyed.

Ocular Case.-The orbit is lined with a dense, firm, fibrous ocular sheath or case, having the appearance of dura mater, of which it is said to be a continuation. It possesses fibrous at-
tachments to the bony inequalities and foramina at the bottom of the orbit, and by several threads is fastened to the baek or rough part of the zygomatie areh. It is thiekest and offers most resistance at the outer and upper parts of the cavity, where bony parietes are wanting. It serves to hold the contained parts together, and to proteet them from external injury ; and it likewise offers resistance to the impulse of the adeps whenever the eyeball is retracted.

Of the Eyeball.

The ball, globe, bulb, or apple of the eye (so variously denominated from its spherical form) may be regarded as an optical instrument of eomplex but singularly beautiful construction, into which the rays of light are received, and by which they are in their passage in such mamer refracted and inficeted as to be collected into foeal points, and thereby to represent a correct image in miniature of the object from which they are radiating.

Defence, relative Position, and Direction.-In order that we may perfeetly understand the position of the cyeball in the head, the manner in which it is sustained in that position, and the various motions it is capable of, and thereby form correct ideas of the axis and range of vision, it is necessary for us to renew our aequaintanee with the orbits. The orbit is an imperfect soeket formed by unequal pieces of bone coming from the frontal, malar, lachrymal, temporal, ethmoidal, and sphenoidal bones, in the following manner and proportions:-Of the external ridge : the supero-anterior part, about two fifths of the whole circumference, is formed by the orbital process of the frontal bone: the inferoanterior part, about one fifth, by the lachrymal bone; and the remaining two fifths by the malar and temporal bones, in the ratio of three to one. Internally, the floor is constituted of the orbital plates of the lachrymal and malar bones; the side by that of the frontal, and by the os planum; the baek parts by the ethmoidal and sphenoidal bones. The socket is of an irregular figure : looking into it in front, it has the appearance of being of a conoid or pyramidal form, but, on close cxamination, we find that the roof and one side are deficient-that the cycball is guarded in those places only by bony arehes, which, though they are firmly stayed and well placed to ward off attacks in the most perilous direetions, seem to leave the organ exposed in others. This, however, is far from being the ease. In the rceent subjeet, not only a considerable part of the vacuity behind is oceupied by the condyle of the inferior maxilla, but the remainder of the space, posterior to the orbital sheath, is filled with adeps: and this serves as a bulwark to the globe behind,
while it freely admits of the motions of the jaw. But what principally demands our attention here, is the sheath lining the orbit. We have formerly examined this, and found it to possess considerable density, firmness, and resistance and to be thickest at the external and superior parts; and we now perceive that it was made so because there it has to supply the place of bone. The socket formed by the sheath is described by some as conical, by others as pyramidal ; perhaps it bears the nearest approach to the latter form, thongh, like other anatomical comparisons to geometrical figures, it will be found not to possess mathematical precision: for the basis of the pyramid, instead of being equi. distant at every point from the apex, is obliquely truncated in a dircetion outward and downward; to which may be added, there is a prominenee of the bomdary edge next the nose that contributes with this truneation to give the eye a sunken appearance on that side, while the outer part of the globe projects beyond the socket. The orbital ridge has a quadrilateral figure: the external side is the longest, the inferior one the shortest, the vertical to the transverse diameter being in the ratio of seven to six : the line of the internal side is interrupted by a notch. The axis of the orbit direets a horizontal line more outward than forward, more forward than downward : this line interseets another horizontal line drawn directly forward at an angle of about 70°, and one drawn dircetly outward at about 20° : the inelination downward, however, will of course vary with the position of the head. The axis of the eyeball is not exaetly that of the orbit, though it likewise takes a direction more outward than forward; for in the ordinary position of the head, it is perfectly horizontal, and in consequence of the prominence of the eye next the temple, inclines more forward than the orbital axis, probably by 10° : the motions of the eye will, in course, vary its axis considerably, and especially in the lateral dircetion. In faet, the eyes, plaeed as they are in the head, eommand nearly a whole sphere of vision : the horse eonsequently is amply provided with visual means for secking food and avoiding danger.

Situation and Connection.-The eyeball is placed within the anterior or more eapacious part of the orbit, nearer to the frontal than the temporal side, with a degree of prominence peculiar to the individual, and within certain limits variable at his will. In front, the ball is suspended by the eyclids; laterally and posteriorly, it is slung by its seven muscles, and posteriorly it is also retained by the optie nerve: which museles and nerve, together with its blood-vessels, are, as we have seen, enveloped in fat; and this fat forms a bolster for the globe (as has also been pointed out), maintaining it in a due state of adrancement, and mate-
rially assisting in preserving its proper position, and giving stcadiness to its movements.

Magnitude, Figure, and Diameter. -The magnitude of the globe varies something in different individuals. Its figure is a compound of two spheres of different diameters, unitcd in front by an elliptical line. The small sphere, or rather hemisphere, projects in front from the large onc, and is transparent; the large sphere, the lcss imperfect one, is flattencd postcriorly and promincnt around its sides, but is opaque: the former, from its apparent resemblance to horn, has been named the cornea, or, to distinguish it from the latter (which is sometimes called the cornea opaca), the cornea lucida vel transparens. The diameter of the globe, according to Girard, exceeds its axis by about a line and a half (trois millimétres): this is the reverse of the relative dimensions of the human eye, of which the axis exceeds the diameter by nearly a line.

Constituent Parts.-The visual organ is composcd-lst, of certain membranous parts, mostly opaque, called coats, investing and protecting the contents of the globe; $2 d l y$, of a series of diaphanous parts, or refiracting agents; 3dly, of a nervous lining, which receives a representation of the object seen, and transmits the impression along the optic nerve to the sensorium.

THE COATS OR MEMBRANES

Are, the sclerotic, choroid, retina, cornea, and iris. The first three of these membrancs forms the opaque case containing the transparent parts, and are, properly speaking, the coats of the eye, being concentrically arranged one within the othcr, like the layers of an onion. The cornea is the sight of the eye, the watch-glass, as it werc, fitted into this case; and the iris is the coloured partition internally between the light and dark compartments of the organ, with a hole through its centre by which they communicate.

Sclerotic Cout.

The tunica sclerotica (so named from its hardness or firm ness) composes the white part of the globe, extending from the insertion of the optie nerve to the cornea, and forming about four fifths of the entire superficies. Posteriorly, it reccives the insertion of the fleshy fibres of the retractor : in front, it is strengthened by the implantation of the tendons of the four recti, whieh have been (crroneously) supposed to spread over the part covcred by conjunctiva, producing its shiny whiteness, whence the imaginary expansion has been named the tunica albuginea; but, in point of fact, no such expansion exists, the remarkable whiteness
of the part being caused by the transparent glossiness of the conjunctiva itself. In other places the surface of the sclerotica is padded with fat. Its union with the transparent part, or cornea, is so neat and perfect that one has been deemed to be a continuution of the other: the selerotica manifestly differs, however, from the cornea, not only in being opaque, but in its texture and organization, and also in its diseases. Morcover, either maccration or putrefaction disengages one from the other, and then it is demonstrable that the surrounding margin of the elliptical opening of the sclerotica is bevelled off, for the purpose of overlapping and nicely fitting the edge of the cornea, which is also sloped off, but in the contrary direction. The selerotica is thinner upon its nasal than its temporal side, though it terminates in front in a thickened border all round; but it is thickest at its posterior part, near the centre of which is a small circular aperture for the admission of the optic nerve: this opening is situated towards the inner and inferior part of the globe, and appears, when examined internally, as a white cribriform spot. The internal concave surface of the sclerotica is in intimate contact with the tuniea choroides, from which it commonly receives a dusky stain, the natural effect of tramsudation after death : these coats are weakly connected together by a very delicate cellular tissue, likewise by blood-vessels and nerves which find their way in great numbers to the choroid coat through pinholes in the sclerotica, most numerous round about the entrance of the optic nerve, and in the vicinity of the corneal border in front. The selerotica possesses this peculiarity over the other ocular textures-that it retains its figure in the detached state equally the same that it does when distended and connected with other parts, and that it will regain its shape after indentation or distortion, immediately the pressure (should that have been the cause) is removed ; even small excised portions manifest the same retentive propertics: so far, however, is this from being the case with the other component parts of the eyeball, that, we shall find, there is but one of them but what is directly or indirectly dependent upon the selerotica for the preservation of its form, and that one even (the crystalline lens) is unable to recover itself after its shape has once been destroyed. Some anatomists consider this tunic to be an expansion-either a laminated or an entire one-of the sheath of the optic nerve: whether one or other or neither be the case, we certainly find their union to be intimate, and continuity of fibre to be the uniting medium. The selerotic fibres, which are dense, firm, and clastic, and remarkable for their whiteness, are of the same nature apparently as those that compose ligaments and tendons. They take crery variety of direction, and are so strongly interworen
and matted together, that no foree the fingers ean exert will lacerate it : indeed, they are found to decussate so generally throughout the tumic, that the opinion of its being divisible into layers secms to be resisted by anatomieal evidenee. The principal use of the selcrotica is, to give configuration, support, and protection to the abstractedly formless delicate parts eneased within it. It also affords attachment to the museles moring the globe.

Cornea.

The cornes (also ealled the transparent cornea) is the part completing the sphere of the cyeball in front, filling up the clliptical vacuity left by the sclerotica, therehy forming rather more than one fifth of the whole superficies. In quadrupeds (not overlooking that notable exception, the hog,) this is the only extcrnally visible part of the eye ; they have not, thereforc, according to the common meaning of the term, any white to their eyes ; at least none is apparent but on such oeeasions as when the animal, without turning is head, looks bchind him, a glance that generally betokens slyness, if not viciousness: and this, I presume, is the origin of the vnlgar assignation of vice to a horse who is in the habit of showing the white of his eye. The convexity of the cornea, which varics somewhat in different individuals, is greater than that of the selerotiea; it being, as was said before, the segment of a smaller sphere let into the segment of a larger onc. Its figure (taking the circumferent outline of the cornea) is horizontically elliptieal : it is not a perfect ellipsis, however, for the part turned inwards is bounded by an are of larger sweep than that turned outwards : a remark that will serve us, so long as we remember that the optic nerve pierees the inner and inferior part of the globe, to distinguish a right eyeball from a left, in the detached statc. The vertieal diameter of the cornea bears the same relative ratio to its longitudinal that five does to cight. Its margin is cut aslant to fit that of the sclerotiea, by which it is overlapped; in this manner, the surfaces of apposition are considerably broadened, and their union so much the more strengthened: indecd, their union is so firm, that as much resistance is opposed to their mechanieal separation as to the laceration of either of their textures. Its convex surface is covered by conjunctiva, continued over it from the selcrotiea, upon which its limits are marked by a black elliptical line relieved by a dusky shade : this part of the membranc, however is so eondensed and attenuated, that it becomes perfectly diaphanous, which circumstance has given rise to doubt, and even denial, of its presence here ; the faet, however, is nowadays admitted to receive indubitable evidence from longprotracted maceration. At first riow we might snspect that the
cornea itself, being so pellucid a part, was thin and delieate in its texture : but, in point of fact, it is allied in density, firmness, and resistance, even to the sclerotica; for neither one texture nor the other are we able to rend with our hands, even with the aid of the forceps. If an ineision be made directly across the substance of the cornea, lamina after lamina may be stripped off; and while we are doing this, we cannot but notice that the surface is continually freshly bedewed with a limpid serous fluid oozing from the cellular interstices. This watery exudation, some imagine, is pent up in cells during life, and its escape and diffusion after death is the cause, they conceive, of the filmy obscurity of the eornea, which so specdily follows the extinetion of life. If the eornea is macerated, it swells, turns opaque, and becomes soft and flabby ; and in this condition it proves very readily separable into its component laminæ, in eonsequence of their cellular adhesions, which in the recent eyc are dense and compact, being now lax and filled with fluid : indeed, the laminæ may be felt sliding one over another, by squeezing and rubbing them between the fingers: for all this, however, we cannot correctly determine their number, though we ean discover that the anterior layer is evidently continued from the conjunctiva sclerotice. When closely examined in this softened condition, the lamine show signs of a fibrous texture ; and the density and toughness of the cornea favour this idea, as also docs the circumstance of its blood-vessels being both small and scarce. In the healthy state the vessels are too minute to admit red blood, though red ones are seen eommonly enough under inflammation. Nerves have not been traced into its substance, nor do its lamine appear to be sensible, unless it be the anterior one, which has probably nearly the same fecling as other parts of the conjunctiva: this (coupled with the vascularity) is a strong fact to show their identity. Since, then, this is a part that possesses such firmness of texture and mechanical resistanee, we must consider that it was made so tough to complete the eye-ease or defence in front; at the same time, from being transparent, it is perfectly permeable to light, and, as such, is also operative in the production of vision.

Jris.

The iris (so denominated from the brilliancy of its aspect and variety of its tints) is that part from the appearance of which is vulgarly assigned the colour of the cyc. In order to examine this body we must excise the cornea, behind which it is perpendicularly extended, after the manner of an internal eyelid, for the purpose of regulating the quantity of light going to the bottom of
the eye. Its boundary edge being fixed within the periphery just behind the cornea, they both nccessarily exlibit the same figure in outline; but, the cornca being concave and the iris flat, an interval is left between them, deepest in the middle, and this is called the anterior chamber, to distinguish it from a corresponding space behind the iris, denominated the posterior chamber. The iris exhibits a perforation, horizontally elliptical, through its middle, which forms the pupil, or what is vulgarly called the sight of the eye: the aperture is rather nearer to the inner than the outer, to the upper than lower side of the globe, and this in eourse it attended with a correlative variation in the breadth of the iris at these places. The diameter of the pupil will vary-and so indeed will its figure oceasionally-according to the condition of the organ and the quantity of light to which it is exposed. The periphery of the pupil, both above and below, is more or less intruded upon by several little, black, pendulous bodics, which are the corpora nigra.

Surfaces. We distinguish in the iris two flat surfaces, and two elliptical margins. The anterior surface, the veritable iris, is noted for its brillianey, and for its colour, whieh varies in dif.. fereut individuals. It is a remarkable fact, that this variety of hue in the iris corresponds with the colour of the hair ; bay and chestrut horses have hazel eyes; brown horses have brownish eyes ; and very dark brown or black horses, eyes of a still darker dusky-brown shade. This curious relation is still more observable in human beings ; the diversity of colours and hues in their irides being infinitely greater than anything we behold among any one species of animals. Cream-colonred and milk-white horses have wall-cyes, and Albinos have red eyes ; in both which instances the iris is said to be destitute of any colouring matter whatever. Both eyes are eommonly alike in hue and shade; though now and then it happens that one is a light, its fellow a dark cyc. Upon the anterior surface of the iris are visible two broad elliptical belts, the inner of which may be distinguished from the outer by being a little darker eoloured; and upon the latter are discernible several plice, of whieh two are more elevated and conspicuous than the rest : the iuner of these two pliere forms the boundary line of the belts, and easts a shade upon the inner belt, imparting to it the effeet of distance when viewed in the living eyc.-The posterior surface of the iris is eovered with a thick stratum of black mucous matter derived from the pigment, which, from impregnating it with the colour of a grape, has begot for it the name of uvea; and it would appear that the colour of the iris (the nature and production of which yet remain a mystery) is essentially dependent upon the uvea : for if the pigment
be washed off, the iris will be rendered eolourless. In wall-eyes, in which the uvea is wanting, the iris is white; so it is in Albinos, in whose eyes there is the same deficiency. This surface has likewise a division into two parts by a prominent elliptical fold in the middle : the larger one exhibits numerous convergent strixe which run in radii from the outer margin, where they look almost like continuations of the ciliary processes, and terminate in this prominent fold; the inner and lesser division is a plane oval surface, apparently without strix, perforated in the centre by the pupil.

Margins. The greater or ciliary margin of the iris is embraced by the ciliary circle, and has a broad attachment to the ehoroid eoat besides, through the continuation of the pigmentum nigrum. The lesser or pupillary margin, rendered black and prominent by an edging from the uvea, and hanging loose and floating in the aqucous humour, constitutes the boundary line of the pupil, and gives attachment to the corpora nigra.

The pupil, then, is nothing more than a hole in the iris, oblong or elliptical in the same direction as the cornea is, whose diameter varies with the intensity of the light to which the eye is exposed. There are animals, however, in which the pupil does not ordinarily correspond in shape with the cornea, in consequence of its altering its figure as well as its magnitude under such circumstances : e.g. in the eat, the eornea is eircular, but the pupil during the daylight is elliptical in the vertical direction, though at night it becomes circular ; and, indeed, the pupil of the horse, widely dilated from the effects of amaurosis or the influence of belladonna, likewisc assumes the eircular figure.

Structure. All that we know about the structure of the iris, is, that it is apparently a fibrous membrane, divisible into two layers, provided abundantly with blood-vessels and nerves, and thickly coated behind with uvea : the division of it cannot be earried through the pupillary margin, there its layers becoming inseparable. Its fibres are believed by some to be muscular, the quiek and free motions of the part forming the principal grounds of their argument ; for the fibres (even by their own admission) are two minute to admit of anatomical demonstration. Professor Coleman found them well marked in the eye of a greyhound that had been long inured to eunning eoursing in a rabbit warren. Not only do these fibres clude all anatomical test of thcir nature, they are insensible to the eommon mechanical and chemical excitants of other muscles, and even to galvanism. -The arteries of the iris come from the lony ciliary, and are arranged so as to form two circuli arterosi upon its anterior surface, eorresponding to the two prominent plica thercon : from these, minute branches
are detached, which are so numerous, that they of themselves appear to constitute the basis or essential part of its texture. The ciliary nerves lavish their branehes upon the iris; but, owing. to their minuteness, defy all attempts to make out their distribution.

Motion. The motions of the iris consist in contraction and dilatation, and the dimensions of the pupil are conversely regulated thereby: when the iris becomes contraeted the pupil becomes dilated, and vice versa; the pupil, however, is never shut so eompletely as to exclude light altogether. These motions are involuntary-excited by the presence of light-and, ceeteris paribus, are regulated by the quantity admitted, or the suddenness with whieh it is admitted, into the eye. This action, however, is not the effeet of direct stimulus, but proves to be a seeondary or sympathetic result, since light has no visible influence upon the iris itself--the impression is made upon the retina : in gutta serena (paralysis of the optie nerve), for example, the pupil becomes dilated and the iris remains motionless; and when the pupil is closed so that light cannot get to the bottom of the eye, the iris beeomes fixed. Furthermore, the motions of the iris are influenced by the magnitude and distance of the object of vision : when the eye is intently viewing a near object, or one very small, the pupil becomes contraeted; but if the object be removed to a distance, or it have a wide surface, the pupil will become dilated. During sleep the pupil is contracted. After death it remains in that state (either contracted or dilated) in whiel it happened to be at the instant of the last expiration, and eannot by any means we may employ be re-exeited to action. The effieient eause of these movements remains undeveloped.

Corpora Nigra.

I have given this name to the little globular, black bodies found attached around the pupillary margin of the iris; and I have taken the liberty to do so, because I am not aware that any appellation has been assigned them by the veterinarians of this comutry. Girard, speaking of them, says, "que l'ouverture pupillaire offre communément quelques tubercles noirs, sortes de prolongemens frangés, replies en dehors, et nommés fungus;" but the term fungus sounds to our cars so much like disease, that I consider this a sufficient reason for not adopting it. By this laconic deseription of Girard's (for this is all he says about them) it would appear that they are not unexceptionably present: I have not myself remarked their deficiency unless where the pigment was wanting. There are commonly thece of them, about the magnitude of pepper-corns, ranged en masse along the upper
margin of the pupil, something, nearer to the outer than the inner corner ; and the largest is placed outwardmost-unless we reckon a very small one indeed, which is generally found beside it. Along the lower edge there are likewise three, sometimes four of them : but these are comparatively inconsiderable, not being larger than pins' heads. The corpora nigra superiora hang more or less orer the pupillary opening in front: the corpora inferiora project just cnough to interrupt the regularity of the pupillary line. I am inclined to regard these borlies as productions of the black pigment: they have similar fringed or velvety surfaces, and appear to be resolvable into the same mucous substance, and to be continued from the uvea-to be, in fact, uveal excrescences. Professor Coleman has scen them as large as the largest garden peas, without their seeming to interfere at all with vision.

Choroid Coat.

The tunica chorondes is the black, soft, delicate texture immediately covered by the selcrotica. It extends from around the termination of the optic nerve, by which it is perforated, in intimate contact with the internal surface of the sclcrotica, as far forward as the edge of the cornea, where it ends in the ciliary circle: it being connected to the sclcrotica by a very fine cellular web, by intercurrent blood-vessels, and by the ciliary nerves.

Ciliary Circle. If that part of the sclerotica in union with the cornca be removed, we shall expose, immediately behind the vanishing edge of the latter, a whitish cellular belt about two lines in breadth: this is named the orbicularis ciliaris, ciliary circle, or ciliary ligament. It forms the medium of union or line of demareation between the choroides and iris; it is also the place where the sclerotica has the firmest connection with the choroides, and through that connection likewise an intermediate one with the iris. The basis of the ciliary circle is nothing but condensed cellular membrane ; but the ciliary vessels and nerves in their course pervade it, forming a sort of vascular and nervous plexus: a circumstance that has given rise to other names for it. This part may be stripped off altogether with the forceps; and in doing so it will be found to adhere with most tenacity to the choroides. Fontana has described in the human cye a triangular canal in the cellular tissue between the sclerotica and this circle ; but, for my own part, I cannot find any such cavity in the eye of the horse.

Structure. The inner surface of the choroides is accurately applied in cvery point to the internal tunic-the retina; though
so elosely applied, however, they nowhere adhere, either by vascular or eellular eonneetion. Externally, the ehoroides presents everywhere a blaek surface ; internally, only the anterior parts are black: the posterior concave part, about oue half of the entire internal superfieies, being of a brilliant variegated green tint. The blaek part is ealled the nigrum pigmentum: the green, the tapetum lucidum. The basis of the strueture of the choroides consists in vascularity : arteries and veins in countless numbers enter into its composition, dispersed through an intertexture of fine eellular web. Though this fact has been aseertained, however, the arrangement of the vessels is a question that does not seem to this day to have been satisfactorily determined. It appears eertain that there are two strata or sets of vessels ; but, some say an external one of veins, which they eall the vence vorticose, and an internal one of arteries, to whieh has been given the name of tunica Ruyschiana; while others plaee the veins upon the inside.-" Les artères," says Girard, "distribuées à la surfaee externe forment une eouehe première, unie à une lame intéricure, dans laquelle se rendent les veines." It is, perhaps, suffieient for us to know, that this tunie is (with least difficulty in the situation of the tapetum) separable into two layers ; that these layers consist almost entirely of blood-vessels, whieh cross and intereross one another so as to form a vascular network very diffieult if not impossible to unravel ; and that its arteries come from the ciliary, and its veins pour their blood into the ophthalmic vein. In order to examine the strueture of the ehoroides it should be freed from the colouring matter adhering to it; and this eannot be done without suffering it to remain some days in water, whieh is very apt to impair its texture.

Pigment. This adventitious substanee is spread over both of the ehoroid surfaees; but the inner layer is thieker and more eonsistent and determinable in its limits and disposition than the outcr. The outer, the entirely blaek one-the veritable nigrum pigmentum-begins just behind the eiliary eirele, and appears to be uniformly eontinued over the whole of the posterior hemisphere; the inner one, partly blaek and partly green, lines the dark ehamber, fills up the interstiees between the eiliary proeesses, and coats the posterior surface of the iris. The coloured part, ealled the tapetum or earpet, or from its brightness the tapetum lucidum, is not found in the eyes either of men, birds, or fishes, and in quadrupeds it is seen of different colours: in the horse, it is pea-green ; in the eat, it is yellow; in the stag, blue. In all, however, its relative situation is the same : it makes a circular sweep to a certain extent around the entranee of the
optie nerve ; in the horse, it spreads wider superiorly than inferiorly, occupying the posterior lialf of the dark chamber-that part which is within the axis of vision. In a perfectly fresh cye, the tapetum is bright, and its limits are distinetly marked ; indecd, with pains, it may be stripped cleanly off the sclerotica, and even without staining the fingers in so doing; but patrefaetion destroys its verdure and consistency, and converts the entire pigment into a thin, sooty, semi-fluid matter, readily diffusible in water, and which leaves a dusky stain upon the sclerotica and other parts in contact with it. The pigmentum and tapetum (apparently the same substance, differing only in colour) are supposed to be a peculiar secretion from the vessels of the cho-roides-a sceretion of a mucous nature-only that it is contained within a very fine, soft, and delicate cellular tissue by which it is held together. Mr. Hunter compared it to the rete mucosum : and there would appear not only to be a similarity in composition, but also some mysterious relationship existing between them in regard to their formation; for, in Albinos, in purely white and cream-coloured horses, in white rabbits, ferrets, \&c., in whose eyes the pigment is deficient, the rete mucosum is also wanting: this accounts for the delicate whiteness of their skins, and for the redness of their eyes, in which the blood (circulating in the vessels of the choroid) is seen through the pupil, unobscured by colouring matter.

Ciliary Processes. Leaving the ciliary cirele, the choroides makes a sudden inflection inward behind the iris, and then turns intensely black. This inflection considerably contracting the space the tunic was formerly spread over, there results a superabundance of substance, which we find to be disposed of in puckers or plaits, arranged in parallel lines, like radii, around the circumference of the erystalline lens: regarding the doubling and plaits together as a whole, the part is named the corpus cilicre; but the plaits by themselves are called the processus ciliures. These processes repose, posteriorly, upon the soft bed of the vitreous humour, whereupon they make counter-impressions, the memtranula corona citiaris being alone interposed. The corpus eiliare is coated with pigment of the deepest dyethe interstices of the processes in particular are thickly bespread with it: this explains the remarkable blackness of this part, and aceounts for the radiated circle of black strice marked upon the surface of the membranula ciliaris, after the processes have been stripped off. In order to cxamine the structure and conncetions of the corpus ciliare, the pigment should be washed off. It will then be found to be continuous at the ciliary circle with the choroid, to possess the same rascular basis as that tunic, and, in
fact, in no wise to differ from the choroid but in its disposition and arrangement. The internal part of the choroides near the angle of inflection presents to minute inspection (or through a magnifying glass) numerous delicate and faintly-marked stripes, arranged in parallel radii, which are the ciliary strice; and every two or more of these strix unite afterwards to form a single plait or ciliary proccss, that runs direct to the crystalline lens, growing broader as it proceeds, adhering in its way to the membranula ciliaris (which is behind it), and terminating with an angular point at the eapsule of the lens, with which, though in coutact, it has no conncetion whatever. The best view we can have of these processes is obtained by making a perpendicular section of the eye and looking at them through the remaining portion of vitreous humour: a broad, black, well-defined line will then be seen, showing their union with the choroides; and in consequence of their posterior cdges having a greyish cast, we are enabled to distinguish their interstices filled with black pigment. We can also distinguish that they vary in length, but not perceptibly in brcadth.

The retina (so called from its supposed reticulated texture) is the third or innermost tunic. The optic nerve having reached the inner and inferior part of the globe, pierees the selerotic and choroid coats, and in its passage through them grows somewhat contracted in its diameter: having arrived at the internal part, the nerve swells into a little white eminent papilla (appearing as a white spot in the living cyc), from whosc circumfercnee issues, in white radiating lines, a medullary pulp which spreads over the entire surface of the dark chamber. It is sustained in this state of globular expansion by the vitreous humour, and thus becomes accurately applied to the choroides externally, but without contracting any adhesions whatever until it has reached the corpus ciliarc. In an eyc perfectly recent and unprepared in any way for the examination, the retina appears to terminate on a sudden, by a defined cdge, at the black eircle upon the ciliary body, by adhesion there to the tunica vitrea: it is asserted, however, by some anatomists, that it does not end but only grows much thinner here, afterwards extending almost imperecptibly between the ciliary processes and tunica vitrea, and proceeding to the capsule of the lens; and this part, they say, in consequence of being much compressed, puts on the appearance of nervous striæ ; whereby, they add, its connectiou with the iris becomes established. During life, the retina is transparent-the choroides shines through it and gives colour to the pupil ; but speedily after death it loses its pellucidity, and exhibits a dead or opaque whiteness: immersion in
spirits of wine produces the opacity at once, at the same time giving to the membrane a degrec of firmness.-In composition, it appears at first view merely to be an expanded mass of nerrous pulp; but, by scraping the surface of it as it floats in water, it becomes resolvable into a pulpy or medullary part (which is seen dispersed in the fluid) and an extremely delicate membrane, whose texture has been found to be almost entirely vascular ; the latter forming the basis or vascular network upon whieh the former is spread, and by which it is nourished and supported. This membrane is intimately united with the border of the opening that gives passage to the optic ncrve. It receives its vessels from the central artery of the retina-a vessel that takes its eourse through the axis of the nerve.

OF THE HUMOURS.

These are three in number, viz., the aqueous, crystalline, and vitreous; and they occupy in suecession the spaces in the anterior, middle, and posterior parts of the globe.

Aqueous Humour.
The aqueous humour eseapes as soon as the cornea is punctured, and the cornea itself falls afterwards into wrinkles, showing that the eonvexity and tension of the one is owing to the presence and pressure of the other. It fills the interval between the cornea and erystalline lens, insulating the iris by whieh the whole space is divided into two cavitics, named the anterior and posterior chambers: these chambers eonsequently communieate through the pupil; but they are very unequal in their dimensions, the posterior being nothing more than a very narrow chasm between the uvea and the lens, surrounded by the ciliary processes, whose points may be said to project into it. The aqueous humour is a bright limpid fluid, and in its properties bears a great rescmblance to the vitrcous, in the condition in which the latter drops from its cellular case : they are both eompounded of albumen, gelatinc, and muriate of soda, suspended in a watery menstruum. This humour (as well as the others) has a eapsule of its own; at least, we infer so from analogy, or rather from the separability of a thin transparent lamina from the coneavity of the cornea, not possessing the fibrous eharacter of the other corneal laninx, and which some have been able, they say, to trace upon the iris; though no one, I belicve, has scen it enter the pupil: this membrane is supposed to secrete the humour; and, if we may judge from the rapidity with whieh the fluid is reproduced after it has been let out, its secretion is by no means cither a difficult or an expensive process.

Crystalline Lens.

The crystalline lens, though a solid body, is always considered as one of the humours. It is named crystalline from its resemblanee to erystal, and lens from its shape. It is lodged between the aqueous and vitreous humours, the latter presenting in front a hollow bed for its reception; and it is surrounded by the eiliary processes, and parted from the iris by the posterior chamber. The lens is inclosed within a eapsule of its own, by whose attachment to the tunica vitrea it is retained in its plaee, with the assistanec of the membranula eorona ciliaris. This capsule, the tunica crystallina of some, is denser, firmer, and more resisting than the tunica vitrea : it eannot be shown to have any adhesion to the lens itself, there being between them an aqueous moisture, which some regard merely as a post-mortem cxudation, while others consider it as neeessary during life to preventadhesion of the contiguous surfaees, and eall it the aqua vel liquor Morgagni, from its diseoverer. The anterior part of the capsule is thicker, stronger, and more elastie than the postcrior part; though the latter is something strengthened by the membranula ciliaris, and is elosely, but not inseparably, united by a fine cellular web to (and consequently eannot, as some have supposed, be continuous in substance with) the tunica vitrea. Sueeessful injections show the vaseularity of the eapsule; and the liquor Morgagni is supposed to be a secretion from its vessels, whieh themselves are derived from the central artery of the retina.

The lens in figure approaches more or less to a sphere : it is not uniformly spherieal, but is composed of the segments of two unequal spheres, the posterior of which has more eonvexity than the anterior. Though perfectly transparent, it has this peeuliarity in its eomposition-that it is soft externally, but gradually inereases in firmness and density of substance from the superficial to the central parts, whieh latter becomes its mucleus. It appears to be placed, as it were, in a state of insulation within the eapsule ; for we cannot detect any cellular, vascular, or otherdireet eonnection between one and the other; and we constautly find both their surfaces moist with the liquor Morgagni, rendering them so slippery that whenever the eapsule is wounded the lens readily makes its cseape.-The nature and composition of the lens is a subjeet still open to inquiry. As in other doubtful and obseure eases, where anatomieal tests forsake us, hypothesis is ready to supply their place, and, as in the present instanee, now and then furnishes us with some ingenious and plausible eonjeetures. Dr. Young* thought that at one time he saw in the
lens of a bullock's eye museular fibres with intersecting tendons, to which he ascribed the power of augmenting its splecieity: indeed, Mr. Hunter had a notion that it possessed a power of varying its figure, and had made some allusions to a fibrous strueture. These supposition, however, have arisen from examinations of the lens in an opaque and altered condition: so long as it remains pellueid, though its substance does come away in spherieal laminx, there appear no grounds for aseribing a fibrous eomposition to it. Notwithstanding the physiologieal ingenuity, therefore, of these hypotheses, all that we are absolutely warranted in offering upon the subject of its composition is rather the result of chemical inquiry than any anatomical knowledge we possess of its organization. In the living animal, it is as transparent as the elearest erystal: after death it gradually loses its pellucidity, and more rapidly when immersed in water, by which it becomes converted into an opaque pulpy mass. Even if it is simply squeczed between the fingers, it turns opaque: a clange rationally explained by saying, that we have destroyed its organization and extravasated its fluids. Aeids and aleohol take the same effeet that boiling water does upon it : they eonvert it into an opaque, white, and more solidified body, suel as we see it in the head of a boiled fish. It is found to be chemically eomposed of albumen, gelatine, and water; and this seems to be the sum and substance of our present knowledge of its conformation. Neither blood-vessels nor nerves have ever been traced into it; nor are we eertain that it is organized at all, unless we receive as proofs the ordinarily assigned tests of or-ganization-the phenomena of growth and morbid changes.

Vitreous Humour.

The vitreous humour fills the posterior eoneavity of the globe-the dark chamber-oeeupying nearly four fifths of its whole interior. It is of the eonsistence of thin jelly, and from its pellueidity and glassy appearance has got its name. It is moulded to the form of the eavity containing it, and lies in contaet everywhere with the retina, though there is no eomnection whatever between them. Beyond the boundary line of the retina it is eovered by the corpus ciliare; and in front is shaped into the form of a hollow bed for the reeeption of the lens. Let this tremulous mass be prieked or otherwise wounded, and a limpid fluid drops from it, very like water, leaving hehind a thick and gelatinous part, whieh at length beeomes resolved into a mombranous sulstance: this membranous residue is said to be disposed in small cells, varying in figure and size, and is called the traica vitrea vel hyaloidea. Opposite to the eorpus ciliare,
this membrane is double: one part of it lines the hollow eontaining the lens; the other advanees under the eiliary processes, for whose reeeption it is arranged into an equal number of radiated longitudinal folds, with depressions between them, whieh proceed to the border of the lens and adhere to the anterior eireumference of its eapsule. The portion of blaek pigment between the ciliary processes and tilese pliex adheres to both : so that when the proeesses are stripped off, the pliex àre seen marked with a regular series of blaek striæ forming a radiated eirele around the lens, which appearance has obtained the name for this folded portion of menlbrane of membranula corona ciliaris. This being the arrangement of the divisions of the hyaloid membrane, it follows that there must neeessarily exist a triangular interval or eanal around the eapsule of the lens, which forms the base of it, having indentations in its front side: this is the canal of Petit-canalis Petitianus. This eanal possesses the breadth of the eorpus eiliare, behind whieh it is readily inflatible: It has no communication with any other part.

The fluid that eseapes from the punctured vitreous mass, though of greater specifie gravity, is mueh the same in appearanee as the aqueous humour, from whieh, I believe, it only differs in the proportion, not in the number or nature, of its ingre-dients-viz. albumen, gelatine, common salt, and water.

The arteria centralis retince takes its course through the middle of the vitreous humour to the eapsule of the lens: but for all this, anatomists have not suceeeded in detecting any signs of vaseularity or organization in this extremely delieate tremulous mass.

OF THE EAR.

The organ of hearing is eonstituted of divers parts, which have been arranged in two elasses-the external and the internal ear.

The External Ear

Comprises the Concha and the Meatus Auditorius Externus.

Concha.*

The concha, or conch, is the term we use to denote the whole of that part of the organ whieh is exposed to external view. This eonsists of a flexible, trumpet-shaped, moveable strueture,

[^36]erected on cither side of the summit of the head, for the purpose of collecting the vibrations of sound. Superiorly, the concha (which is ordinarily about six inches in length), grows contracted, and terminates in a point: inferiorly, it presents a broad, firm, circular base or root, so connceted with the cranium upon which it rests, as to admit of some considerable extent of sliding motion. Antcro-extcrnally, appears the aperture or external orifice of the concha, ovoid in its outline, and of large dimensions, extending from the point down to within an inch of the base : it is broader above than below, and is terminated inferiorly by a rounded angle. Internally, the concha exhibits a capacious cavity, broadly exposed by the external orifice; but ending below, at the back part, in a sort of chamber or cul-de-sac, in front of which is the funnel-like entrance to the meatus auditorius. The sides of the conehal eavity are marked by several longitudinal grooves or furrows, scparated by irregular salient ridges; and the whole is so thickly clothed with long downy hair that the eavity in some horses seems to be almost choked up by them.

Composition. The concha is composed of threc cartilages, connected and attached by ligaments and muscles, and enveloped within an exteralal and an internal covering of common integument.

TIIE CARTILAGES OF THE EAR, fibrous in their strueture, are the conchal, the annular, and the scutiform.

The conchal cartilage (so denominated from its giving shape to the concha) is the largest of the three, constituting the entire upper or trumpet-shaped part of the car. In its detached state it represents a hollow eylinder very obliquely detruncated along its outer side, in which defective part is formed the external orifice. Its superior end or apex rums into a point: the buse or inferior part bulges posteriorly, forming the chamber aforementioned; while anteriorly it is elongated into a bifureated process of a semicircular form, which assists in the formation of the meatus auditorius. All the museles but two, moving the extcrual car, are eomeeted with this eartilage.* By them it is attached to the cranium, and also, as well as by ligamentous expansion, to the eartilage next to be considered.
tragus, and lobula; and thrce cavitics, that of the lietix, fossa navicularis, and conclu.

On the present oceasion I have (after the manner of the French Anatomists) adopted the term conche as an appellation for the vhole cxternal ear : its literal signification (a shell) bearing ont very well this extended application of it. The gencral cavity, or interior of the external ear, I call the conchal cavity; and the cartilare, which more particularly gives this shell-like or trumpet-form In the external car, the conchal critilage.

* Vide p. 84, "Auricular Region."

The annular carthage, ring-like in its shape, surrounds the auditory process of the temporal bone, in which situation it is embraced by the lower end of the conehal cartilage, the two being connected by ligamentous substance. It forms the entrance or beginning of the meatus auditorius exterius.-Its use appears to be, to admit of the motions of the cxternal ear, and, at the same time, preserve the meatus from sustaining obstructioll or interruption in its canal in consequence of such movements, whereby sound might be checked or arrested in its way to the intcrior.

The scutiform, or triangular cartilage (wrougly called triangular, however, since its form bears a nearer approach to an oval, flattencd), is situated at the inner and forc part of the base of the conchal cartilage, reposing upon the temporal muscle. It gives attachment to several of the muscles moving the ear.

THE SKIN covering the car, although continuous with the other common integument of the body, exhibits within the eavity of the concha a comparatively thin and dclicate texture. It becomes very thin and dry ; and adhercs to the cartilage by a cellular tissue, dense and compact, and destitute of adipose substance. After having lined the conchal cavity, it ends in a sort of blind pouch over the membrane of the tympanum, to which it contributes an outward layer. Underneath the skin we find numerous follicles, from which oozes a pcculiar greasy matter, for the purpose of keeping the parts soft and pliant. Below these follicles there is a sccond set of glands-the glandulce ceruminose ; whose ducts open between the roots of the lairs, and issue a sticky bitter matter, which, aequiring consistence from evaporation, constitutes the cerumen or wax of the ear. This secretion protects the bottom of the ear from the insinuation of insects, dust, \&c. Sometimes it collects and forms concretions, obstructing the passage into the interior.

Organization. The arterics supplying the cxternal ear are derived from the anterior and posterior auricular branches of the external carotid. Its veins return their blood into the jugular. Its nerves come from the portio dura of the seventh pair.

Meatus Auditorius Externus.

The external auditory passage is the tubular eanal leading from the cavity of the concha to the membrane of the tympanum. Its commencement is dilated after the form of a fumel, from which the canal grows contracted, and at the farther end is elongated in the direction of the membrane of the tympanum. In composition, it is partly osseous and partly cartilaginous: the auditory process of the pctrous portion of the temporal bone eonstituting
the imer, the amnular cartilage, the outer part. It is lined by an extension of the skin from the concha, and is plentifully furnished with sebaceous glands.*

The Internal Ear.

This comprehends two parts-the Tympanum and the Labyrinth.

Tympanum.

The tympanum consists of an irregular eavity, situated within the petrous portion of the temporal bone, having the meatus auditorius externus on its outer side, the labyrinth on its imner. The eavity is lined by a very delicate mucous membrane, though it contains no fluid; and exhibits several foramina or apertures. At onc part it has a communication, through the Eustachian tube, with the external air ; but the entrance into it through the meatus auditorius is elosed by the membrana tympani. This semi-transparent membrane is stretehed tightly aeross the termination of the meatus; not, however, after the manner of the pareliment of a drum, but fumel-like, a shape into which it is drawn from the attachment to its centre of a lengthened process belonging to one of the little bones eontained within the cavity. Two layers enter into its composition-an outer of skin, an inuer of lining membrane; which last exhibits so high a state of vaseularity as to have been assimilated to the iris. \dagger

Fenestice. The side of the eavity facing the meatus externus exhibits a very irregular aspeet, and is perforated by two aper-tures-the fenestra ovalis and the fenestra rotunda. Between these two perforations is an osseous eminenec ealled the tubercle.

The fenestra ovalis (also known as the foramen ovale) is an aperture bearing an approach to the fissure of an oval, looking from the eavity of the tympanum into the labyrinth.

The fenestra rotunda (also called the for(amen rotumdum) is likewise an ovoid opening, situated by the side of the tuberele, and communieating (not with the labyrinth, as in the ease of the former opening, but) with the sealie of the cochlea.

Bones. Arranged along the interval between, and comneeted

[^37]with, the membranes closing the external meatus and the oval fenestra are four little bones (ossicula), by whose intervention vibrations of sound agitating the membrana tympani are transmitted to the membrane opposite-that closing the fenestra ovalis : for these bones are comnected to each other by ligaments, and are so disposed in relation to one another as to offer the greatest mechanical advantages in this chain of communication for the purpose of augmenting the intensity of the vibration. The names of the ossicula are, malleus, incus, os orbiculare, and stapes.

The malieus (so called on account of its similitude to a hammer or mallet) is the one most outwardly situated. Its long process, memubrium or handle, is attached to the central part of the membrana tympani, which is drawn inward by it into the slape of a funnel. The head of the malleus stands out from its body in an oblique direction, very similar to that of the os femoris; the handle forming an angle with the head and neck, and tapering to its termination against the membranc. From the upper part of the handle, immediately below the neek, issues an acute tapering process; and this is reccived into a depression in the bone (in which it rests) in the side of the cavity. This process forms the centre of motion of the malleus, and as such it is worthy of remark here, that it originates near its head and at a distance from the extremity of the handle ; a point of considerable import in the physiology of hearing.

The incus, though it has received its name from its fancied resemblance to a blacksmith's anvil, bears a much nearer approach in figure to a molar tooth. Answering to the tooth, too, it has a depression upon its surface, adapted to receive the head of the malleus. Like the malleus, it possesses two processes-a superior and short one turned baekwards to be let into a depression in the wall of the tympanum ; a longer one projected downwards into the cavity, whose extremity is curved a little, and whose point is attached to the os orbieulare.

The os orbiculare is not only the smallest of the ossicula, but it is the smallest bone in the whole body. Soemmering disbelieves in the existence of such a bone; but it may, with a little care, be found and demonstrated, although it hardly exceeds in magnitude a grain of sand. It forms the medium of junction and communication between the incus and stapes: through it, the joint existing between the two obtains additional freedom and facility of motion.

The stapes (or stirrup-bone) seems to be the most aptly named of them all; since it really possesses much of the form and character of the common iron stirrup. Its base (which is
not an exaet oval, one side being somewhat flattened) rests against the membrane filling up the fenestra ovalis, to whieh in figure it preeisely eorresponds. By a small head at the other extremity it articulates with the os orbieulare.

Muscles. The meehanism of the internal ear is sueh as to require in the eavity of the tympanum the presenec of four small muscles;* and these operate on the malleus and stapes. They are the-

Laxator Tympani. A very minute muscle, arising from the outside wall, elose to the attaehment of the membrana tympani, and inserted into the handle of the malleus, near its root.
M. externus mallei vel M. Proeessus Minoris, is by some denied altogether-at least, to be of the nature of musele. It arises from the upper part of the tympanum, and is attached by a small tendon to the shorter process of the malleus.

Tensor tympani arises from the side of the Eustachian tube, and is inserted into the handle of the malleus, upon its upper side.

Stapedius. In the horse this muscle is developed in a remarkable degree. It takes its rise from a little eminence within the tympanum called the pyramid, and is fixed to the head of the stapes. \dagger

* Sound is the effeet of impression upon the portio mollis of the seventh pair of nerves-the true auditory nerve. This impression is produeed by vibrations of the air upon the membrana tympani, eommunieated therefrom by the osscous chain extended between them to the membrane of the fenestra ovalis, and thence to the expanded auditory nerve. Now, these vibrations being onee exeited, do not immediatcly ecasc, but eontinue suceceding one another in great rapidity; as, in common speaking, every syllable articulated produces a separate and distinet impulse or vibrating motion upon the ear. Consequently, to prevent eonfusion of sound, or rather eonfused audition, some eontrivance was found nccessary to put a stop to onc vibration before another was communicated. This explains, in general terms, the use of the museles of the tympanum.
† It may not, perhaps, be considered altogether out of place to make a remark or two here on the motions of the bones of the ear, and on the mechanieal advantares derived from their arrangement and relative position. The manubrium of the malleus is, as we have seen, extended downward to be attaehed to the tympanum, whose every vibration, in course, affeets it. The other slender process, issuing from the neek of the bone and abutting against the wall of the tympanum, being muelı nearer the point at which the impression is reecived than the one where the power resides, becomes the centre of motion-the fulcrum; so that the bone is set into aetion upon the prineiple of the lever. The moving power is applied to the manubrium, the process from the ncek becomes the fulcrmm, and the head of the bone is the part on which the effeet is to be produced; it being a law in mechanies, that in proportion as the distance of the power from the fulerum or prop exeeeds that of the weight or resistanee to be overeome, so will prove the meehanieal advantage. In the example before us, this distanee is twice as great; and, conscquently, vibra-

Eustachian Tube. The cavity of the tympanum holds a communication with the external air through a canal named, after its discoverer (Eustachius), the Eustachian rube. This tube communicates with the cavity of the tympanum by what (in the dried bonc) appears to be nothing more than a fissure, from which, having passed through the petrous portion of the temporal bone, it becomes cartilaginous in its composition, and proceeds for some distance gradually expanding in caliber, until ultimately it opens into the guttural sac, formed at the back of the fauces. One side of the tube is clothed by the levator palati and stylo-pharyngeus muscles.*

Labyrinth.

The labyrinth, in which are deposited the organs more immcdiately concerncd in the function of hearing, is an exceedingly irregular cavity, comprising the vestibule, semicircular canals, and cochlea.

The cavity of the tympanum we found contained air, having a communication with the atmosphere without; but within the
tions eommunieated by the membrana tympani to the extremity of the mannbrium of the malleus, will be transmitted by the head of that bone to the ineus with twofold intensity.

Again, we pereeive the same prineiple brought into operation in the motions of the ineus. One of the processes of this bone is reeeived into a depression in the wall of the tympanum in such a manner that the centre of motion proves to be in the direction of a line drawn through the middle of the body of the bonc; so that the extremity of the other-its long process (to which the orbicular bone is attaehed)-performs a greater sphere of motion than the part receiving the impression from the head of the mallens: the consequence of whiel is, that but a trifling degree of motion given to the body of the ineus must beeome very mueh more perceptible from angmentation before it reaches the orbieular bone.

The os obiculare appears to have been interposed in the manner it is, in order that an aceurate perpendieular impulse might be eommunieated to the stapes: had this bone not been where it is, the vibration from the long proeess of the ineus must lave been transmitted to the stapes in an oblique direetion, the result of whiel would have been confusedness and indistinctness in audition.

The stapes, resting as it does flat against the membrane elosing the fenestra ovalis, and reeciving these full and distinet impulses, imparts the bencfit of them to the membrane, and thus the sensation beeones most impressive and perfeet.

* The design of the Eustachian tube appears to be to admit of a free cireulation of air in and out of the eavity of the tympanum. Air, from being retained within the cavity, must neeessarily beeome heated and rarefied, a condition in whieh it is less suitable to transmit, sounds with full intensity; and therefore a renewal of it takes place through the Eustaehian tube.
labyrinth we find a quantity of aqueous fluid, bedewing the expansion of the auditory nerve.*

VESTIBULE.-This is a small roundish eavity, hardly so much as a quarter of an inch in diameter, situated between the cochlea and the semieircular eanals; to the outer side of it is the tympanum, with which it communicates through the fenestra ovalis. In its roof we find five openings, leading into the semicircular eanals; besides whieh we notice two partieular pits or fovere, containing membranous saes, the sacculi vestibuli, filled with fluid, and furnished with expansions of nerve. Anatomists have been misled, by their examinations of these depressions in the dried bone, in supposing that they reverberated the sound : this shows the danger of forming eonclusions from sueh artificial inquiries.

Semicircular Canals.

These eanals are illree in number, placed side by side, behind the vestibule, opposite to the cochlea; but they are entered by five openings through the upper part of the vestibule. They are distinguished as the superior or vertical canal, the posterior or oblique, and the exterior or horizontal. The superior and exterior eanals possess one opening common to both, and one peculiar to each, besides; while the posterior canal opens into the vestibule by two distinet orifices; thus making altogether five apertures. The separate orifice of the superior eanal opens nearly perpendicularly upou the fenestra ovalis.

From the sacculi vestibuli branches of nerves are sent into the semicircular canals, in which they float loose and unattaehed

[^38]in the fluid surrounding them. It was once supposed that the auditory nerve was spread over the periostcum by which the labyrinth is lined; but later rescarches, however, have shown that it is within the sacculi it expands, which do not even come in contact with the periosteum, but are simply connceted to it by a pellucid, cellular, mucous-like matter.

The semi-circular canals are formed out of a peculiarly hard, brittle bone; and their diameter is so small as scarcely to admit of the introduction of the head of a common pin.

Cochlea.

This is the last division of the labyrinth, and by far the most complex one. It receives its name from its resemblance to the convolutions of the shell of the snail. Possessing a spiral or pyramidal form, it has (by no means inaptly) been compared to a spiral staircase, running round a column placed in the centre. It is situated below the vestibule ; its base resting against the meatus auditorius internus ; its apex extending to the Eustachian tube. At its base it describes a large circle which winds upward, gradually decreasing towards the apex, forming altogether about two turns and a half. If we make a vertical section of the cochlea, it presents the appearance of being divided into three cavities or separate compartments : this, however, is not the case in its integral state, since the spiral turnings of the tube run from one into the other.

Lamina Spiralis-Scale Cochlece. There exists a structure inside the cochlca, giving peculiar complexity to it, denominated the lamina spiralis. It consists in a partition or plate set edgeways, partly osseous and partly membranous, running through the spiral tube of the cochlea, and dividing it into two separate gyrations, called the scale cochlece, which at the apex run into each other and communicate. At the basc, the external gyration communicates, through the fencstra rotunda, with the cavity of the tympanum; the intcrnal gyration ends in the vestibule.

Modiolus. This is the central column or pillar around which the scalæ perform their gyrations. It consists of a soft spongy structure, being pierced on every side like a colander, for the transmission of nervous filaments to the lamina spiralis.

Infundibulum. Towards the apex of the cochlea the modiolus opens, the aperture bearing some resemblance to a funnel, being full and expanded upwards: this aperture is what is called the infundibulum.

Meatus Auditorius Internus. This is a small and entircly bony canal, picreing the petrous portion of the temporal bone, and
rumning from the interior of the eavity of the eranium to abut against the vestibule and coehlea, for the eonduet of the seventh pair of nerves. At its termination it is elosed by a eribriform osseous plate, whieh is not flat, but bulges a little, through whose perforations are transmitted the faseieuli of the portio mollis. The principal part of this plate is set opposite to the coehlea, but a portion extends aeross to the vestibule; so that nervous filaments gain admission into both eavities.

SECTION XI.

TEGUMENTAT* SYSTEM.

COMPRISING THE SKIIN, HAlR, CELLULAR MEMBRANE, AND FAT.

OF THE SKIN.

The aneient anatomists placed the skin, cellular membrane, and pamuieulus earnosus, in the same class or set of parts, denominating them the common integuments : the epithet " common" merely serving to denote their presence and uniformity over the body generally. And, indeed, at the present day, the appellation of "eommon integuments" is still in use; though its meaning is now limited to the skin alone.

Composition. The skin is eomposed of three parts, differing in appearanee, texture, and organization from eaeh other: viz., the cutis, cuticle, and rete mucosum.

Cutis.

The cutis or dermis, sometimes designated the cutis vera or true skin, from its being the most substantial of the eonstitucnts of the skin, is that part whieh the tamer eonverts into leather: it lies underneath, and may be said to be (in the full sense of the word) the support of the other two.

Attuchment. The eutis is attached to the subjaeent parts by eellular membrane, in some plaees so tensely that little or no motion is admitted of; in others so loosely that it admits of being thrown into folds: about the forehead, upon the back, around

[^39]the dock, and mpon the pasterns, it is so braced that we ean hardly pinch up a portion between the finger and thumb; but upon the side of the face and neck, upon the ribs, along the flanks, and upon the arms and thighs, it will easily admit of duplieation. Indeed, between the fore legs we find several natural semi-circular doublings of it, in order that the action of the fore extremity may not be constrained ; and along the posterior part of the belly and flanks are other folds, not so numerous, but of larger size, giving freedom of motion to the hind parts: in faet, wherever the pannieulus runs, the skin is loose, or that musele could not have imparted to it the power of corrugation.

Density. There is considerable variation in the density or thickness of the skin, not only where it eovers different parts in the same individual, but in horses of various breeds. What a contrast there is, for instance, between the skin of the eart-horse and that of the racer! And there appears to be, in this respeet, some eonnection between the cutis and the hair; for the skin, as well as the coat, of a black horse are coarser and thieker than those of a horse of the same breed of another colour; and it is rather uneommon to see a black raeer, whereas the colour is predominant among our large heary eart-horses. The skin is thimest and softest in those parts whieh are either thinly elad with hair, or are quite hairless:-sueh are the lips, the nose, the interior of the ears, the borders of the eyelids, the inward part of the thighs, and the generative organs.

Colour. The cutis itself is white ; its apparent colour it derives from the rete mucosum, of whieh we have evidence in those horses in whom that membrane is also colourless; sueh are the milk-white and eream-eoloured raeers; in pieballs, the skin appears white also in places where the hair is white. But in order to show that the eutis itself has no connection in colour with the hair, it will be found that, whether it be taken from a bay, a elicstnut, or a blaek horse, when deprived of its fellow constituents, it will in every instance exlibit the same pale white aspeet.

Structure. The eutis is of a fibrous texture, tough but supple, elastic, very vaseular, and highly sensitive. Its fibres, whieh take every direetion, are so intimately interwoven and knitted together, that it is a texture possessing considerable strength; a faet we have abundant proofs of both in and out of the body: and that these fibres are elastie is plainly shown by the skin returning to its former dimensions after having been stretehed or wrinkled, and in plaees where muscular fibre ean have no action upon it ; in faet, by this property it is, chiefly, that the skin so nieely adapts itself, both as a partial and general covering, to
different parts of the body under the variations of bulk and shape to which they are, from change of position and condition, constantly liable. From what I have been able to learn in my examinations of the cutis, I should say that its structure was substantially the same as that of the human skin. It appears to consist of a dense substratum of cellular tissuc, with which are interwoven fibres of a liganentous nature, in such a mamer that innumerable areole, like the meshes of a net, are formed in it: these areole open, through correspondent pores in the cuticle, upon the external surface, and are for the purpose of transmitting thither blood-vessels and absorbents, of giving passage to the hairs, and of lodging the various cmunctories and secretory organs of the skin.

Organization. Few organs exhibit more vascularity than the cutis: scarccly can a pin be introduced into any part of it without drawing blood ; but its vessels are small; indeed, generally speaking, so minate that they do not carry red blood. 'Ou close inspection of it, after the cuticle and hair have been removed (by maceration or putrefaction), multitudes of little rounded eminences may be secn upon its extcrnal surface, with depressions between them : these are readily reddened by injection with size and vermilion, and are ultimately resolvable into vessels, nerves, and cellular substance. In allusion to their shape they may be called papillce; but they ecrtainly do not deserve the name of papillie nervose; they may be regarded as exeretories of the perspirable matter, and as points endowed with great sensibility; but I do not myself view them in the light of veritable organs of touch. I know it is common, among professional men, to say, that " the lips of the horse are his oryan of feeling, performing a like function to the fingers of a man;" but I feel inclined to think that this assertion is not well founded : the lips most unquestionably have a more delicate sense of fecling than most other parts; but may not this be accomnted for by their hairless and thin and fine integument? Of objects in general, the horse takes cognisance by inhalation ; aud it is yet doubtful, in my mind, whether he can really be said to be in possession of any veritable organ of touch: if he is, a peculiar nervous structure similar to what endows our fingers, or something like it, ought to exist about the muzzle ; and such, I apprehend, has only yet been verlally shown to us. The sole of the foot is plenteously supplied with nerves-no part more so; but no horseman will contend that the animal ean feel more through the hoof than the obvious properties of the surface upon which he treads.

The skin also abounds in absorbents. In places where it is thin, the superficial lymphatics, which are supposed to take their
origin from its areole, are comparatively large, and their trunks, in the subcutaneons tissue, are readily found and injected; thus we learn why the eruptions of farey mostly make their appearanee upon the inside of the thigh and arm, and about the breast, lips, and sheath; and why, when medicinc is administered by inunction, these are the parts chosen for perfrication.

Pores. Of the infinity of pores the skin exhibits upon its surface, probably the greater number transmit hairs. But there are crowds of others, smaller and consequently less distinetly seen, whieh are denominated the perspiratory pores, from their being known to emit an imperceptiblc halitus or vapour, distinguished as the insensible perspiration ; that which is sensible being the ordinary sweat. And it is the eondensation and collection of this exhalation, in the form of drops of sweat upon parts that lave little or no hair, that serve to mark the situation of these pores; though they may also be rendered visible by putrefaction or maccration. Again, there is another set of pores of larger size, more diseernible in some places than in others, which are the mouths of follieles;-the nose exhibits them of large size for the secretion of mueus; the auditory passages are furnished with many of them-the glandulce ceruminose-from which issue a waxy matter; and those parts of the skin subject to frietion are, in particular, besct with them : in faet, the unctuous matter furnished by them preserves the skin soft and supple, and in some places keeps up a constant greasincss of surface.

The skin at the bend of the knee and hoek has a seeretion of this nature, which, from irritation, now and then becomes augmented, and from want of cleanliness grows inspissated, and collects about the parts, and, if the inerustation be not disturbed, will generate a foul ichorous sore: lameness, of course, must result from this, as soon as stiffness or pain is fclt in flexing the limb. When the bend of the knee is its seat, grooms call it the mallenders: but, should the front of the hock bccome thus affceted, it is the sallenders. Almost all our treatises on farriery contain some specific recipe for it. Nothing more is required to be done, however, than to eleanse the part from the seurf or scab that may infest it, by soaking it in hot water; and afterwards correet any morbid disposition the skin may have eontracted to emit matter, differing in quantity or quality from its natural sccretion, by anointing the parts daily with some astringent ointment-such as will, at the same time, reuder the skin soft and supple.

Heel. The skin of the heel of the horse, imitating the structure of the axilla of the human subjeet, possesses very many of these glandular pores ; through which oozes an unctuous secre-
tion, having a peculiar odour, and this it is that gives the wellknown softness, suppleness, and greasy feel to the part. An unusual flow of this matter, somewhat altcred in its nature is what gives rise to grease.

Regeneration. The cutis is but slowly regencrated, appcaring to be so at no little expense to the animal cconomy; at least Nature never fails to make the old go as far as possible by cxtension, before the formation of new is commenced: in the cieatrization of a large wound, for example, the old skin first contracts from all sides to its utmost, in order to leave as little space as possible to be covered by new. And not only is it with difficulty reproduced, but its living powers are weaker when formed than the old; for, though it appears to be very vaseular at first, its vessels, after a time, cither shrink in ealiber, or some of them become obliterated: hence it is that horses who have once had exulcerated baeks from saddle-galls or fistulæ are always more disposed to subsequent injury in those places which are commonly marked with patches of white hair. With regard to the actual formation of cutis, it has been said, that "nothing but skin ean produce skin." I am much mistaken, however, if I have not seen, in the human subject as well as in horses, cutis forming upon the granulations, in the very middle of a sore; which, by fresh depositions upon every side, has met and coalesced with that growing from the old, and thus eonsiderably shortencel the term of cieatrization.

Cuticle.

The cuticle, cpidcrmis, or scarf-skin, is a thim, tough, inorganic membranc, serving as an envelope to the truc skin. In the living animal it may be demonstrated by the application of a blister : scrum is cffused from the exhalents of the cutis, and the cuticle becomes elerated by it into little hemispherical bladders, vesicles or blisters, through the transparent cuticular sides of which the straw colour of the fluid is made perfectly evident. Boiling water will destroy its adhesion to the cutis, both in the living and the dead subject: in the latter they may also be separated by putrefaction, or by long maccration.

Composition. The cuticle appears to be composed of very attenuated Hexible scales, so disposed as to bear an analogy to the seales of fish, which, in fact, are nothing more than their cutieular eoverings: this squamous structure is best seen by viewing through a magnifying glass a piece of cuticle that has becu recently peeled off a putrid surfaec ; it is likewise demonstrable in some stages of mange, in which it becomes hard and dry, turns white, and desquamates in suecessive lamine.

Colour. The colour of the cuticle is the same in all horses, be they black or grey, ehestnut or bay : although the surface of the skin appears (when the hair is shorn off) to correspond in hue with the colour of the hair, the infiltration of serum from a blister underneath the euticle shows that this appearance is deeeptive.

Extent. In most parts of the body the cuticle is thickly elad with hair' ; but there are places (which were pointed out before) where we find it nearly or quite bare. Every part of the cutis is covered by cutiele ; and it not only insinuates itself into perspiratory pores and follicular passages, but lines to a considcrable extent some of the outlets of the body. Cuticle passes into the mouth and pharynx, and therein becomes continuous with the membrane eovering those parts; it likewise may be traced into the anus, and, indeed, some have imagined, through the entire alimentary canal. The nature of the parts, however, by no means bears such a character: although we must acknowledge, that, so indetectible is the line of termination or separation, we are unable to say precisely where the skin ends and the membrane begins. It may, demonstrably, be traced into the meatus auditorius externus. Bichat, indeed, is of opinion that not only the cuticle, but the cutis also, lines these cavities in man. "All authors," says he, "have admitted an epidermis upon mucous membranes. But it would appear that most of them believed that only this part of the skin entered the cavities and lined them. Haller, in particular, is of this way of thinking. But a slight inspeetion will suffice to remark, that here, as upon the true skin, it forms but a superficial covering to the papillary surface and to the corion. Boiling water, which detaches it from the palate, tongue, and pharynx even, exposes to naked view the two other strata of skin."*

Pores. The cuticle is everywhere picreed with holes, corresponding in size, situation, and number, to those of the cutis. First, there are the pores for the hairs; secondly, the perspiratory or exhalent pores ; thirdly, the absorbent or inlaalent pores ; and, fourthly, pores of a larger size, through which unetuons secretions, in various parts, are emitted.

Prorluction. At one time it was believed that the euticle was formed out of the crystallization of a fluid effused from the surface of the cutis: but the simple fact of the foctus in utero (wherein it is surrounded by liquid) having a cutiele, is a refutation of this opinion. That it is, however, a deposition or secretion from the eutis, the same as the hoof is from the scnsitive parts of the

[^40]foot, scems not to admit of a doubt; and yet in what manner the process of production is carricd on, no one has yet been able to discover. For every practical purpose, probably it is enough for us to know, that, if from any cause the cutis vera be denuded, the cuticle will be specdily reproduced; from which we may conclude that its formation is a process neither difficult nor expensive to the animal economy. It is destitute both of nerves and vessels.*

Sensibility. Being semi-transparent, colour, as has been observed, is imparted to it by the subjacent skin; and by parity of reasoning we must account for its assumed sensibility: for, in reality, the sensitiveness it appears to posscss is solcly attributable to its intimate connection with the highly sensitive cutis underneath : the animal feels through it and the hair somewhat in the manner which we do through a thin furred glove. Those parts thercfore where the cuticle is thinnest, are, ceteris paribus, the most susceptible of impressions: the lips and nose of the horse instance this ; and, in us, the extremities of the fingers, in which the proper sense of fecling is known to reside. That the cuticle itself has no sensation whatever, the simple cutting of a corn in man is a sufficient attestation of. Hercin may be said, therefore, to consist the chicf use of the cuticle-to protect the cutis from immediate contact with foreign bodies or agents, and to morlcrate its extreme sensibility.

Density. The cuticle does not vary a great deal in thickness in the horse ; but in the human subject, in the palms and soles, its substance far exceeds that of any other part: indecd, in the latter, it is very apt to grow morbidly thick in places, the effect of external pressure, and this is the nature of what is called a corn-a very different disease from what has been absurdly so named in the horse's foot. The only approach to a corn that we mect with, are those horny or cuticular cxubcrances growing upon the inner parts of the arms ; these, however, cannot be

* "It has no perceivable circulation. The exhalents and absorbents that traverse it, do not belong to it. No morbid appearance that argues organic sensibility happens in it. It does not inflame; it is passive in all cutancous affections, and never participates of them, notwithstanding its continuity. Corns (in the H. S.) and other exereseences from it, are inert, dry like it, and without vascularity : they are only painful in eonsequence of the pressure they give to the nerves underneath, and not of themselves. No pain is ever felt in the cuticle; it is worn by friction, like other inorganic bodies, and, like them, is afterwards reproduced."
"From all this, its life is extremely obscure; I doubt even that it really has life. I feel inelined to consider it as a semi-organie body, may, even inorganic, that nature has interposed between foreign agents and thie truly organized cutis, as a medium of intercourse and gradation."-Bicnat, 'Anatomie Générale, tom. iv.
viewed as morbid exereseenees, since they are unexeeptionably present in horses, as well as in asses and mules.

Rete Mucosum.

The rete vel corpus mucosum eonsists of a fine, delicate, laminated tissue, interposed between the cutiele and cutis, and serving as their eonneeting medium; so that the two parts I have been deseribing are, in faet, nowhere in contact with each other. It is to this substaree that the skin owes its eolour ; in proof of whieh, as was observed but now, if either the eutis or eutiele of a black horse be examined in its detached state, it will be found to be, in itself, colourless. Again, the eutis vera of the Negro is as white as that of the European; the only difference in their skins consisting in the colour of the rete mueosum, which in the latter is blaek.

Composition. This part is with difficulty demonstrable in a separate state from the others. We may detach it by putrefaction from the cutiele, but we sueeced only with great pains in stripping it from the cutis, and this is best attempted by maccration in hot water : the skin of a black horse, and a part bare of hair, should be seleeted for the purpose. It is (as its name implies) a viscous mueilaginous matter, clothing the delieate vessels and nerves of the eutis in their way to the surfaee, and appearing to afford them some proteetion from outward impressions, and to assist in preserving their integrity of strueture. It has been compared to the pigment of the eye ; and, as far as their general appearance is the ground of analogy, certainly not without reason.

Colour. In most animals there appears to be a general relation in colour between the skin, the hair, and the eyes. In black horses we invariably find the skin blaek, and the eyes dark-eoloured; on the contrary, in the milk-white and eream-coloured breeds, the skin is white or eolomless, and the eyes red or ferrity. In brown, bay, and cliestnut horses, the rete mucosum partieipates of the eolour of the eoat ; in pieballs, skewballs, \&e. it varies its hue in plaees with the change in eolour of the hair. The Negro has black hair and blaek eyes ; the Mulatto, blaek hair and dark eyes ; the Albino (in whom by some this substance is thought to be wanting) light hair and red eyes.

Regeneration. This part, when destroyed, as it oeeasionally is by abrasion or ulecration, appears to be with diffieulty regenerated: some say that it never is. We know that after broken knees, white hairs are frequently seen upon new skin; but, in the course of time (unless the part go bare), it generally beeomes corered by hair of an uniform colour with the eoat: this inelines me to think that the rete mucosum is reprorluced. Again, new
skin in the Negro is at first red-from its blood : still, in the course of time the cicatrix assumes a dark hue, and I believe, in almost every instanec, ultimatcly acquires a black tinge.

Of the Hair.

The hair is the eovering Nature has provided for the skin of animals to proteet it from cold, heat, and external injury : it is to be regarded as their clothes, being in general suited both in quantity and quality to the temperature of the elimate they inhabit. The eutaneous surfaec in man, being for the most part but thinly furnished with hair, possesses a degree of sensibility, and of relation to surrounding agents, whieh that of a quadruped is excluded from; and in this respect, says Bichat, whose sentiments these are, life is less aetive in the latter. In animals, the functions of reproduetion and digestion constitute the prineipal if not the only sourecs of pleasure.*

Quality. The horse is elad with hair of two kinds or qualitics : the one is that fine soft material which clothes the body generally, and which we expressively distinguish by the terni cout; the other, vulgarly known as horse-huir, is of a coarser and stronger nature, is confined to partieular parts, and appears to have been added rather for the purposes of ornament and defence than those of vesture and interception. The mane, for instanee, forms a shicld to the neck in eombat, and for this reason is more luxuriant in the male than in the female: it is likewise (as well as the forctop, which is a continuation of it) an ornament. \dagger The tail is not only a handsome appendage, but it in some measure supplies the deficiency of hands, in switching off insects and other irritants within its reael. The tufts of hair sprouting from the fetlocks, defend those parts from contusion when forcibly depressed in action, and serve, at the same time, as a protection to the heels. The long bristly hairs standing erect from the muzzle and cyclids, are so many tangents of communication with the delicate organs of feeling into whieh they are implanted.

Thickness. The eoat itself is not of an unform thiekness or eonsistenee in all parts. Upon the sides, the back, loins, and quarters, and upon the shoulders and arms, it is thick and abundant; but upon the inner parts of the thighs, and under the

[^41]arms, it is thin and scanty. Upon the genitals, udder, and anus, around the lips, and at the entrance of the auditory canal, it is so soft and fine, that it assumes the nature of down. It is longest and most luxuriant about the throttle, and within the ears; it is coarsest and most capable of resistance upon the legs. Rarcly, and only in certain climates, are scen horses whose skins are hairless; at least, they have no other pilous covcring than a light down, and that only perceptible on close inspection.* Dogs of this description are not so uncommon.

Direction. The hair, generally speaking, takes an oblique direction, cither backwards, or downwards, from a medium line that would eut the body into cqual halves: in parts possessed of much motion-as the throttle, axilla, flank, and bend of the knee and hock--it is rough, elevated, and irregular in its coursc. Now and then we meet with a horse in whom the coat is everywhere frizzled or curled.

Structure. Whatever may be the apparent nature of the hair in various animals, it docs not seem materially to differ in the most remarkable circumstances connected with its strncture. A hair may be said to be composed of thrce parts; the bulb, the root, and the stem. The bulb consists of a transparent membranous canal, of a cylindrical figure, perforated at cither extremity, that has its origin in the adipose and ccllular tissue underncath the skin, is received into one of the arcole or large pores of the cutis, and terminates under the cuticle. The aperture through the base is filled by a little conical papilla, from its softness, denominated the pulp of the hair, from which issues the root, or the tender unhardened part of the stcm, shooting up through the bulb: which appearances have led anatomists to regard the stem as a sccretion from the pulp. In the whiskers and bristles of large animals, nerves as well as blood-vesscls have been traced into the bulb: to the latter we may assign the produetion of an unctuous matter that anoints the stem, and gives that sleekncss and glossiness to the coat so remarkable in the Arabian horse and his race ; a deficiency of which appears to be the prevailing cause of the dry and stubborn eoat of a horse out of health, or of one that has suffered from exposure to eold. The stem, as soon as it has emerged from the bulb, is said to reccive, in piereing the epidermis, a coatiug from it ; but, if it docs so,

[^42]friction soon destroys it, for I have never been able myself to obtain any distinct demonstration of such a tunic. Bichat, indeed, denies its existence altogether. Those who have subjected large quantities of hair to chemical analysis have found its composition to be very similar to that of horn or cuticle; but it has been a matter of dispute whether the stem is formed of a single ease, or whether it consists of filaments including two or more eanals in their interstices: from the observations of those who have most extensively and minutely inquired into this part of comparative anatomy, it would appear that bristles, and what is called horse-hair, are filamentous, but that the fincr hairs are simply tubular. From the summit of the pulp procceds an elongation of soft matter into the cavity of the stem, which, from its outward resemblance to it, by many is regarded as a process or continuation of the pulpitself; but Bichat avers, that it is a distinet substance, and, though he acknowledges his igmorance of the true organization of it, maintains that it is a vital part, and that it is the seat of the colouring principle of the hair. For my own part, whatever may be the nature of this particular substanee, I am inclined to agree with the learned writer of the article "Hair," in Rees's Cyclopredia, "that the colouring matter pervades the horny tube of the hair, to which it communicates an uniform stain or dyc, in the same manner as the substance of a horn or hoof is coloured."

Identity. All hair has a common similarity in its structure and mode of growth; whether it assume the nature of human hair, that of the coat or mane of the horse, the wool of the sheep, the fur of the rabbit, the bristles of the hog, or the spines of the hedgehog : its particular varicties in every one of these animals being owing simply to the quality and disposition of the fibres of its cuticular casc. The coat varies in quality, colour, and length, in horses of various breeds: the Arabian, the racer of this country, is characterised by his smooth, silken, and glossy coat; the cart-horse, the Shetland pony, and the northern horses in general, are contradistinguislied by the greater length and consequent roughness, the coarseness, and stubbornness of their hair.

Colour. With regard to colour, I have already had oceasion to remark, that there is some councetion between that of the skin, the hair, and the eyes: black horses have blaek skins and dark eyes : milk-white and eream coloured horses, light skins and wall eyes. The three primitive colours, those of which all the other appear to be either shades or combinations are white, reerl, and black. According to Richerand, the lighter the shade the finer the hair; as a proof of which, he says, there are fewest
black hairs in a square ineh of skin, more chestnut, and most light eoloured. This assertion, our own observation appears to eonfirm : since it is comparatively rare to meet with a black thorough-bred horse, though it is a very prevalent colour among eart-horses; and the glossy silken coat for whieh the former is so much admired is in none more eonspicuous than in those that are light-eoloured.

Shedding. Most animals, I believe, at eertain seasons of the year, lose one pilous eovering, to have it renewed, or replaced by another. The pulpy substance at the root of the hair shrinks and dries up, the stem, eonsequently no longer supplied with nourishment, losing its support, deeays and falls off; at the same time, a new pulp appears by the side of the old one, whieh, during the absorption of the latter, grows and gives root to a new hair: so that the pulp and stem only, and not the bulb, undergo the process of regeneration. The coat of the horse is shed twiee during the year-in spring and autumn : a phenomenon exhibited with great regularity so long as the animal remains in his native fields; but as soon as he is domestieated, this process is influeneed by many eireumstances connected with his stable management; though by none more, perhaps, than the temperature of the stable. That which comes under the denomination of. horse-hair-the main and tail, and the long hairs about the fetloeks, muzzle, eyelids, \&e., is never shed; henee it grows to an extreme length. One of the most striking phenomena in the natural history of quadrupeds is, that in deer, not only the hair but the horns are deeiduous. In the spring, the antlers of the stag, but lately so strong and formidable, become soft, and are east off altogether, leaving him in a comparatively defenceless state : in the course of the ensuing summer, however, new horns spring up in their places, whieh, before the commencement of autumn, erown the animal again with his noble weapons, and give him his wonted majestie mien, preparatory to the season of eopulation, whieh is now at hand. And now, his horns being fully regencrate and fit for the purposes of combat, with ungovernable sensuality he wanders forth in seareh of the female, whose possession should another dispute with him, he will by terrible conflicts strive to obtain and secure.

Reproduction. The hair is speedily reproduced upon any denuded part, so that we are not afraid of the skin remaining bald so long as the cutis (and consequently the bulbs of the hair) remain uninjured : indeed, hair will be regenerated even after it has been plueked out by the roots. In the ease of broken knee, when it happens that the contusion is attended with destruetion or disorganization of the cutis, a scar or bald place must result:
should a few white hairs make their appearance, we may conclude they are the offspring of the injured (not totally destroycd) pulps.

Of Cellular Membrane.

Cellular membrane is the material employed in uniting, covering, and defcuding parts; as well being of itself, under various modifications, a very gencral component substance. The membrunes (both scrous and mucous) are resolvable entircly into cellular membranc. Periosteum appears to be nothing more than a modification of it under a eondensed form; and from the periosteum (and not from the muselcs, as was formerly supposed) are derived the tendons. Another derivation from this same souree are the capsules of joints : they only differ in being thieker in substance, and in as far as they arc added to and strengthened by surrounding parts. The fuschice are composed cxclusively of cellular membrane ; and from them appears to be derived the eellular substance we find in the eomposition of the muscles. Burse mucose are likewise cellular membranc : indecd, they are much the same as the eapsules of joints, containing a similar fluid. Even the animal matter of bones themselves appears to be mainly, if not entircly, cellular membrane. So that ecllular mombrane may truly be said to be a gencral componont, as wcll as the universal conneeting medium, of the different structures of the body.

Kinds. There is said to he two "kinds" of cellular membrane in the body : one denominated reticular; the other adipose. By the "reticular" is meant the true cellular membranc, that which is properly so ealled; by thi " adipose," the mombrane which contains the fat.

Comparative Quantity. Ccllular membranc exists in greatest abundance immediately underncath the skin, binding it down loosely in some places, in others tightly to the subjacent parts. On the ribs, and more especially about the breast, it is abundant and loose in its texture; but upon the belly, and about the head, it is densc, and so short that we ean searcely pineh up the skin, or insert a rowel, though we cffect cither with the utmost facility in the chest, or underneath the jaw. Although the quantity of this substance depends in some measure on the condition of the animal, it is always plentiful in parts possessed of much motion: hence we find it long and loose in the scrotum (whercin it invests the testicles), on the inside of the elbow and thigh, and underncath the jaw.

T'exture. Ccllular membrane is made up of fibres, interwoven and disposed in sueh a manner as to form imnumerable
eclls or small cavities : and this it was that first gave rise to the name of cellulur membrane. These eells have a free communi. cation with eael other; a faet demonstrated by oeeurrenees of the most common and familiar kind: who has ever seen the eareass of a ealf inflated by a butcher, in order to give the veal a fatter and whiter aspeet, will need no farther proof. There are many phenomena, howevcr; eonneeted with disease, that verify the same thing : in empliysema (whieh is a swelling of the skin in eonsequenee of the arlmission of air through a wound communicating with the eells of this membrane), the air very eommonly diffuses itself over the whole borly; and a wound in the chest, or one at the point of the elbow, is the most likely of any to be followed by such eonsequences. Again in anasarca (which is an effusion of water into this substanee), or in ecchymosis (an extravasation of blood into it), the fluids invariably, after a time, oeeupy the most depending parts : hence the tumefaction of the legs, breast, belly, and sheath, in the first of these diseases, beyond that of any other parts.

Exhalation. Into the cells of this membrane, during life, is poured forth a serous fluid, in the form of vapour, by the exhalent extremities of the arteries ; from the cxhalation of whieh that peeuliar odour so constantly pereeived in flaying an animal reecntly dead is emitted.

Modification. In addition to the modified forms of this membrane already notieed, one yet remains to be mentioned. In most struetures it is opaque, but there is one part where its texture is so very fine and delieate, that it is perfeetly transparent: it is the tunica vitrea in the eye, through whieh the rays of light pass without the slightest intereeption.

Elasticity. The eclls of this membrane possess a degree of elastieity. If, for instanee, we inelude a portion of skin between our finger and thmmb, it will suddenly reeoil on being liberated, and rccover its original situation; a eireumstanee in part attributable to the elastie property of the subjacent eellular membranc.

Organization. The ecllular membrane is not very vaseular: the blood-vessels found ramifying within it being chiefly distributed to other and neighbouring parts; so that whenever violent inflammation is cxcited in it, sloughs of it not uneommonly take plaee. This happens when we introduce any eaustie under the skin; the eore whieh comes out being ehicfly dead cellular membrane. Absorbents would seem to exist in great numbers in it ; for if we but extravasate quieksilver under the skin, in some parts of the body, it will find its way through the cells of the eellular membrane into many of these vessels.

Although a part not apparently exeitable, in a healthy condition, by either mechanical or chemical stimuli, and although no nerves are traceable into it, yct does it appear to possess some degree of sensibility, which becomes more manifest under disease ; since the simple introduction of a probe into the cavity of an abseess evidently occasions pain.

Of Fat.

Adeps or fat is a concretc oily matter deposited in various parts of the body, apparently more for physieal purposes than any important end it ean answer in the animal cconomy. It is contained in a cellular membrane, which only differs from the ordinary kind (the one just described) in its cells being so many little eircumseribed or independent cavitics (culs-de-sac), by which sage contrivance the fat (which in the living abody is a liquid) is prevented from gravitating and collecting about any particular parts. It is this membranc that constitutes the residuc (or skin, as it is ealled) after the fat is melted down by the tallow-chandler.

Fat exhibits differenecs not only in different animals, but in different parts of the same species. In some parts of the body it is white ; in others it has a yellowish cast. In general it possesses but little taste or smell: both, however, grow stronger as the animal advances in ycars. In the living body it cxists in the liquid form, and in carnivorous animals it retains much of its oily nature after death : but in graminivorous beasts it coneretes, on exposure to air, into the white solid substanec best known by the name of fat. About the kidneys, particularly in fat animals, adeps is always found deposited in abundance; assuming here a whiter aspect and a firmer consistence than in other places, for which reason it is commonly called suet. In many parts of the body there is little or no fat; and when we come to reflect on the nature of their functions, we shall discover that its presence must have proved inconvenient to them: the cyclids, for instance, had they been loaded with fat, could not have moved as they now do : nor could the penis, so constructed, have answered the purposes for which it was designed. Young animals have more fat than old, and have it deposited more upon the superficial parts of their body ; in faet, the young of many of the higher animals are enveloped in fat: of this, remarkable examples are found in the infant, the puppy and the kitten. But it is not so with the foal, the calf, and some few others, which immediately after birth have the power of following their dams, in search after food : fat to thiem would have proved burdensome, without answering the same useful purposes for which

Nature seems to have given it to the young of most other animals. We frequently sec very fat young horses; indecd, most of the horses three and four years old, purchased of dealers, or of the breeders, have considerable depositions of fat between the skin and abdominal muscles; or, to express ourselves in the jockey's phrase, are "fat upon the rib." The prodigious bulk that beasts, fed for the purpose, will attain, is almost incredible : a prize ox has weighed two hundred stone ; * and a prize shecep, forty stonc.* In the human subject, also, we have had astonishing instances of corpulenec: Lambert weighed fifty-two stonc. \dagger In respect of the latter, it has been remarked, that fat people do not, in gencral, live to a great age.

Production. As the cells of the cellular membrane are filled with serous exhalation, so in like manner do we conecive those of the adipose to be with fat: we have no anatomical proof of the cxistence of any distinct gland for the purpose, but we suppose it to be a secretion from the arterial ramifications distributed over the interior of the cells.

Deposition. In almost all animals that are healthy, copious food of a nutritive kind, combined with little labour will increase the deposition of fat ; but in the human subject, and, indecd, in many quadrupeds, the animal spirits appear to have a very considerable influence over this sccretion. We sce numberless examples of people, who appear to enjoy the best bodily health, and yet are constantly meagre, though their food and habits of life tend to an opposite state; and we may oceasionally obscrve horses and dogs, particularly circumstanced, in which, from their natural leanness, or poorness upon the rib, something of a mental nature would appear to be operating; indeed, it is a well-known truth, that if you scparate a horsc of an irritable disposition from others with whom he is accustomed to be stalled, he will fall away in condition, in consequence of (to use the vulgar expression) fretting from being alone; and so much does this act of segregation affect some, that I have known them even refuse their food. Those horses are commonly the fattest that are fed on casily digestible food-such as bruised or scalded corn, roots of a nutritive kind, chopped hay, \&c., and that have little or no exercise : a fact well appreciated by the horse-dealer, whose horses are fine and fit for sale, but incapable of fatigue.

Absorption. Constitutional diseases, generally speaking, extenuate the body, and more particularly such as are of the acute or painful description; hence, the irritation caused by a simple puncture in the foot, will, if it be of long duration, induce a state

[^43]of emaeiation : under whieh circumstances, the absorbents are supposed to act with more than ordinary effect, and to take up the adeps from the interior of its cells.

SECTION XII.

PLANTAR SYSTEM.

COMPRISINGTHE FOUR FEET.

OF THE FOOT.

Tue foot is the part upon which the animal stands; with which he treads the ground; and by which his body is supported. Of his whole structure it eonstitutes the basis.

Number. Animals exhibit differences in the number of their fcet, and aceordingly have been distributed into classes, consisting of bipeds, quadrupeds, and multipedes. Bipeds include men and birds. Quadrupeds comprehend most of the land animals. Multipedes embraee insects. The reptile genus, sueh as serpents, \&e., being without feet.

Toes or Claws. Another classification of animals has been formed from the number of toes or elaws their feet are cleft or divided into. Those possessing but one toe, and consequently an undivided foot, come into the class of monoductyles, solipedes, or solidungulous animals; they are the horse, the ass, and the mule. The diductyles, or two-toed class, embrace the rumi-nants-oxen, sheep, and goats. The tetraductyles, or fourtoed, include the dog, the eat, and the hog.

Division. Founded upon the obvious and important differenecs existing between the external and internal composition of the foot, a division has been made of its parts into those that are sensible or sensitive, and those that arc insensible or insensitive. A more suitable phraseology would have been found in the terms organic and inorganic ; since of the parts they are meant to distinguish, one possesses neither nerves, nor blood-vessels, nor absorbent vessels; while the others are furnished with all these attributes of organization.

The external parts of the foot consist entirely of horn, and from sueh composition have, collectively, got the name of hoof.

The internal parts eonsist of bones, ligaments, and tendons, besides struetures peculiar to the foot.

Of the External Parts.

The Hoof.

The hoof is the horny case or covering Nature has provided for the protection of the sensitive parts of the foot. It may be said of itself to constitute such a shoe or defence, as enables the animal in his wild state to travel about in quest of food, not only without injury to the structures underneath it, but with a degree of elasticity that preserves his whole frame from concussion. Were one forced into any comparison of the sort, it must be admitted that the hoofs of animals bear some anatomical affinity to the human nails, or claws of other animals; though they are vastly superior in physiological importance to any such appendages as these.

Form. Sainbel viewed the foot as "the segment of anl oval, opened at the back, and nearly round in front." To a common observer, the hoof exhibits a conoid form ; the part resting upon the ground being the basis; the vacuity above, the obtruncatcd apex. Mr. Bracy Clark asserts that this view is incorrect, and that the general figure of the hoof is a cylinder; very obliquely truncated upon its ground surface. This he demonstrates in two ways; either by rolling up a picce of paper into the shape of a cylinder, and afterwards cutting one of its ends in a very slanting direction; or by taking a carpentcr's square, and placing one limb beneath the foot across the quarters, then sloping the other backward, against the side of the quarters, parallel to the front, when the edge of the iron will be found parallel to the wall of the hoof. This corrected view of its figure will serve to account for the general equiformity manifest in the hoof, and also for the underiating correspondence found to exist between its slope or slant, as well in front as behind, which in an ordinary or healthy foot may be estimated at an angle of 45°. Around the coronet, where the hoof unites with the skin, the cylinder is cut directly across its perpendicular-at right angles with it: it is the oblique truncation of its ground-surface that occasions the slant, which latter we may consequently increase at pleasure by any means that augment the former, viz. by lowering the hecls; by cutting away a prominent frog; or by putting on thin-hceled shoes. At the same time that we increase the slant of the hoof, we increase the obliquity of the pasterns, and likewise proportionately augment the ground-surface of the hoof, from heel to toe, the breadth remaining unaltercd; and in the same ratio, consequently, extend the surface of tread.*

[^44]Spread. By the spread, is meant the inelination the hoof manifests when left unshod, around the toe and sides, to bulge, or protrude at bottom, whereby its ground-surfaee beeomes augmented, partieularly around the outer quarter. To a certain extent this is worthy of observation; althongh, in my opinion, it is to be regarded rather as an effeet of pressure than one of abstraet growtll. The surfaee of inelination upon whieh the horn is produeed has no sueh spread, nor ean the hoof itself be said, from growth alone, to have any such natural tendeney; but, as it eontinues to grow and shoot beyond the inner foot that produeed it, and to whieh it was so intimately united, it yields to the pressure of the animal's weight, and bulges or spreads out, and more at the outer side than the inner, in consequenee of the pressure tending more in that direetion. If we examine a number of hoofs of negleeted growth, and eonsequent exuberanee and deformity, of various deseriptions, we may diseover that, in them all, the spread seems to have been the first or incipient deviation from that line of growth viewed as consistent with the health and well-doing of the foot. It is only in the unshod hoof that any spread is found: as soon as the ground-surface eomes to be eoufined by a shoe, pressure ean no longer exert its influence to produce sueh eonsequences.

Mr. Goodwin aptly observes, that " to take the form of the hoof eorreetly, we must strip it of its exuberant or superfluous parts, the same as one would pare the superabundant growth off our own nails. The neglect of this necessary preparative has led to eonsiderable differenee of opinion about the natural, healthy, or true form of the ground-surface of the foot. Mr. Bracy Clark, I eoneeive, has inelined to the side of error in this partieular; though, in the substitution of the eylindrieal for the conieal figure of the entire hoof, he has certainly the advantage of other writers. His natural foot (Plate 1) is one with great spread to it, mueh of which the smith would find it neeessary to deprive it of, even on the first shoeiny; and the protuberanee of the outer quarter (which Mr. C. points out as an attribute of health) being wholly owing to the spread, will, of eourse, disappear with the annihilation of the spread."*

Although Mr. Goodwin has not here explained what he eonecives to be the origin or eause of the spread, it is evident we both eoneur in viewing it rather as a deviation from health or nature than a eireumstance worthy of the consideration it has been accounted of by Mr. Clark.

Colour. Hoofs are black or white, or some intermediate shade, or they may cxhibit a blaek and white striped or marbly

* Goodwin's 'New System of Shoeing,' edit. sccoud, p. 33.
aspect. It is an old obscrvation, and one that passes current among us at the present day, that black or dark-shaded hoofs possess greater strength and durability, and indicate less proncness in the feet to discase, than such as are composed of white or striped horn. The rationale of which appears to be, that white horn (the same as white hair) is the product of parts weaker by nature than such as produce dark or black horn, and, being weakcr, consequently are more liable to discase, less able to resist those impressions that tend to disorder. White hoofs are more porous than black ones, and consequently absorb moisture and lose it again by evaporation with more facility : a fact that may probably aid us in aecounting for the failures attributed to them.

Maynitude. It requires no vetcrinary skill to diseover any very material disproportion in the magnitude of the foot: it will strike us at once as being large or small, in comparison to the limb or the size of the animal. A foot of any description that is out of proportion is to the horse possessing it more or less objectionable: but for all that, thesc out-of-proportion fect, abstractedly considered, have their advantages as well as their disadvantages. Sainbel tells us, that a large wide hoof, by extending the surface of tread, "will increase the stability and firmness of the fabric ;" but then, he adds, "this partial advantage grows into an cril when it becomes applied to a body eapable of translation, and considered in a state of actual motion; because, then, the mass and weight of the foot overburthen the muscles of the extremity." And because, I would add, the surfaces of contact being greater, the attraction of cohesion becomes greater, and so much the more muscular force is required to raise the foot (particularly in moist ground) from the earth. Besides which, a large foot is apt to become objectionable from its striking, during action, the opposite leg. On the other hand, it is contenderd, that a large foot will not sink so deep into soft ground as a small one, and consequently will not demand so great an effort of strength to draw it out. This is an argument, however, that can only hold good under the supposition, that in both eases the muscular strength is cqual, which we know but rarely to happen; in general, broad or flatfooted horses possessing superior strength ; small narrow-footed ones, superior speed. There camot be a doubt about a large foot being unfarourable for speed; a small one for stability: neither one nor the other can be indiscriminately found fault with ; both within certain limits possess their respective advantages ; though to turn out as such, they each of them require to be combined with suitable conformation and action.

Large bulky hoofs are found to be mechanically weaker than others, in consequence of being eomposed of a thin, soft, porous
description of horn. Sainbel ascribes all this to "a relaxation of the fibres emposing the hoof: in which case, the diameters of the vessels are increased, the porosities are multiplicd, and the fluids abound in them in too great quantities; consequently this kind of foot is soft, tender, and sensible." Snuall feet, on the contrary, in gencral possess a close woven horn, thick in substance, and consequently prove strong: they are rather oval than circular in figure, with great depth of substance, and are found to be of a durable nature. "In fect of this description," says Sainbel, "from the too close union and too close tension of their fibres, the ressels destined to conduet the nutritious fluid are contracted and obliterated; whence proceeds that dryness of the part which renders the horn brittle and liable to split."*

Division. To the common obscrver the hoof appears to consist of one entire or indivisiblc case ; but the anatomist finds, by subjecting it to maccration, or coction, or even to putrefaction, that it resolves itself into three scparate picces: still, so long as the hoof maintains its integrity, such is the force of cohesion existing between these threc parts, that we as casily rend it in any other place as dissever one of its jointures. These constituent parts are the wall, the sole, and the froy.

The Wall.

The wall or crust is the part of the hoof which is visible white the foot stands upon the ground. It forms a circular boundary wall or fence inclosing the internal structures. On taking up thi foot, we find the wall prominent all round beyond the other parts, making the first impression upon the ground, and evidently taking the largest share of bearing. It is the part to which the shoe is nailed. It is, in fact, the most important division of the hoof; appearing to form (in the words of Mr. Clark) "the basis or first primeiple in the mechanism of the hoof, the other parts being all subordinate to this."

Situation and Relations. The wall takes its begimning at the coronet, from the terminating circular border of the skim, with which it is intimately united; their line of union being conccaled by a row of overhanging hairs. From the coronct the wall descends in an oblique direction to the bottom of the foot, where it cmbraces the sole, and terminates in a circular projecting border. The anterior and lateral parts of the hoof are formed entirely by the wall; but at the posterior part, instead of the heels of the wall being continued one into the other so as to complete the circle, they become inflected, first downward, afterwards forward and inward, and are elongated in the latter direction * Sainbel's 'Lectures on the Elements of Farricry.'
mutil they reaeh the centre of the bottom of the foot, where they terminate : these inflections or processes of the wall constitute the burs. Altogether, the wall may be said to form about two thirds of the entire hoof.

Connection. Superiorly, around the coronet, the wall is united with the skin; inferiorly, within its circumferent border, with the sole; posteriorly, between its heels, with the heels of the frog; inferiorly, between the bars, with the sides of the frog; and internally, with the sensitive lamine. Let us now consider the wall in its detaeled or scparate state.

Fiyme. That of a hollow cylinder, having the side presented to the ground cut mueh aslant, and whose eircle exhibits a hiatus or defieiency behind, from the lateral boundaries of which issue two narrow proeesses or appendages. Taking a lateral view, the wall assumes a conical shape, being broad and deep in front, and gradually narrowing as it stretehes baekward.

Division. For facility of reference, and in aid of our deseriptions, we distinguish in the wall, First, the toe; sceondly, the quarters; thirdly, the heels; fourthly, the superior or coronary border; fifthly, the inferior or solar border; sisthly, the lamine or lamellae; lastly, the bars or appendayes.

THE TOE forms the bow or front of the hoof, and comprehends about two thirds of the superficies of the wall. It is the deepest, broadest, and thickest part of the wall ; for reasons that will appear hereafter. It exhibits a degree of slant about equal, naturally, to an angle of forty-five degrees: though there are variations from this which (as was explained before) will be found, in a measure, to be dependent upon the oblique truncation of the eylinder. When we come to understand the physiology of this part, however, a more operative and efficient cause for this variation will be found in the weight the wall has to sustain, and in its own mechanical strength or forec of resistance: on which principle it is that light horses, thorough-breds, and poneys, as well as mules and asses, have upright or strong feet (i. e.) walls but moderately sloped: whereas heavy horses, cart-horses, and enaeh-horses, have commonly flat or weak feet (i. e.), walls that slant immoderately. And (as was before observed) upon the degree of obliquity of the wall must very much depend that of the pasterns. In estimating the slant or slope of the wall, it is proper to distinguish between that which is consequent on the detruncation of the hoof, and such as is the effect of a burthen under which the wall suecumbs. The depth of horn in front of the toe, measming from the termination of the skin to the most prominent point below (and supposing the hoof to be eut and ready to reecive the shoe), may be rated at about three and
a half inches. The bow or degree of convexity of the toe in front must depend upon its obliquity as well as upon the cireularity of the foot. The thickness of the horn composing the toe may be estimated at threc eighths of an inch, or from that to half an inch, and this substance is the same from immediately beneath the coronary cirele to the junction of the wall with the sole; at which part there is an aceession of horny matter to block up the interstices between the laminæ, and also to fill the angular vacuity that would otherwise exist here between the wall and sole. In the forefeet, the toe is thicker in substance than cither the quarters or heels : but (we have it from Sainbel) "in the hind, on the contrary, the heels and quarters are gencrally thicker than the toc."

THE QUARTERS are the portions of the wall intermediate between the toe and the heels. They are commonly described as standing upright, and, aecording to a carpenter's square set against the wall, so they appear to do ; this is not, however, the view the anatomist ought to take of their position: to him the oblique course of their component fibres, together with the slant of their lamine, demonstrate that they slope in the same manner and degree as the toe does. The quarters do not run in straight lines from before backward, but by their prominenee deseribe gentle curves, the outer making a wider sweep than the inner. This gives the hoof altogether a sort of twisted appearanee, and makes the inner part of the toe look more projecting than the outer: a deviation that seems prineipally to have originated in the spread, and one, methinks, that has had more attention given it than any consequences attachable to it render it deserving of. The quarters range in depth from two to three inches; and measure in thiekness from one fourth to three eighths of an inch.

THE HEELS are the two protuberant portions of the wall by which it is terminated posteriorly. They are the shallowest, and thinuest, and (in connection) only flexible parts of the wall. Though their surfaces recede from the perpendicular, they maintain the same slope as the toe and quarters. At their angles of inflection, from which are eontinued the bars, they form (iu conjunction with the heels of the sole) pouehes or sockets into which are received the hecls of the sensitive foot. In depth they range from one and a half to two inches. In substance they do not execed a quarter of an inch, the outer heel being rather thieker than the inner.

THE SUPERIOR or CORONARY BORDER, is the circular, attenuated, coneavo-convex part entering into the composition of the coronct. Its extent is marked exteriorly by the whitish aspect it cxhibits, and also by some partial separation
and eversion of the outer flakes of horn around its junetion with the wall below. Externally, it assumes the same charaeter as the wall below it ; but its internal surface is altogether different. Instead of possessing laminæ, the surface is smooth and uniformly exeavated, being moulded to the form of the sensitive coronet, and everywhere presenting numerous pores for the purpose of reeeiving the seereting villi. Superiorly, the coronary border presents two edges, having a groove between them for the reeeption of the terminating border of the eutis. It is this groove that marks the reeeption of the coronary border into two parts: the internal edge belonging to the inner part, whieh is the beginning of the wall itself; the external edge to the white band by which the other is embraced, and to which Mr. Clark has in particular drawn our attention, under the appellation of Coronary Frog-bund. This eovers the proper or veritable coronary border of the hoof; having, through its fibres, which are very fine, a sort of dove-tailed eonneetion with it. As it reeedes baekward, it grows broader to that degree, that its breadth at length beeomes doubled; being about half an ineh broad in front, and one ineh behind. It is thickest around its middle parts; its inferior edge, like the superior, becoming attenuated, until it grows so fine as to end in impereeptible union with the substance of the wall, giving it its beautifully polished surface: from the heat, however, to whieh the hoof is artifieially exposed, the thin part below the coronet often grows arid, splits from the erust, and becomes cecrted : turning at the same time, in eonsequence of dryuess, of a whitish complexion. Posteriorly, we find it. eontinued round the heels of the wall and frog, and from thenee aeross the baek of the eleft, forming altogether a complete eirele, and everywhere showing itself to be the medium of connection between the skin and the hoof. It has been already stated that the cutis terminates in a circular border, let into a groove around the summit of the wall : the eutiele, however, does not end here -it is continued down ; in fact, we trace it to the horny band we have been describing, the one being continuous in substance with the other. Indeed, the only detectible differences in them are, that one is thicker than the other, and grows hard, and dry, and white, from the effeets of heat upon it from without, and the want of moisture from within. This cutieular origin and assimilation may be demonstrated in the putrefied foot; or, better still, in the foot of the foctus. The band is broader at the heels than elsewhere, in eonsequence of the greater breadth of exposed eutis at those parts. In its texture it is fibrous, and its fibres pursue the same direetion as those of the wall, from whieh they differ only in being of a finer texture. Mr. Bracy Clark appears to enter-
tain some singular notions in regard to the structure, but more partieularly the uses of this part; which in the respect I bear for their author, I shall eonsider when the time may arrive for me to treat of the physiology of the foot.

THE INFERIOR or SOLAR BORDER offers but little worthy of obscrvation. It constitutes the ground or wearing surfaec of the wall, and is the part to which we nail the shoe. It grows thicker and more cxuberant around the toc than in other places, and from its projecting beyond the sole, presents a conrenient and suitable hold for the nails of the shoe. Around the anterior and lateral parts, it embraces the sole; behind, it joins the bars, wheh two points of union form two prineipal bearing places for the shoc. The inferior border possesses a larger cireumference than the superior, in consequenee of the oblique detruncation of the hoof.

This is a part that requires paring down every time the horse is shod. Such is its cxuberating nature, that (like the human nail), were it not continually kept worn down, or broken or eut off, it would elongate very considerably, and gradually turn up, cxhibiting forms not only of the most unsightly but even grotesque description, and proving incommodious to a degree to be almost entirely destructive of progression.

THE LAMINA (better named lamella) eonsist of numerous narrow thin plates or processes, arranged with the nicest order and mathematical precision upon the internal surface of the wall. They cxtend, in uniform parallels, in a perpendicular direction from the lower edge of the superion border down to the line of junction of the wall with the sole; and are so thickly set, that 110 part of the superfieies remains unocenpied by them. They are likewise continued upon the surfaces of the bars. In the recent subject they are found soft, yiclding, and clastic; but from exposure they become dry and rigid.

Every lamella cxlibits two edyes and two surfaces. By one edge it grows to the wall ; the other, which is somewhat attenuated, hangs loose and floating within the eavity of the hoof. The surfaecs, which are two lateral, are smooth, and, eonsidering the magnitude of the lamella itself, of enormous extent ; so much so that it might be said almost to be constituted entirely of superficies. And this leads us to the contemplation of the great and magnifieent design whieh Nature cridently had in view in their formation, riz., the production of ample surface within a small space, an end that has been obtained through the means of multiplication. Mr. Bracy Clark procured from the late Thos. Evans, LL. D., inathematical teacher of C'hrist's Hospital, a calculation of what their united superfieies amounted to ; and it
appeared to afford an inerease of aetual surface more than the simple internal area of the hoof would give of about twelve times, or about 212 square inehes, or nearly one square foot and a half.
The lamellæ exhibit no differenees but in their dimensions. In length they eorrespond to the respeetive depths of the wall; being longest, and likewise broadest, around the toe, and gradually deereasing towards the hinder parts.

In eomposition, they are horny. Viewed through a microseope, Mr. Clark diseorered in their substanee two planes of fibres, " the one rumning in parallel lines to the axis of the hoof, the other obliquely intersecting these." When stretehed, they exhibit sigus of clastieity ; but this appears greater in the transverse than in the perpendieular direction.

By means of its lamellæ, the wall presents a superfieies of extraordinary amplitude for the attachment of the coffin-bone. A structure consisting of similarly formed lamellæ envelopes the bone, but these are dovetailed in sueh a manner with the horny lamellæ, as to complete a union whieh, for conecntrated strength, combining elastieity, may vie with any pieee of animal meehanism at present known to us.

THE BARS are processes of the wall, infleeted from its heels obliquely aeross the bottom of the foot. For a long time, by farriers, they were confounded with the substance of the sole, an crror that owed its origin and perpetuation to the malpraetice they excreised in paring the foot-in eutting both bars and sole down, without any distinetion, to a common level. In the natural healthy foot the bars appear, externally, as clongated sharpened prominences, extending from the bases of the heels into the centre of the foot, between the sole and the frog: posteriorly, they are eontinuous in substance with the wall, with which they form aeute angles; anteriorly, they streteh as far as the point of the frog, constituting two inner walls or lateral fences between that body and the sole. Sainbel eoneeives, from their position, that they offer resistance to the contraction of the heels. Their internal surfaees exhibit rows of lamellæ, continued from those lining the wall, but which are here short, and in their direction transverse, two eireumstances referable to the narrowness and inflection of the bar: towards the extremity of the bar they gradually grow shorter, and less distinctly marked, until we at length lose all vestige of any more of them. While the prominenee of the bars is sueh as to give them a seeondary bearing upon the ground, their sharpened forms will sink them more or less deeply into every impressible surface.

The Sole.

The sole is the arched plate entering into the formation (as its name implies) of the bottom of the hoof: or, to adopt Sainbcl's definitiou, " it is that part which covers the whole inferior surface of the foot, excepting the frog." It is a very just practical obscrvation of Mr. Coleman's, that although a knowledge of every part of the foot is indispensably necessary to render us scientific overscers of the farricr's art, no individual part requires snch undivided attention, as regards shocing, as the sole, since the success of this mechanical operation mainly depends on the paring and defence of this arched horny plate.

Situation and Connection. It fills up the interspaces between the outer and inner walls (or bars) of the crust. I differ in opinion from those who describe it to surround the toe of the frog. I hold its circumferent support and connection to be the wall of the hoof, to which it is firmly ecmented by an interstitial horny matter, filling the creviecs between the laminæ.

Figure. The circumferent outline of the sole measures about two thirds of a circle, the remaining third being omitted to form a triangular-slaped hiatus or opening for the reecption of the frog and bars. This circular form, however, is by no means true, or even invariably the same, in its dimensions. Gencrally, the longitudinal exceeds the transverse diameter. Its greatest diameter is shown by a line extended from either heel aeross its middle to the opposite point of the toc.

Arch. Commonly, the sole presents an arch of more or less concavity inferiorly, and convexity superiorly. But it is not a regular or uniform areh, being one that rather waves or undulates, so as to bear a comparison, made of it by Mr. Clark, " to the mouth of a bell extremely extended or flattened." Like that of the bell, the arch is highest in the middlle, from which it slopes, laterally, down to a flat, subsequently to rise again around its border, in order to present a dilated surface for attachment towards the wall. There is, however, vast variety in the degree of are of the sole: in some fect it is of surprising depth; in others, the areh is converted into a flattened surface; and yet both seem to perform equally well. In the hind fect the sole is generally more arched than in the fore, and approaehes in figure nearer to the oval than the circle.

Division. In the sole we distinguish an anterior part or toe; a middle or central part; two points or heels; and two surfaces. These divisions are not very well defined: but they prove serviceable in aid of our descriptions.-The toe of the sole is the part encircled loy the toe of the wall, against which it abuts, and
to which it is intimately united by horny matter, the two together forming a stout bulwark of defence to those parts of the internal foot ineluded between them.-The points or heel.s are the two posterior salient angles received into the angular intervals between the outer and inner walls or bars. Although, naturally, the least exposed, these are the parts most subject to injury or pressure from the shoe, being the seat of that disease mistakenly called corn.-The middee or centre of the sole is the portion more immediately surrounding the fore parts of the frog, and would (were the sole a regular arch) be the most elevated part; but, in gencral, we find the sole flattened hereabouts: the highest parts of the arch being the angles alongside of the bars ; the lowermost, those around the toe.

Surfaccs. Of the surfaces, the superior (as was mentioned before) is mevenly convex ; the inferior, correspondingly concave. The former is everywhere pitted, partieularly about the heels, with numerous circular pores, running in an oblique direction, the marks of whieh remain evident upon the inferior surfaee likewise. These pores are the impressions made in the soft horn by the villi of the sensitive sole, from whose orifices the horny matter is produced. They also form the bond of union between the horny and the sensitive soles: which is of a nature so strong and resisting, that it requires the whole strength of a man's arm to effect their separation-an operation of a cruel description that was wont to be praetised in times past, under the fallacious notion that "drawing the sole" was extirpating the malady.

Thickness. The natural thickness of the sole may be estimated at about one sixth of an inch. There will be found, however, variations from this standard in different horses; and it will also very mueh depend on the part seleeted for measurement. The portion of the sole most elevated from the ground-that which forms a union with the bars-is nearly double the thickness of the central or eireumferent parts ; and next to this, in substance, comes the heel. I do not find that the sole "grows thinner from the eircumference to the centre," as has been stated by au author of celebrity.

The Frog.

The frog is the prominent, triangular, spongy body, occupying the chasm left by the infleetion of the bars.

Situation and Connection. The frog is fitted into the interval between the bars; the three, altogether, filling up the vacuity in the sole, and thcreby completing the cirele, and establishing the solidungulous eharacter of the foot. The frog extends forward, towards the toe, about two thirds of the longitudinal
diameter of the ground-surface of the hoof, terminating a little beyond the central point (or what would be the central point) of the sole-or rather shooting directly through it, so as to annihilate the spot. Posteriorly, it is cmbraced by the heels of the wall ; laterally, it possesses firm and solid junctions with the bars, and through their medium with the sole : and these unions are effected not by simple apposition and cohesion of surface, but by a lamellated structure, apparent on the sides both of the frog and bars, by which the parts are reciprocally dovetailed into each other. Lamellæ are discoverable upon its sides, even all round the toc of the frog; and this is a circumstance that confirms me in my belicf that the bars reach thus far.

Figure. The frog may be called pyramidal, or cunciform, or triangular in figure ; its outline forming the geometrical figure denominated an isosecles triangle. I know of no comparison so familiarly apt as that of resembling it to a ploughshare : not only do they both correspond, as near as such comparisons can be expected to do, in outline and make, but they likewise exhibit a singular coincidence in function; the frog, like the ploughshare, being intended by its point to plough or divide the surface of the earth, and in that manner serve as a stay or stop to the foot.

Division. We distinguish in the frog two surfaces, an inferior and a superior; two sides; a point or toe; and two bulbs or heels.

SURFACES.-Both surfaces of the frog manifest striking irregularities, and these are respectively reversed, making one surface the exact counterpart of the other. In other respects, the only difference they exhibit, is, that the superior excecds the inferior both in length and breadth.

The Inferior Surface presents to our view a remarkable eavity, broad, decp, and triangular in its shape, bounded on the sides by two sloping prominenees, which divarieate from the convexity forming the toe of the frog, and terminate, after a short divergent course, at the hecls. This cavity or hollow is denominated

The Cleft of the Froy: with sceming reforence to the relationship existing, through its presence, between the horse's foot and the eloven one of the ox, deer, sheep, \&c. In consequence of its sides sloping inward, the eleft at bottom gapes wide open ; but along the top is roofed by a simple linear mark running from before backward. The horn is kept continually soft and pliant within the cleft hy a peculiar secretion from the scusitive parts it covers, the odour of which is notorious.

The solid wedge-like portion of horn in front of the cleft, ex-
tending from it to the point of the toe, has been observed by Mr. Clark to exhibit, in the natural foot at its full growth, "a considerable bulbous enlargement," whieh, by way of distinetion, he calls the cushion of the froy. On making a perpendieular section of the foot, Mr. C. finds this part is situated "ncarly opposite or under the navicular bone." And it would appear (aecording to this author) that this "rotundity, or swell of the frog," is never reproduced after it has onee been annihilated by the knife of the smith.

The superior Surface of the Frog, everywhere contimnous, uniform, and porous, being the counterpart in form of the inferior, presents us with nothing but reverses: where the one is hollow or depressed the other rises into swells and eminences, and vice versa. This aceounts for our finding the part opposite to the cleft elevated into a eonspicuous eminenec, bounded on its sides by two deep ehannels, and a hollow of broader but shallower dimensions in the front. To this eentral eonical elevation Mr. Clark has given the name of froy-stay, from some novel notions he entertains of its physiology. Such a bold promontory of horn rising in the middle of broad and deep chamnels is well ealeulated to form that dovetailed sort of connection with the sensitive foot, which greatly augments their surfaces of apposition, and establishes their union beyond all risk or possibility of dislocation. It is a part which (as far as my observations on it have extended) grows and beeomes developed together with other parts of the foot; and one that is apt to vary in its relative volume in different feet. In front of the frog-stay, the lateral borders, boundiug the hollow in the middle, deseribe a waving line, whieh, near half-way to the point of the toc, exhibits a dip or depression : this marks the impression of the navieular bone, and is the part immediately opposite to the "eushion of the frog,"-a coincidence important to be bornc in mind, as tending to throw some light on the nature of this new-ehristened strueture.*

THE SIDES are the parts by which the frog establishes its union with the borders of the triangular vaeuity in the hoof into which it is admitted. Along their superior borders they are transrersely lamellated, or rather indentated, in order that they may be fitted to the internal surfaees of the bars, whieh exhibit a similar strueture.

The Commissures are the two deep triangular-shaped hollows between the bars and the sides of the frog. In being only the superior borders of these parts that are engaged in their union;

[^45]their broad unattached parts, below, form the boundary walls of the commissures. Looking into the interior of the hoof, we diseover that the eommissures, internally, are converted into rounded promontories, similar in appearanee and texture to the one in the middle-the frog-stay-on the sides of which they are rising. In the natural state, the commissures must unavoidably get plugged with dirt, or whatever the animal may happen to tread upon ; a eircumstance from which some far-fetched notions have been extracted concerning their use.

THE TOE or Point of the Frog, is the anterior, undivided, elongated portion; that whieh forms the apex of the pyramid or wedge- the acute or extended angle of the trianglethe only part displaying that prominent or rounded form that would warrant us in using the epithet " conical " to the frog. It possesses solidity of substanee, firmness of texture, and luxuriance of growth in an eminent degree ; facts well known to the farrier, who, in paring the foot, seldom fails to make more free with this than any other part of the frog.

THE HEELS or bulbs of the frog are the posterior protuberant parts embraeed by the heels of the wall, and separated from each other by the eleft, forming, together, the base of the wedge or triangle. They present greater depth of substance than the toe, but are of a softer, more spongy texture, and are less resisting and stable, in consequenee of being deprived of mutual support by the division of the eleft. Anteriorly, the heels unite with the lateral prominenees bounding the eleft; inferiorly, they present two surfaces of tread to the ground, evidently designed to take a share in the bearing of the foot; posteriorly and superiorly, they exhibit a bulbous fulness, in eonsequence of receiving at this part a supplementary covering from a production which has been (in the deseription of the wall) adverted to, under the appellation given it by Mr. Clark, of

Coronary Frog-band. It was there stated, that the coronary groove (the groove or canal in the coronary border of the cutis) broadened considerably as it descended to and turned round upon the heels; in like manner does the horny band produced by it broaden, and not only grow broader but thicker in substanee, and consequently in the same degree augments the substance of the heels, occasioning that swell of them whieh has suggested the appellation of "bulb." The horny band itself is everywhere lamellated upon its internal surface ; but these broadened parts of it display lamelle of a much bolder character, and conseguently render their union with the heels so much the more intimate and enduring. The inferior edge of the band is dentieulated, and the dentieulations beeome so interlaced with the
lamellated fibres of the wall, that their union is rendered, in the ordinary state of the hoof altogether imperceptible. For drawing our attention to this part we are indebted to Mr. Clark; and insomuch as he considers it to be a production of the cutis (not having any connection with the glandular circle that secretes the wall), and to scrve the purpose of "uniting the sensible parts with the insensiblc," I agree with him. I find something very similar to this growing upon the human nail, issuing from the superior edge of the terminating border of the cutis, and continued from the cuticle, which procecds for some way upon the nail, uniting it more closely and firmly with the cutis, and protecting the latter from external injury. This production is no more the beginning of the nail itself than is the so-called frogband the commencement of the wall: they are both distinct parts, though but supplementary ones, and scem to be of a nature partaking both of horn and cuticle. It has no more important relation to the frog, in my opinion, than it has to the wall : it serves the same purpose to both,-that of strapping up the heels of the frog, and binding them in closer and more intimatc conncetion with the neighbouring parts. Were I asked what other use it appeared to have, I should say, that it was formed to cover and protect from injury the new-formed horn of the hoof, guarding it in its passage downward, until it has acquired substance and hardness sufficient to resist external impressions of itself.

Development of the Hoof.

During the early months of feetality, no horn or hoof is to be found. The foot is covcred with a substance, white, firm, and elastic, rescmbling cartilage in its appearance, but proving more of the nature of cuticle on examination, which supplies the place of hoof. At the coronet this substance takes its origin from the cutis, being found to be continuous with the cuticle; but that which covers the bottom of the foot is a production from the sensitive sole and frog. Altogether, it possesses the general form and appearance of the hoof, differing however in these particu-lars-that the substitute for the wall is comparatively thin in its substance: while that which grows from the bottom of the foot is cnormously thick, and, instead of being shaped into sole and frog, exuberates to a degree to constitute club-footedness. About the same period at which the pastern and coffin-bones take on ossification, horn makes its appearance undcrneath this cuticular wall, in the form of plates descending from the coronct, exhibiting with peculiar distinctness the lamellated structure. The horny wall becomes considerably advanced before we perccive any change in the bottom of the foot. At length, horn is
detected forming underneath the cutieular substanee, whieh, increasing in thiekness, gradually represents sole and frog. Not, however, in an undeveloperl state; for even at birth, these parts are yet concealed by the exuberant cuticular covering, now become loose in its texture, and shaggy and ragged, in consequence of not receiving any further supply from the parts that produced it, and of being near its deeadenee; for it not long after falls off, diselosing sole and frog, both ready formed.

Structure of the Hoof.

Horn is found to differ in its texture or quality, not only in the many animals in which it is met with, but in different parts, and even in the same part of the body of the same animal. That which composes the hoof of the horse is a remarkable example of this. How different is the horn of the frog from the horn of the wall; and yet neither of them agree in texture with the sole. The horny substance of the wall is resolvable into fibres, bearing a resemblance to thiek or coarse hairs, which in the entire hoof are so intimately matted and glued together, as to have the appearance and strength of solidity. By close and ateurate inspection these fibres may be seen, deseending in parallel lines, taking the obliquity of the wall, from the coronet to the inferior or solar border : they do not run promiseuously, but are arranged in rows, forming sorts of beds or strata, lying one upon another-a disposition made manifest in the foot of the foetus. A elean-eut transverse section of the wall exhibits upon its surface numerous minute, cireular, whitish spots, which grow larger and more distinct towards the internal part, and through a glass appear to be hollow or tubular. These spots 1 take to be produced by seetion of the homy tubes, apparently containing a whitish matter, a sort of pith, or pulp, or gelatinous instillation, which pervades them from their origin from the villi of the eoronary cirele; the same as hairs derive their unetuous matter from the bulbs produeing them, and (as this matter does the lair) renders the horny fibre tough and elastie--in faet, cmbues it with the peenliar attributes so well known to smiths by the appellation of living horn; the epithet "living" being here used to denote the obvious differenees the hoof of a living animal evinces from one that has been long detaehed from the body, or that is dead. We are too apt to believe that the various agents known to aet upon the dead hoof or horn must take similar effeet on the living; and upon this erroncous belief we employ hot and eold water, \&e., \&e., in treating disease of the feet, forgetting that we have opposed to our remedies the resisting or self-presciving properties of living horn.

The Sole, as well as the wall, is fibrous in its structure; but its fibres appear to be of a finer quality, and, in eourse, are very mueh shorter: they, however, take an oblique direetion, from behind forwards, following the same degree of slope as those of the wall. They issue from the villi penetrating the superior surface. To the fineness of its fibres, eombined with the relative magnitude of the tubular eanals, and eonsequent relative proportions of horny and gelatinous substanees, may be aseribed the eomparative softness and elastieity of the sole.

The Frog, however, displays these qualities in sueh a remarkable degree as to appear, in faet, to be composed of quite another kind of horn; though, on examination, we find it to evinee the same fibrous strueture, the only pereeivable differenees being the comparative fineness of the fibres and their proportionably greater tubularity : their direetion is oblique, eorrespondent with those of the wall.

Production of the Hoof.

The wall is produeed by the coronary substance, a sensitive and glandular part we shall have oeeasion soon to examine. Its villi, by some peeuliar, mysterious, seeretory proeess, convert the blood cireulating through them into a soft pulpy gelatinous matter, whieh by exposure beeomes hard horn, deseending from the villous point that produeed it, in the form of a tubular fibre, down to the sole. The fibres are united together at their very origin, but their tubes or eanals diminish, the lower they deseend; whieh aeeounts for the porous or honeyeomb-like strueture of the interior of the eoronary border and the eomparative solidity of the parts below. The outer layers or strata of fibres are found to be more eompaet and of eloser texture than the inner ; whieh arises, in part, from the villi produeing them being removed to a greater distanee, and to the comparative smallness of their eanals, and whieh, eonsequently, the sooner beeome obliterated. The use of Mr. Clark's eoronary frog-band becomes now more apparent, serving, as it evidently does, to eover and proteet these external fibres until they grow suffieiently firm and solid of themselves to bear exposure and resist easualties.

The sensitive laminæ make no addition to the substanee or thiekness of the wall : they simply produce the horny lamellæ arranged along its interior; as one proof of which, the wall measures as mueh in thickness at the plaee where it quits the eoronet as it does at any point lower down. Other demonstrations of this faet eome every day before sueh praetitioners as have to treat eanker, quittor, sanderaek, and other diseases of the feet.

The Horny Sole is a production from the villi of the sensitive sole; aftcr the same process as that by which the horny frog is secreted from the villi of the sensitive frog.

In a state of health of the foot, the secretion of horn is unceasingly going on. Disease or injury of the glandular parts may diminish, or altogether suspend the process; disease, under eertain other forms, appears also to have the effect of increasing it ; but whether we have any artificial means of effecting this, seems questionable. The wall grows from above downwards. If a mark be made in any part of the wall, it will remain until it grows down and becomes eut off below, at the inferior border; and by observations made on the gradual descent and disappearance of these marks, ealculations may be formed of the period of time required for the renewal or restoration of the wall.

Properties of Horn.

Horn is a tough, flexible, elastic substance, consisting of tubular fibres, more or less intimately eonneeted together, taking the direetion from the surface of the body on which it grows. Its property of toughness or resistance much depends on its condition in regard to moisture ; for if it is exposed to a degree of heat sufficient to abstract much of its natural juice or imbibed moisture, it loses its flexibility and toughness, and becomes brittle. On the other hand, saturated with moisture, it is converted into a soft and highly flexible substance, but at the same time becomes weak and unresisting. This known effect aids us to accoment for the flat-footerness of horses reared in low, fenny, or marshy situations: the hoof being constantly in a state of saturation with moisture, the wall and sole yield to the superincumbent burthen of the body, and the latter grows flat (instead of remaining eoncave or arched), and even in some instances bulges. If oily or unctuous applications have any effect in softening the hoof, they appear to do so by filling the ereviees and interstices between the fibres on the surface, and in this manner checking or suppressing evaporation. Horn takes a high and beantiful polish. Although much inferior in transpareney to tortoiseshell, it may be worked up to bear so near a resemblance to it as to be often, in manufactures, substituted for it, as in combs, \&c. The hoof admits of an elegant polish; and in that altered and improved state has been manufactured into articles no less uscful than valuable and ornamental:* even the hoofs of the living animal may, by being kept clean, and when dry rubbed

[^46]with linseed oil, be numbered among the ornamental beauties Nature has bestowed upon quadrupeds.

By chemical analysis horn has becn found to consist of membranous substance, having the propertics of eoagulated albumen, and of some gelatine. The horns of some animals, the deer species, from containing bonc, become exceptions to this. Mr. Hatchett burnt five hundred grains of ox's horn, and the residuum proved only one and a half grain, not half of which was phosphate of lime.

Shavings of hoof thrown into nitric acid beeome soft, and specdily melt into a ycllow mass, which in about eight hours disappear in complete solution.

The same thrown into sulphuric acid, turn black, in becoming soft, and require thrice the time for their solution. Muriatic acid also turns horn black, and corrodes it, but has so little effect towards its solution, that after ten days a piece of hoof soaked in it was found to have become only more brittle or rotten. Common vinegar will turn horn dark-eoloured, but does not appear to have any power in impairing its texture, or, at least, in dissolving it. Liquor potassæ will not only turn it black, but will corrode the horn of the hoof. Ammonia does not change its colour, but slowly destroys its texture, rendering it brittle and rotten.

INTERNAL PARTS OF THE FOOT.

The internal, sensitive, organic parts of the foot, eomprise the bones, ligaments, tendons, coronary substance, cartilages, sensitive lamince, sensitive sole, and sensitive frog.

THE BONES entering into the composition of the foot are the coffin and navicular bones; to which may be added (as forming part of the eoffin-joint, and eonsequently having intimate rclation to them), the coronet bone. Their deseriptions will be found given at pages $57,58,59$, and 60.

THE LIGAMENTS have likewise been already deseribed at page 75, in giving the particulars of the coffin-joint.

THE TENDONS immediately comected with the foot are those of the extensor pedis and the flexor pedis perforans: the former being inserted into the posterior concavity of the coffinbone; the latter into its coronal process, as deseribed at pages 140 and 144.

The Coronary Substance.

A less inappropriate name for the part eommonly called the coronary ligament.*

[^47]To revert, for the sake of elueidation herc, to former deserip-tion-after the hoof has been detaehed by a process of maceration or putrefaetion, in a perfectly entire, uninjured condition, it presents around its summit, a circular groove, bounded in front by a soft whitish substance, having a thin edge, and being of a nature between horn and eutiele; and behind, by an attenuated margin, more horny in its eharaeter, whose thin edging is dentieulated or serrated. Into this cireular groove or canal is reeeived the terminating margin of the cutis; the eutieulo-horny layer of the hoof, in front of it, having every appcarance of being a continuation of the cutiele.

Situation-Dimension. The coronary substance occupies the eoneavity formed upon the inside of the superior or coronary border of the wall of the hoof: it is the part constituting the basis of the eircular prominence commonly distinguished in the living animal as the coronet. It is broadest around the toc of the wall, diminishing in breadth towards the quarters and heels, and being somewhat broader around the outer than the inner side. It is thiekest in substanee around its middle and most prominent parts, growing gradually thinner both above and below.

Connection. Externally, the coronary substanee is conneeted with the hoof; and the eonncetion appears to be prineipally, if not entirely, of a vaseular nature : the surfaee of the wall presenting a porous honeyeomb-like texture, and the villi or vessels issuing from the eoronary substance entering the pores, and thus establishing an intimate and extensive vascular union between these organie and inorganic parts. Internally, the eoronary substanee is connected with the coffin-bone, the extensor tendon, and the eartilages, by a fine, dense, copious eellular tissue, which at the same time forms a bed for the assemblage and ramifieation of the blood-vessels eoneerned in the seeretion of the wall of the hoof. Superiorly, its union with the skin is so intimate and complete, that one has been thought to be a continuation of the other; and, so far as meets the eye of a common observer, they might be taken as such: but, when we come to examine them by anatomical tests, we not only find a line of external demareation between them, but discover such differenee of internal structure as forbids the adoption of this delusive notion. As it deseends upon the coffin-bone, the coronary substance not only grows thinncr, but in growing attenuated beeomes imperceptibly gathered or puekered into numerous points from whieh issue a like number of plaits or folds, whieh aftcrwards form the sensitive laminæ. It is worthy of remark, that the part of the bone upon whieh this transformation takes place is smaller in eireumference than the eoronet; eonsequently the same
measure of coronary substance which but teusely and smoothly covered the latter, admitted of being disposed in gathers or folds so soon as it reaehed the former. Posteriorly, the coronary substance forms a junction, indeed beeomes continuous in substance, with the heels of the sensitive frog.

Structure. The coronary substanee discloses three different parts in its eomposition :-1. A fibro-cartilayinous circling band, forming the substratum and basis of the entire structure. 2. A cuticular covering, so called from its resemblanee in texture to the eutis. 3. A network of blood-vessels, reposing upon the former, and eovered by the latter. The cartilaginous structure, freed from its vascular connections, is found to be wrought in the form of a eoarse, open, irregular network, and appears desigued mainly for the purpose of affording a bed for the lodgement and ramifieation of the blood-vessels destined to produce the wall. The looseness of its conneetion, added to its own elasticity, renders this substance peculiarly adapted to accommodate itself to the motions of the coffin-joint, and thus preventing those movements from operating prejudicially to the superimposed glandular strueture.

Organization. The coronary substance may be ranked among the most vascular parts of the body: no gland even possesses, for its magnitude, a greater abundance of blood-vessels, or of blood-vessels (taking them generally) of larger size; nor does there cxist any part in which greater care appears to have been taken to arrange its vessels so as to ensure an uninterrupted supply of blood. These vessels it is that produce the wall : and there is every reason to believe that they perform this office without any assistance from the vessels of the laminæ.

The Cartilages

Are two broad, scabrous, coneavo-convex, cartilaginous plates, ereeted upon the sides and wings of the coffin-bone. Professor Coleman ealls them " the lateral cartilages," in contradistinetion to two others he has named "the inferior cartilages."

Situation. The eartilages form the postero-lateral parts of the sensitive foot, extending the surface eonsiderably in both these directions.

Attuchment. The cartilages are fixed into fossec excavated in the supero-lateral borders of the eoffin-bone. Their anterior parts become united, on each side, with descending lateral expansions from the extensor tendon, and are also attached to the coronet bone by cellular membrane. Their posterior parts surmount the alce or wiugs of the bonc, to which they are firmly fixed, and from which they project backwards, beyond the bone,
giving form and substance to the heel. Supposing one of the cartilages to be divided into two equal parts by a line drawu horizoutally aeross its middle, the superior half, whieh extends as high as the pastern-joint, is eovered by skin only; and on that account is quite pereeptible to the feel, and (in form) to the sight, as the animal stands with his side towards us. The lower half is covered, superiorly, by the cneircling coronary substance ; inferiorly, by sensitive laminæ: consequently, over all by the hoof, which envelopes both the coronary substance and the laminæ. The extreme posterior ends of the eartilages incurvate downward and baekward; but, being overreached by the heels of the sensitive frog, any abrupt or exposed termination of them is prevented. Around these points also the coronary substance makes its inflections upon the sensitive frog, thereby giving them additional substance and support.

Form. Considered in the detached state, the cartilage in its general figure deseribes an irregular quadrangle, of which the supero-anterior and infero-posterior angles are the most projecting; the latter at the same time being incurvated inwards. Externally, the cartilage is pretty regularly convex ; interually, it is unevenly concave, the surrounding border turning inwards into the substance of the sensitive frog. The posterior part of the eartilage is somewhat thimer than the anterior, and has several foramina through it-three or four of large size-which transmit vessels to the frog.

THE FALSE CARTILAGES.-From the inferior and posterior sides of the true eartilages, proceed in a direction forwardtowards the heels of the coffin-bone-two fibro-eartilaginous productions, to which Mr. Coleman has given the name of "inferior cartilages." If they are to be considered as cartilages at all, I prefer denominating them fulse; they being, as well in strueture as in use, different from the true or lateral eartilages. They spread inwards upon the surface of the tendo perforans; become united at their inner sides with the superior margin of the sensitive frog; are covered inferiorly by the sensitive sole; and at the same time assist in the support of the sensitive frog. They are triangular in their figure, and are arehed in the same manner as the sole.

Use. Their use appears to me to be, to fill up the triangular raeant spaces left between the tendo perforans and heels of the coffin-bone, thereby completing the surface of support for the sensitive frog, and extending that for the expansion of the sensitive sole. Bone in these places must have proved ineonvenient hy more or less impering the impression upon-and consequent reaction of-the sensitive frog.

The Sensitive Lamince or Lamella.

So is denominated the laminated, membranous, vascular structure clothing the wall of the eoffin-bone.

Production. The sensitive laminæ appear to be derived from the coronary substance-the one, in fact, seems to be a continuation from the other; for if, in a foot in a putrid condition, we attempt to part them by force, we may make an artificial rent somewhere, but can find no natural separation between them. The euticular covering of the coronarysubstance having deseended upon the coffin-bone, the eircumference of which is less than that of the coronct, bceause thercupon gathered into numerous little plaits or folds, which procced in parallel slanting lincs down the wall of the bone: a transformation it may be difficult to explain, since the laminæ unfolded would oceupy a much larger surface than the coronet; at the same time, it is one that has its parallels in the animal constitution, and a remarkable one in the instance of the ciliary processes.

Division. According to this mode of derivation, every lamina consists of onc entire plait or duplication of substance, having its inward sides intimately and inscparably united; its outward sides being the surfaces of attachment for the horny lamine. It has also two borders; one opposed to the coffin-bone, the other to the hoof: and two ends or extremities, onc issuing out of the coronary substance, the other vanishing in the sensitive sole.

Structure. The substance of the laminæ when held to the light evinces a degree of transparency; although its nature is cxtremely dense, and it possesses extraordinary toughness and tenacity. Veterinary writers and lecturers have endowed the lamine with a high degrec of clasticity : but it appears to me that the property is refcrable to their connections, and not one that is inherent in their own substance.

Elastic Structure. This is a substratum of a fibrous peri-osteum-like texture, attaching the lamine to the coffin-bone, in which it is that the property of elasticity resides to that remarkable extent usualiy aseribed to the lamine themsolves: indeed, so elastic is it found to be, that it can be made to stretel and recede the same as a pieec of Indian rubber. Its fibres take a direction downward and baekward. At the same time, it affords a commodious bed for the ramification of blood-vessels issuing from the substance of the bone, in which they are (particularly in the stretched condition of the substance) protected from injurious compression and consequent interruption to their eireulation.

Number. In round inumbers we may estimate the lamine at
about 500 ; not ineluding those of the bars. They vary, however, in number : I have reekoned upwards of 600 .

Dimensions. In length they deerease from around the toe towards the sides and heels in a corresponding ratio with the wall: those in front, the longest, being rather more than two inehes in extent; the shortest, those at the heels, being rather less than onc inel. In breadth there is no variation : all measure alike-one tenth of an ineh.

Organization. The laminæ arc highly organized, though they are not equally so with cither the sensitive sole or sensitive frog; nor are they so red as those parts: and the obvious explanation of this is, that (over and above what is requisite for their own nutrition) all the blood they have oceasion for is only that whieh is suffieient for the secretion of the horny laminæ.

The Sensitive Sole.

The scnsitive sole, or (as Sainbel calls it) the fleshy sole, is the fibro-vaseular substance eovering the arehed coneave, or ground surface, of the coffin-bone: in faet, is the part eorresponding to the horny sole.

Structure. The same kind of elastic fibrous structure that sustains the laminæ is found constituting the groundwork of the sensitive sole; only that in the latter ease it is eloser, denser, and firmer in its texture. Upon this is spread a remarkably beautiful venous network. And the whole is enveloped in an outer eutieular eovering, derived from the heels and frog, from whieh are sent villous processes, loaded with the points of arteries into the porosities of the horny solc: not, however, perpendieularly downward, but in an oblique direetion-downward and forward-the same in which the horny fibres grow.

Connection. Around the eireumferenee of the coffin-bone, the sensitive sole is conneeted with the fibrous substanec descending from the wall, together with the tapering, vanishing points of the laminæ. In the centre, it is united with the bars and frog. But its prineipal attachment eonsists in its being firmly rooted into the sole of the coffin-bone; a connection that rceeives eonsidcrable addition from the blood-vesscls issuing out of the substanee of the bonc.

Thickness. The sensitive sole varies in thiekness at different places. On an avcrage, it may be said to measure one eighth of an ineh in thickness. In the vieinity of the frog, it is something less than this. At the heels, it possesses double that thiekness.

Organization. This is one of the most vaseular and sensitive parts in the body. Independently of the mueh admired venons
network expanded over the fibrous substance of the sole, artcrics enter it issuing from the substance of the boue, and penctrate its villi, which, by taking this coursc, clude all compression and obstruetion : there are also others--the nutrient arteries ; but these have an cxternal origin, fiom the inferior coronary artery. The chief assemblage of arterics takes place within the villi, upon the cuticular surface-those issuing out of the interior of the bone simply passing through (without ramifying within) the fibrous substance : so that, if the substance of the sole is laid open by transverse section, the incised edge, near the surfaee, exhibits a decp red tint; while the intcrior, ncarer the bone, has a pinkish or pale red aspect.

The Sensitive Frog.

Under this head is included the eleft cuneiform body, projecting from the bottom of the foot, together with the substance continued from it and filling the interval between the cartilages. Sainbel ealls it'" the fleshy frog."

Division. We distinguish, in the sensitive as in the horny frog, an apex or toe; two heels, separated by the cleft; and a portion intermediate between these, which is the body.

Situation and Connection. The scnsitive frog occupies the postcrior and central parts of the bottom of the foot, forming in the tread a firm and sccure point d'appui. Being in the hoofless foot equally prominent with the projecting cdge of the coffinbonc, one might be led to infer that the horny frog should take the same linc of bearing with the crust. The frog, altogether, is lodged in a capacious irrcgular spaee, hounded supcriorly by the tendo-perforans and eommon skin, laterally by the cartilages, and inferiorly by the horny frog : with all which parts it has connectious; besides being continuous with the sensitive bars and sole, and at the hecls with the coronary substance. On its sides are two shallow ill-dcfined hollows, corresponding to the commissures of the horny frog, into which are reccived the horny prominences opposed to them.

Structure. Entering into the composition of this body we distinguish four parts:-An exterior or euticular covering; a congeries, or network of blood-vesscls; a fibro-cartilaginous texture : and an clastie interstitial mattcr.

The exterior or cuticular covering invests the prominent bulbous portion of the frog, and also gives a lining to the elcft. Supcriorly, it is continnous with the skin descending upon the heels; antcriorly, with the cuticular covering of the coronct ; inferiorly, with that of the sole. Numcrous villous processes sprout
from its surface, and enter the porosities in the interior of the horny frog, taking a direction downward and forward, the same as that in which the fibres of the horn grow.

The vascular covering succeeds the cuticular, lying immediately underneath it. It consists of a network of blood-vessels, principally veins, but which are not so thickly set as upon the sole.

The fibro-cartilaginous case comes next. We find it spread over those parts most subjected to pressure, and to be, in many places, one fourth of an inch in thickness. From its interior are sent off numerous processes, pervading the elastic matter of the frog, forming so many septa intercrossing one another, and di-. viding it without any notable regularity into many unequal compartments. In the posterior and bulbous parts, the septa exist in greater numbers, aad are closer arranged than in the middle parts. The fibres of this vaginal substance run obliqucly downward and forward, and become intermixed around the borders with those of the bars and sole.

The elastic interstitial matter, however, composes the bulk of the sensitive frog. It consists of a pale yellowish soft substance, which has been mistaken for fat or oil, and hence has been named " the fatty frog." When cut deeply into, it exhibits a granulated appearance, and the fibrous intersecting chords bccome apparent, putting on the ramous arrangement of a shrub or tree. Altogether, the sensitive frog forms a peculiar, spongy, elastic body, for which we lack some morc appropriate name.
** The Blood-vessils and Nerves of the Foot will be found described in their places, in the circulatory and nervons systems.

INDEX.

Attollens anterior 84
A.
ABDOMEN 242
museles of 122
Abdominal parietes, lymphaties of. 269
Abdominal region 124
Abduceus aurem 86
Abducent ncrecs 339
Abductor Oculi 87
Absorbent system 265
Accelcrator urinæ 130
Accessory nerves 344
Adductor femoris 154
-_ oculi 87
156
Anal arteries 201
Anal region 128
Anconeus 139
Antea-spinatus 133
Anterior artery of the cerebellum. 195

- cerebrum 194
- auricular artery 192
brachio-crural region 139
—— (musculus) conchæ. 85 157
humeral region 136
ilio-femoral region 150
laminal arteries 187
masseter arteries 190
maxillary region 89
Aorta 176
- antcrior
180
180
posterior 196
- origin and course of 179
Aortic plexus 360
Aqueous humour 3.90
Arachnoid membrane 314
Arm, bone of 51
Arm and fore-leg, muscles of 139
Artcria communicans 194
——profunda femoris 203
Arteriæ Innominata (corporis) 180
- (Ilii) 201
Artcries 176
—_ table of 177
Articulations or joints 69
Arytenoid cartilages 222
Arytenoidcus 102
Ascending pharyngeal artcry 190
Astragalus 64
Atlas and axis, joints between 69
Attollcntes aurem 84
Attolleus maximus ib.

C.	
Canine tecth 68	Coccygeal arteries 202
Caninus 90	-_- nerves 352
Calcis os............................... 64	--_ region........................ 130
Capsulæ renales 278	Coccygis ossa 15
Cardiac Plexus 359	Cochlea 401
Carpus....................... 52	Сæсиm 257
Cartilages of the foot................. 439	Cæliac artery 197
uation of ... ib.	Coffin bonc............................. 58
tachment of ib.	- joint............................. 75
rm of ib.	Colon, course of.. 246
false 440	-_description of 257
of the ribs................. 12	Commissures of the brain 320
Carotid artcries 188	- of the foot 431
Caruncula lachrymalis 373	- of the pudendum...... 300
Cellular membrane.................... 414	Complexus major 105
ib.	-_- minor 106
- comparative quan-	Compressor coccygis 132
tity of ${ }^{\text {a }}$ ib.	Concha 393
ib.	Conjunctive tunic 369
chalation into ... 415	Constrictor pharyngis anterior 100
modification of ... ib. elasticity of ib.	\longrightarrow medius ib.
- organization of ... ib.	Coraco-humeralis 136
Central artery of thic retina 195	Cornea 381
Centrum ovale 317	Cornua uteri 304
Cerebellum............................. 322	Corona glandis penis 295
- pecıliarities of ib.	Coronary arteries 179
bes of 323	- frog-band 432
ntricle of ib.	- substance 437
Cerebrum 316	Coronct bone 57
ntricles of317-321	Corpora cavernosa penis 294
commissures of 320	structure of 296
Cervical ganglia.................. 358 \& 359	- vaginx 301
rves 346	Corpora nigra.......................... 385
- 1st and 2d.......... ib.	$\underline{\text { striata } 318}$
$3 \mathrm{~d}, 4$ th, and 5th ... 347	Corpus albicantium 324
6 th and 7 th 348	callosum...................... 316
Cervical vein, inferior 216	Costal region 114
Ccrvico-auricularis.................... 85	Costæ 10
Cheeks 236	Cowper's glands........................ 298
Chest 10	Cranium 19
Chord spermatic....................... 285	C- cavity of 42
-martery of 203	Cremaster 128
Choroid coat 386	Crico-arytenoideus latcralis 101
Choroid plexus of the cerebrım ... 319	- posticus..... ib.
of the ccrcbellum ... 323	Cricoid cartilage....................... 222
Ciliary arterics 195	Crico-thyroideus........................ 101
circlc 386	Crura cerebri 324
glands........................... 368	- cerebelli.......... ib.
- processes 388	Crural nerve 355
Circulatory system................... 163	Crureus vcl cruralis 152
Circulus artcriosus of the brain...... 196	Crystalline lens 391
of the foot 187	Cuboid bone 65
Circumflex artery of the ileum 202	Cuneiform bonc of the kuee 59
- - of the foot........ 187	- hock, largc... 65
Circumflex vein of the ilcum........ 218	middle 66
Circumflexus palati 103	

Cupped blood. 170
Curvator coccygis 132
Cuticle, composition of 406

- colour of 407
—— cxtcut of ib.
- pores of ib.
- production of ib.
\square sea 408 ib.
Cutis 402
- density of 403
colour of ib.
structure of ib.
- structure of organization of 404
pores of. 405
- regeneration of 406
D.
Dartos. 283
Deep posterior brachio-crural region 143
femoro-crural region 161
Deep temporal arteries 192
Dental nerve 339
Depressor coccygis 131
labii superioris 93
inferioris 91
-_- oculi 87
Diaphragma 120
Diaphragmatic arteries 197
———nerves 348
veins 217
Digastricus 120 96
Digestive system 234
Dilatator naris anterior 92
89
Dorsal artery 180
__ ganglia 359
348
Dorsalis scapulæ, arteria 183
Dorsal region 215
Dorso-cervical vein 118 216
Dorso-crvical vén
Dorso-crvical vén
Dorso-costal region 117
Dorso-scapular region 111
Ductus ad nasum 375
Duodenum, course of 245
- description of 255
Dura mater. 311
- - surfaces of ib.
- organization of ib.
processes of ib.
E.
Ear, extcrual 393
- internal 396
- cartilages of 394
Ear, skin covering 395
Elbow joint 72 72
Emulgent arteries 199
217
Epididymis 288Epigastric artcry
——nrerion 24
Epiglottis 222
Erector clitoridis 130
- coccygeus 131
Esophageal artcry 129
196
Esophagus 241
bsophagus.
bsophagus. Ethmoid bone 26
__ cells 27
Eustachian tube 399
Extensor metacarpi magnus 139
parvus 141
obliquus ib.
Extensor pedis, anterior 140
157
Extensor suffraginis 141
External carotid artcry 189
pectoral artery 182
thoracic artery 183
nerves 352
External scapular region 133
Externus mallei 398
Extremities, boncs of 48
-__ muscles of 133
Eye 364
- appendages of 365
Eyeball 377
- muscles of 87
- defence and position of. 377
- situation and connection of 378
meter of 379
——_ constituent parts of ib.
- coats of. ib.
390
Eyebrow 365
Eybl Eyelashes 367
Eyelids 365
-_ structure of 367
- organization of 370
- use of ib.
F.
Face, bones of 23
Facial artery 190
—— vein 211
- ncrves 338
Fallopian tubes 305
——— coursc of ib.
False cartilages (of the foot) 440
——usc of. il.
Falx, dure matris 312
Fat 416
- production of 417
- deposition of. ib.
- absorption of ib.
Femoral artery 204
—— vein 219
Fctlock-joint 73
Fibrin 166
Fibula 64
Fimbrix 306
Fissura magna 299
Flexor branchii 136
- metacarpi externus 142
————_ internus 143
medius 142
metatarsi 158
__ pedis (posterior)
_ perforans 161 144
perforatus 143
accessorius 162
Foot, bones of 58
-_ number of 418
- toes or elaws of ib.
-_ division of ib.
-_ external parts of 419
__ intcrnal parts of 437
Foramen commune inferius 321
Foramina cœea 325
Fore cxtrcmities, bones of. 54
\longrightarrow joints of. 72
— muscles of 133
352
Fore extrcmity, left, lyinphatics of 273
- leg, bones of 54
Fornix 319
Frog, artcry of 187
-_ veins of 213
Frog, horny, situation, connection of 4 429
- -- figure of. 430
-_- division of ib.
surfaces of ib.
-_— cleft of ib.
sides of 431
commissures of ib.
=- toc of. 432
heels of ib.
coronary band of ib.
production of 436
__ scnsitive 443
tion of division of ib.
- situation and conncc- ib. structure of ib. - cuticular covering of ib. fibro-cartilaginous ib.
elastic mattcr of. ib.

G.

Gastric artery 197
Gastrocncmins externus 159
Gemini 1) 149
Generative system 282Genio-hyo-glossus
Genio-hyo-ideus 99
97
Genital region, male 128_f_ fcmale
130
Glandulæ odorifcre 293
Glans penis
Glossal region 295 98
Glossol phen.
Glossol phen.
Glosso-pharyngcal nerve 341
Gluteal artery 201

- nerve 356
147
Glutcus externus ib.
- maximus ib.
148
Gracilis 153
Great bonc of the knce 53
Gums 236
Gustatory nerve 339
H.
Hair, quality of 410
- thickness of ib.
- dircction of 411
—_ strueture of ib.
——identity of 412
- colonr of. ib.
- shedding of 413
- reproduction of. ib.
Ilaunch, bones of 61
—— muscles of 147
Head, appendages to 66
_- bones of 19
description of 37
Head, lymphatics of 272
-_ muscles of 84
Heart 173
Heel, skin of 405
Hepatic artcry 198
——_vcins 217
- plexus 360
Hind extremities, bones of. 60
-_un muscles of 144
355
IIip or haunch bones 16
Hippocampi 319
Hock, bones of 64
Hoof, form of. 419
- spread of 420
_ colour of ib.

INDEX.

Hoofs, magnitudc of 421	Inter-transversales lumborum 122
-_- development of 433	Intestines 253
strueture of.................... 431	————large 256
reduction of 43.)	-_ sinall 255
Ilorn, properties of..................... 4386	Iris 38. .
Humeral artery 183	- surfaces of......................... 383
- vein 215	- margins of. 384
thoracie artery 183	- structure of ib.
-_-veins 215	- motioll of 385
Humeralis externus 137	Isehium 18
Humero. eervieal region............... 103	Ischiatic arteries................ 201
Humerus............................... 49	veins....................... 218
Humours of the eve 390	
IIyo-epiglottidens 102	J.
Hyo-glossus longus.................... 98	
-_brevis................... 99	Jejunum................................ . 256
Hyoideal region 96	eourse of 2.16
IIyoides, os............................. 66	Jugular vein 210
Hyoideus magnus 97	
-_parvus 98	K.
Ilyo-pharyngeus..................... 100	
IIyo-thyroideus 101	Kiducys 273
IIypo-gastric plexus 361	- situation and attachment of 274
- region 243	-_ figure of...................... ib.
I.	--- division of................. il).
	-_ eapsules of................... 275
Ileum, course of...................... 246	- structure of ib.
Ilie description of 256	- organization of 278
Iliae arteries, external 202	Knee, bones of 52
internal................. 200	Kıee-joint 73
Iliae veins, common 217	Knuckle bone.......................... 64
external................... 218	
]ine internal.................. ib.	L.
Iliacus.................................. 123	
Incisor teeth 68	Labial artery, infrrior 190
Incus 397	———— superior 191
Inferior cervical artery 182	—_ vein 211
- region 108	- nerves338-339
Inferior cervieo-oceipital region...... 110	Labin pudendi.......... 229
communicating arterics ... 187	Labyrimh 399
labial artery 190	Lachrymal artery 193-195
maxillary artery.............. 192	boncs...................... 32
nerve 338	- vein 211
Infra-orbitar artery...... 193	_-_ nerve...................... 337
Infundibulum.......................... 321	glaud....................... 372
Ingıinal artery 204	-_- earuncle 373
$\overline{\text { Inent }}$ vein 218	--_ puncta and conduits..... 374
Insensitive laminx................... 426	sae ib.
Intereostales externi 115	Lacteals 269
Intereostales interni 115	Lamina spiralis 401
Intereostal arteries...... 196	Laminx of the hoof 426
- veins 216	—_ of the interual foot 441
- nerves 349	-_ veins of.................... 21.3
Internal earotid artery 194	Large metacarpal artery............. 184
ilio-femoral region........... 152	Laryogeal region 101
maxillary artery.............. 192	-_- artery................... 188
- peetoral artery 132	--_ veins 211
scapular region 134	- nerves 342

Laryns 218

- membrane lining 2.23
Lateral eervieal region 104
Lateralis sterni 116
Lateral laminal artery 187
——nasal artery 193
-_- nerve 337
saeral artery 201
Latissimus dorsi 112
Laxator tympani 398
Levator anguli oris 90
Levatores costarum 117
Levator humeri 104
- labii superioris alæq. nasi.. 89
——menti 92
- oculi 87
- palpebre superioris 86
Lingualis 9987
Lingual artery 190
—— vein
- nerves 211 344
Lips. 236
Liver, situation of 247
- description of 259- lymplaties of.
Longissimus dorsi270
Longus colli 110118
Lumbar region 122
-_ arterics 199
217- nerves
Lumbrici.350
Lunar bone 53145
Lungs 229
Lymphatics 265
M.
Magnum os. 53
Malar bones 31
Malleus 397
Masseter 94
——— arterics 191
Maxillary bone, superior 29200
-_merion 3
Maxillary artery, internal 192
- inferior ib.
Maxillary vein, interual 210
- - inferior ib.
Meatns auditorius externus 395
Meatus urinarius 401 301-302
Medulla oblongata 325
Membrana nietitans 371
Mesenteric artery, anterior 198
___ posterior 199

INDEX.

Obliquus cxternus abdominis..........	124

———— inferior oculi 88
Obturator artery 201
———externus 149
———— internus... 149
Occipital artery 194
————音仿 22
Ocular artery 192
Olfactory nerves 8
Omentum 246
Ophthalmic artery
Optic nerves 337
Orbicularis oris

- palpebrarum 86
Organs of generation, male 4.3
___ fcmale 299
Osseous system
Os orbiculare 397
Ovaries 306
- magnitude of. ib.
form of ib.
structure of ib.
—— organization of 307
P.
Palate 236
- soft ib.
Palatine region 102
Palato-maxillary artery 193
Palato-pharyngens 100
Palpebral region 86
Pancreas 263
- situation of 247
- structurc of 263
- organization of ib.
lymphatics of 271
Papilla 309
Parietal bones 21
Parotideal arteries 191
——— veins 210
Parotid gland 239
Par trigeminum. 336

Par vagum 341
Pastern bone 56
joint 74
Pathetic nerves 336
Pectineus 153
Pectoral arteries......................... 182
—— veins 216
region 113
Pectoralis magnus ib.
-_ parvus 114
Pedis os 58
Pelvis, hones of 14
general description of 18 articulations of 71

- lymphatics of 268

Pelvi-trochanterian region............ 148
Penis 192
——sheath of ib. cul-de-sac of.................... . 293
—— faschial covering of 294
-- structure of ib.

- organization of 295

Pericardium 172
Perineal arteries........................ 202
———veins 218
Peritoneum............................... 243
reflection of
Perpendicular artery 186
Petrous portion of the temporal bone 24
Pharyngeal artery, ascendiug......... 190
—_ vein 211
ncrves 342
region 100
Pharynx 240
Phrenic artcries 197
—— veins 217
——_ncrve 348
Pia mater 313
Pineal gland 321
Pigment of the cye....... 387
Pisiform bonc............... 54
Pituitary gland 325
Plantar arteries 185
———ncrves355.357
_ systcm 418
Plantaris................................. 160
Plat vcin212-214
Pleura...................................... 227
Plexus choroides.......................... 319
Poplitcal artcries 205
Poplitens. nerves......................... 356
Portio s.................................. 161
_-mollis 340
Postea-spinatus ih. 134
Posterior aorta 196
___ arteries of the ccreljellum 195
———————ccrebrum 106
-_- auricular artery 191
-_ ecrvical artcry 181

- - conche musenlus 85
———extremities, boucs of 60
-_-_ lymphaties of 268
146-_-_-_ nerves of
355
-_- lumeral region 137
ilio-femoral region 155
_——masseter artery 191
maxillary region 94
- - seapular region 135
Prostatc glands 288
Prostatic artery 200
Psoas magnus 122
- parrus 123
Pterygoid arteries 192
-_-_ veins 210
Pterygoideus externus 96
95
Pubic arteries. 201
Pudendum 299
Pulic artery, external 203
-_- intcrial 201
Pulmonary artery 176
-_ plexuses 343
Pupil 207
Pupil 384
Pyriformis 148
R.
Radial artery 184
——— nerve 353
214
Radialis accessorins 145
Ramus anastomoticus 193
Ranine artery 190
Receptaculım clıyli 268
Rectum, comrse of 246
- description of 258
Retractor oenli 88
-- ani 128
Rectus aldominis 127
Rectus eapitis anticus major 110111
Rectus capitis posticus major 107
ib.Rectus femoris
150Recurrent neric
348
Red particles 167
Renal arteries 199
- plexus 361
- veins 217
Respiratory system 221
Rete mueosum 409
Rete mucosum, composition of 409
——— colour of ib)
Rctina.389
Retralientes aurcm 85
Rhombuideus brevis 112
Ribs 103
10Round bone
IRump bone
S.
Saeral artery, middle 202
--nerves. 351
lateral 218
Saero-lunbalis122
Sacro-spinal arteries 202
218Sacrum, os
14
Salivary glands 239
Saphena major240
- minor 220
Sartorius 152
Seatenus 109
Scaphoid bone 52
Scapula 48
Scapular nerves 353
Schneiderian membrane. 363
Sciatic nerve 356
Selerotic coat of the cye 379
Serotum 283
- cellular structure of 284
Semen, course of 288
Semicircular eanals 400
Scmilunar ganglion 360
175
$\overline{\text { Semincmbranosus }}$ 156
Scmispinalis dorsi 120
- - lumborum 122
Scnitendinosus 156
Sensitive laminx 141
- —— production of ils.
-_- - division of. ib.
_____ elastic structurc of ib ib.
number of ib.
dimensions of 442
Sensitive system
Scptım lueidum 318
- nasi 362
Serratus magnus 144
Serım 169
Scsamoid bones 57
Shonlder, bones of. 48
Shoulder-joint 72
INDEX. 453
Shonlder, muscles of 33
Shuttle bone 60 60
Sinuses of the dura mater 312 46
Skelcton
Skelcton
Small metaearpal artery 84
Sole, horny 428
Sole, horn situation and conncetion of ib).
figure of b.
- - arch of ib.
division of
division of ib. ib.
——— surfaces of.... 429 435
Sole, sensitive 442
————structure of ib.
二
connection of ib.
- - - organization of ib. ib. ib.
- arteries of 187
————— veins of 213
355
Spermatie arteries 199
- chord 285
-_ nerves 351
_ vein 217
Sphenoid bone 25
Sphincter ani 128
- vaginæ 130
Sheno-palatine nerve. 338
Spinalis colli 106 119
Spinal marrow 325
——— coverings of 326
-_- structure of ib.
nerve 345
Spiral artery 184
-- nerve 353
Splanchnic nerves 359
Spleen 262
- lymphaties of 270
situation of 247
Splenic artery 197
- plexus 360
veil 220
Splenius 104
Spur vein 215
Squamous portion of temporal bone 23
Stapedius 398
Stapes 397
Sternal region 116
Sterno-costalis ib.
Sterno-maxillaris 103
Sterno-thyro-hyoideus 109
Sternum 12
Stifle, arteries of 205
Stifle bone 62
Stomach 249
——ymphatics of 270
situation of 245
Stylo-hyoideus 98
Stylo-maxillaris 95
Stylo-pharyngeus 100
Sublingual artery 190
——gland 240
Submaxillary artery 189211
-- gland 239
Submental artery 190211-__ vein211
Suboecipital nerves 345
Subscapular artery Subscapular artery 183 215
Subsepur
Subsepur Subseapularis 134
Subscapulo-hyoideus 109
Suffraginis, os 56
Superficialis costarum 117
Superficial post.brachio-crural region 142
post. fenoro-crural region 159
Superior cervico-oceipital region 106
-_ labial arteries 191
naxillary nerve 337
Supra-orbitar artery 192
337
Sympathetic nerve 357-361
T.
Tabular enumeration of the bones. 3
Tail, bones of 15
- muscles of 130
- arteries of 201-202
- nerves of 352
- - veins of 218
Tarsal cartilages 368
Tarsus, boncs of 64
Tears, eourse of 375
Tceth 67
- devclopment 69
Temporal artery 191
——bones 23
21.0
Tensor palati 102
- tympani 398
150
Tentorium 312
Teres, major 135
- minor ib.
Terms, anatomical 4
Testes cerebri 322
Testicles 284
- - eoverings of ib.
——— figure and magnitude of 285
elose coverings of 287
structure of
structure of ib. ib.
- - structure of 288
formation and deseent of
formation and deseent of 290
———
——_ feinale
——_ feinale 306 306
Thalami nervorum opticorum 320 62
Thigh, bones of
Thigh, bones of
- muscles of 156
Thoracic aorta 196
—— arterics 183
- ducts 267
- lymphatics of 271-2
Thorax, articulations of. 215 71
- bones of. 10
- general remarks on 13 111
Thyro arsches of
Thyro arsches of Thyro-arytenoideus 102
Thyroideal artery 188
-_— veins 212
Thyroid cartilage 221
Tibia gland 226
Tibia 63
Tibial arteries. 205
-_ veins 219
Tænia scmicircularis 320
Tongue 237
Trachea 223
-_ muscles of 224
membrane of. 225
Tracheal plexus 359
-_ veins 212
Trachelo-mastoideus 106
Tractus optici 324
Transversalis abdominis 126
- costarum 117
Transversc artery 186
Trapezium 54
Trapezius 111
Trapezoides 53
Triangularis penis 129
Triceps extensor brachii. 137
Trifemoro rotuleus 151
Trunk, bones of 4
- joints of 69
- muscles of 103
Tuber amulare. 324
Tunica conjunctiva 369
Tusks 68
Tympanum 396
U.
Udders 307
- - volume of 308
-— coverings of ib.
tructure of 308
Ulnar artcry 184
- ncrve. 354
vcins 214
Uinaris accessorius 143
Umbilical artery 200
——_region 24.3
Unciform bone 53
Urcter 277
Urethra 296
- bulb of 297
Urinary system 273
Utcrus 303
-- figure and volune of. ib.
- - division of ib.
- ligaments of 304
——— structure of 305
——— cavity of ib.
V.
Vagina 301
—— situation and conncction
of................ ib.
——— figure and volume of ib.
——— length and course of ib.
—— structurc of 302
Valvula Vieussenii ib.
323Varicose vein
211
Vattus externus 151
ib.Vcins
207- table of
208Vena Azygos
216
Vena cava anterior 210
- posterior 216
- pro. 220
Ventricle (of the heart) right 174
Ventricles (of the brain) laicral 175 317
318
Vertebræ 5
——— cervical ib.
\longrightarrow dorsal 6
——— lumbar 7
——— peculiaritics of ib.
articulitions of 70
Vertebral artery 181-195
———vein 212
-_-_ chain 5
Vesical artcrics 200
Vesiculæ scminales 291
- ——— formation of ib.
Vestibule ib.
Vestibule 400
Viscera of the abdomen, situation of. 245
Vitreous humour 392
Vomer 35
Vulva 299
W.
Wall of the hoof. 422

Wall of the hoof, quarters of......... 424 ib. superior border of ib . inferior border of 426 laminæ of ib.
toe of.
ib.
ib.

PERCIVALL'S HIPPOPATHOLOGY.

Complete in 4 vols. 8 vo, with Index, price $£ 45 s .6 d$.

HIPPOPATHOLOGY,

A SERIES OF SYSTEMATIC TREATISES ON THE DIS. ORDERS AND LAMENESSES OF THE HORSE.
By William Percivall, M.R.C.S., late Veterinary Surgeon of the Life Guards.

To be had separately as follows:

> Vol. I.

Observations on Health; on Transition from Jealth to Disease ; on Inflammation and its Treatment; Fever; Influenza; Strangles; Contusions and Wounds. New Edition. Price 10s. $6 d$.

$$
\text { Vol. II, Part } 1 .
$$

The Diseases of the Chest and Air Passages. New Edition, revised and enlarged. Price 10s.

$$
\text { Vol. II, Part } 2 .
$$

The Diseases of the Digestive Organs, including those of the Urinary and Generative Systems. New Edition, revised and enlarged, with Illustrations. Price 12 s .

> Vol. III.

Injuries of the Skull and Diseases of the Eye ; Glanders and Farcy, their Causes and Remedial Treatment. Price 14 s .

Vol. IV, Part 1.
Lameness; Spavin; Neurotomy; Hip-joint, Elbow-joint, Shoulderjoint, and Knee-joint Lameness; Splint; Ringbone. With coloured Plates. Price 21s.

$$
\text { Vol. IV, Part } 2 .
$$

Lameness arising from Disease of the Bursx Mucose and Synovial Sheaths, Windgall, \&c.; Lameness arising from Disease of Muscle, of Tendon, Sprains, \&c.; Diseases of the Foot. With coloured Plates. Price 18s.

Also, by Mr. Percivall,

LECTURES ON HORSES,

 THEIR FORM AND ACTION.With Eight Outline Plates, and an Appendix on the Effects of Medicine on Horses.

8 vo, $12 s$., boards ; or, without the Appendix, 10 s.
London: Longman, brown, \& CO., Paternostir Row.

LIST of WORKS in GENERAL LITERATURE

FUBLISHED BY
Messrs. I,ONGMAN, BROWN, GREEN, LONGMANS, and ROBERTS,
39, Paternoster row, tondon.

CLASSIFIED INDEX.

Agriculture and Rural Affairs.
 Pages.

Bayldon on Valuing Rents, \&c. - 3 Cecil's Stud Farm
Hlosh yns's Talpa
Loudon's Acriculture
Low's Elements of Agriculture

Arts, Manufactures, and

 Architecture.Bourne on the Screw Propeller
Brande's Dictionary of Science, \&c. Organic Cliemistry
Chevreul on Cotou
Cresy's Civil Engineering
Fairbairn's Informa. for lingineers
G wilt's Eincyclo. of Architecture
Harford's Plites from M. Angelo -
Humphreys's Parables illuminated
Jameson's Sacred \& Legendary Art Commonplace-Brook
König's Pictornal Life of Luther Loudon's Rural Architecture
MacDougall's 'Thcory of War
Malan's Aploorisins on Drawing Moseley's Engineering -
Picsse's Art of Perfuniery
Richardson's Art of Horsemanship Scrivenor on the Iron Trade Stark's Printing
Steam-Engine, by the Artisan Club Ure's Dictionary of Arts, \&cc.

Biography.

Arago's Autobiography Rives of Scientific Men Bodenstedt and Wagner's Schams Buchinglam's (J. S.) Memoirs Bunsen's Hippolytus
Cockayne's Marshal Turenne Crosse's (Andrew) Memorials Forster's De Foeand Churchill Grecn's Princesses of Eingland Harford's life of Michael Angelo Hayward's 1 :hesterfield and Selwyn Holcroft's Memoirs
Lardner's Cabinet Cyclopiedia Maunder's lliographical Treasury Memoir of the Duke of Wellington Memoirs of lames Montgomery Merivale's Memoirs of Cicero Mountain's (Col.) Memoirs Parry's (Admiral) Memoirs Rogers's Life and Genius of Fuller Russell's Memoirs of Moore Southey's Life of Wesley
,ife and Correspondence select Correspondence -
Stephen's Ecclesiastical Biography Strichinnd's (Queens of England .
Sydney Smith's Memoirs
symond's (Admiral) Memoirs
Taylor's loyolia
Waterton's Autobiography \&e Essays

Books of General Utility.

Acton's Bread-Book
Black's'Treatise on Brewing -
Cabinet Gazet teer
Cust's Invalid's Own Beok
Gilbart's Logic for the Mlllion
Hints on Etiquette
How to Nurse sick Children
Hudson's Executor's Guid on Making Wills
Kesteven's Domestic Mellicine Lardner's Cabinet Cyclupxdia Loudon's Lady's Country Compa nion
slaunder's Treasury of F nowledge Biographical Treasury Geographical Treasury

Maunder's Scientific Treasury Treasury of llistory Natural History Piesse's Art of Perfuncry
Pocket and the Stud
Pycroft's linglish Reading
Reece's Mradical Guide
Rich's Comp, to Latin Dictionary Richardson's Art of llorsemanship Ridule's Latin Dictionaries Roget's English Thesauus Rowton's Debater
Short Whist
Thomson's knterest Trables Webster's Domestic Eiconomy Webster's on Children's Diseases Willich's Popular Tables W'ilmot's Blackstone

Botany and Gardening

IIassall's British Fresliwater Algæ Hooher's British Flora

Guide to Kcw Gardens
indley's Introduction to Botany
Lind. Theory of llorticulture

Loudon's Hortus Britannicus Amateur Gardener Trees and Shrubs Gardening
plants
velf-1nstruction for Gar
dupus se
Bereira's Materia Medica
Huvers's Kose-Amatur's Guide Wilson's British Mosses

Chronology.

Blair's Chronological Tables
Brewer's Historical Atlas
Bunsen's Ancient Egypt
Calendars of Englishstate Papers
Haydn's Beatson's Index
Jaquanet's Chronology
Nicolas's Clironology of IIistory - 12

Commerce and Mercantile Affairs.

Gitbart's Treatise on Banhing Lorimer's Young Master Mariner 12 Macleol's Banking

13 'Culloch'sCommerce is Novigation it Heculloch'sCommerceis Navigation 19 cromon' lat
Tooke's History of Pices

Criticism, History, and Memoirs.
Blair's Chron. and Histor. Tables Brewer's Historical Atlas
Bunsen's Ancient Egypt
IIippolytus
Burton's History of Scctland Calendars of English slate Papers Clapman's Gustavus Adolphas Conybeare and Howson's st. P'aul Conmely's sappers and Miners Gleig's Leinsic Campaign Gurney's llistorical sketches llerschiel's lissays and Addeests Jeffrey's (Lord) Contributions K゙emble's Analo-Saxons Lardner's Citbinet Cyclopredia Macaulay's Crit. and Hist. Essiny Ilistory of England speeches
Mackintosh's Miscellaneous Works Instory of England s'Culloch"sGeosriaphicalDictionary is Maunder's Treasury of History Memoir of the Jake of Wellington Merivale's history of Rome Rominn Republic-
Milner's Churchi History Moore's (Thomas) Memoirs, \&c. Aure's Grcek Litcrature Perry's Franks

Raikes's Journal
Ranke's Ferdinand \& Maximikian riddle's Latin Dictoonaries Roms Esenys from Edmb. Reriew 18 Roget's English Thesaurns schmitz's History of Greece Southey's Doctor
Stephen's Ecclesiastical Biograph
Lectures on French History
Sylney Smith's W'orks

> Select Work Lectures Memoirs

Teylor's yoyola
Thirlwall's llistory of Greece
Thomas's Ilistorical Notes Thornbury's Shakspeare's England Townscnd's State 'Trials Turkey and Cliristendom Turner's Anglo-Saxons

Middle Ages

- Sacred Hist. of the World Telise's Austrian Court Wade's England's Greatnes Whiters Clurist odish Embassy

> Toung's Christ of History

Ceozraphy and Atlases.

Brewer's Historical Atlas
Butter's Geograplyy and Atlases
Cabinet Gazettcer -
Cornuall: Its Mince, \&e.
Durrieu's Morocco
Hughes's Australian Colonies Johnston's Gcneral Gazetteer M'Culloch's Geographical Dictionary Russia and Turkey
Maunder's Treasury of Geograpliy Maync's Arctic Discoveries
Murray's Encyclo. of Geography
Sharp's British Gazcteer

Juvenile Books

Amy llerbert

Cleve lal
Earl's Daughter (The)
Fxperience of Life
Gertrutle
1lowitt's Boy's Country Book
(Mary) Children's Year
1 yors
Katharine Ashton
Ianeton l'arsonage
Nargaret Percival

Medicine and Surgery.

Brodic's Psychological Inquiries
Bull's Hints to Mothers
Management of Children
Copland's Dictionary of Medicme
Cust's Invalid's Own Booh
lolland's Mental Physion
Medical Notes aud Reflect.
fow to Nurse Sick Children
Kicsteren's Domestic. Medicine
Pereira's Materia Medica
Lichardson's Cold-Water Cure
West on Discases of Infancy -
\square
scellaneous and General

Literature.

Bacon's (Lord) Works
Carlisle's Lectures and Addresses
Df fence of Eclipse of Faith
Ecripse of Faith
Gren's Political and Social Essays
Greyson's Select Correspondence -
Gurney's Evening Recreations
Thassall's sdulterations Detected, \&e.
Hardn's Book of Dignities
Molland's Mental Physiology
Hooker's kew Guides
Howitt's Rural Life of England
isitsto RemarkablePlaces 10
Mutton's 160 Years Ago
Jameson's Commonplace.Book - 11
Jeflrcy's (Lord) Contributions

Johns's Lands of Silence and of Darhness
Last of the Old Squires
Macaulay's Crit. and Hist. Essays speeches
Machintosh's Miscellaneous Worhs Memoirs of a Maitre-d'Armes Mattand's Churchin the Catacombs Martineau's Miscellanies
Dloores Cliurch Cases
Printing: Its Origin, Sc.
Pycrolt's English Readling Rich's Comp. to Latin Dictionary Riddle's L.tin Dictionaries Rowton's Debater Seaward's Narrative of his Shipwrech Sir Roger De Coverley Smith's (Rev.Sydney) Works Southey's Common -place Books
" The Doctor \&c.
Sourestre's attic Philosopher
Confessions of a Working Man Stephen's Essays
Stow's 'Training System
Thomson's Laws of Thought Townsend's state Trials
Willich's Popular Tables
Yonge's English-Greek Lexicon Latin Gradus
Zumpt's Latin Grammar

Natural History ingeneral.

Catlow's Popular Conchology Ephemera and Young on the Salmon Garratt's गlarvels of instinct Gosse's Natural History of lamaica 8 Kemp's Nitural History of Creation 22 Kirby and Spence's Entomology Lee's Filements of Natural History Maunder's Natural History Turton's Shells of the British/slands Van der lloeven's Zoology
Von Trechudi's Sketches in the Alps W:aterton's Essays on Natural Hist. Yountt's 'Tle Dog

1-Volume Encyclopredias and Dictionaries.

Blaine's Rural Sports
Brande's Ficience, Literature, and Àrt 4 Copland's Dictionary of Medicine -
Cresy's Civil Engineering
Gwilt's A rchitecture
Jolunston's (jeographical Dictionary Lonelon's Agriculture

Agriculture -	-
Rural Architecture	-13
Gaadening -	-12
Plants	
Trees and Shrubs	-

M'Culloch's Geographicallictionary 14 Murray's Encyclo.of Gieography Sharp's British Gazetteer
Ure's Dictionary of Arts, \&c. -
Webster's Domestic Economy

Religious \& Moral Works.

Amy Herbert
Blonmfifld's Greek'Testamens
Calvert's Wife's Manual
Cleve I1all
Conybeare's Essays
Conyheare and Ilnwson's St. Paul Cot'on's Instructions in Christianity
Dale's Domestic Liturgy
Defence of Erlipse of Faith
Diacipline
Farl's Daughter (The)
Er lipse of fiaith
Englishman's Greek Concordance
lleh. \&eChald. Concord.
Experience (The) of Life
Gertrude
Harrison's light of the Forge Hook's liectureson Passion Week Horne's Introluction to scriptures Abriolgment of ditto 11ne's rhristianity in China Hunphusys: P'arables thuminated 1 vers
Jameson's Gacred Leegends

> Monastic Legends

Legends of the Madinna
Lectures on Female Employment
Jeruniy liaylor's Works-
Katharine Ashton
König's l'ictorial Life of Luthex
Lanmion Porsonage
Lettera to my IUnknown Friends on 11:1ppiness
I, yra Germinic:
M,icnarght on inspiration
Alaguires If,me
Mlatland's C:hureh in Catacombs Nargaret Percival

Martineau's Christian Life -

 11 ymns
Rural Sports.

Baher's Rifle and Hound in Ceylon
Berkeley's forests of France
Blaine's Dictionary of Sports
Cecil's stable l'ractice Stusl Farm
The Cricket Field
Davy's lishung lixcursions, 2 Scrics
Ephemera on Aneling
's Book of the Salmon
Hawker's loung Sportsman
The Hunting-Field
Ide's llints on Shooting
Pocket and the stud
Practical Horsemanship
Richardson's lors manship -
stable Talk and 'rable Talk
stonelienge on the Grevhound
Thacker's Courser's Guide
The Stud, for Practical Purposes -

Veteriaary Medicine, \&cc.

Cecil's Stahle Practice
Hunting Farm
Diles's Horse-shoein
" on the Horse's Foot
Pocket and the Stud
Practical Horsemanship
Richaridson's Horsemanship
Stable Talk and T'able 'Talk
Stud (The)
Youatt's The Dog
The Horse

Voyages and Travels.

Aulujo's Ascent of Mont Blane Baines's Vauclois of Piedmont Baker's Wanderings in Ceylun Barrow's Continental Tour Barth's African Travels Berkeley's Forcsts of France Burton's Eist Africa

Merlina and Mlecca Carlisle's 'Turkey and Greece De Custine's Russia

Eothen

Fergnson's Swiss Travels
remmi:h Interiors
Forester's Rambles in Norway ardinia and Corsica
Gironière's Philippines
Gregorovius's Corsica
1lalloran's lupan
Hill's Travels in Siberia
Hinchlifl's Travels in the Alps Hope's Brittany and the Bible Chase in Brittany
Howitt's Art-Stunent in Munich
(W.) Victoria

IIuc's Chinese
Hucsun and Kennedy's Nont
y's Mont
Fughes's Australian Colonies
Fughes's Australian Colonitas
Ifumbilelt's Aspects of Nat.ure
llutchinson's African Exploration lameson's Canalı
derrmann's Sit. 1'etersburg
Lains"s Norway
Notes of a Traweller

6
6
6
8
8
$\begin{array}{r}8 \\ 15 \\ \hline\end{array}$ 15
8 8
18 18
9
8 $\begin{array}{r}8+ \\ 2+ \\ \hline\end{array}$

Lardner's Cahinet Cyclopariia
Marect's (Mrs.) ('onverathons
Morell's Filements of Psychology
 Our (:onal Fictlds and our Com-pits Owen's lactureson Gomp Anatomy Pereira on Polarined 1,ight
ferscliel's lilements of Physics Phillins's Fossils of ('ornwall, \&ce. Mineralogy
(iuide to fírology
Porthock's fieology of Londonderry
f'owell's Linity of Worlds
Smpe's F:Tectro- Metallurgy
Stram Encine (The)
Wilson's Filectric T'elegraph -

Goldsmith's l'nems, illustrated
L. F.. L.'s P'ontical Works

Linwood's Anthologia Uxoniensis -

Montgomery's Poetical Works
Moore's Poetical Works

Ialla Ronklı

Irish Melodics
Songs and Ballads
Reade's Puetical W゙orks
Shakspare, by Bowdler
Southey's Boetical British 'oets
olitical Economy arad Statistics.
Doid's Food of London
Greg's Politecal and Social Essays Laing's Notes of at Traveller

Culs
Dictionary of Commerce 1
Willich's Popular Tables
The Sciences in ceneral and Mathematics.
Araço's Meterological Essays
Bourne on the sicrew l'ropelter
sotheriscm of hream-E.ag ine Royd's Naval Catct's Manual
ande's Dictionary of coenee, ec
Lectures on (rganic chamistry
Dela Beche'sfipolngy ofCornwall, \&c Je lat live's Electricity
Grove's (:orrcla, ol Plysical Forces
H.rachel's (hatlines of Astronomy

Holland's Mental l'hysiology
lumboldt's Aspect.s of Nature

- rosmos

M'Clure's inorth-West Passagc Macl) ougall's Voyage of the liesolute Mason's \%ulus of Natal
Miles's Rambles in leeland
O.born's (2upetah
pfeiffer's Foyage round the World Scennd ditto

Scherzer's Central America -

 Sumbrles arrativeSnow's 'Ticrra del Fucgo
sputti*womle's Eastern Russia
Fon 'Tempsky's dexico and Guatcmala
Weld's Vacations in Ireland
United stateo and Canadr
Werne's Alrican Wianderinzs
wilberforce's Brazil \& Slave.']rade

Works of Fiction.

Cruikslank's Falstafl
Ilowitt's Tallanget ta
Macdonald's Villa Verocchio
Mrlville's Confilence-Man
Moores Epicurtan
Sir Roger De Coverley
Sketches (The), Thrce Tales
Sonthey's The Inoctor \&e.
Trollope's Barchester Towers

ALPHABETICAL CATALOGUE

NEW WORKS and NEW EDITIONS

PUBLISHED BI
Messis. LONGMIAN, BROWN, GREEN, LONGMANS, and ROBERTS, PATERNOSTER ROW, LONDON.

Miss Acton's Modern Cookery for Private Familics, reduced to a System of Easy Praetice in a Series of carefully-tested Reeeipts, in whieh the Principles of Baron Liebig and other eminent Writers have been as muel as possible applied and explained. Newly-revised and enlarged Edition; with 8 Plates, comprising 27 Figures, and 150 Woodcuts. Fep. 8ro. 7s. 6 d .
Acton's Englisli Bread-Book for Domestie Use, adapted to Families of crery grade: Containing the plainest and most minute Instructions to the Learner, and Practical Reecipts for many varietics of Braad; with Notiecs of tho present System of Adulteration and its Consequenees, and of the Improved Baking Proeesses and Institutions established Abroad. Fep. 8vo. priee 4s. Gd. eloth.
Aikin. - Select Works of the British Poets, from Ben Jonson to Beattie. With Biographical and Critical Prefaces by Dr. Aikin. New Edition, with Supplement by Luct Aikin ; consisting of additional Selections from morc recent Pocts. 8vo. price 18s.

Arago(Fi.)-Biographies ofDistinguished Scienific Men. Translated by Admiral W. H. S.мyti, D.C.L., F.R.S., \&e. ; the Rev. Baden Powele, M.A.; and Robert Grant, M.A., F.R.A.S. Svo. 1ss.

Arago's Meteorological Essays. With an Introduction by baron Humboldt. Translated under the superintendence of Licut.Colonel IE. Sabine, R.A., Treasurcr and T.I.R.S. Sro. 18s.

Arago's Popular Astronomy. Translated and cdited by Admiral W. H. Smytir, D.C.L., T.R.S. ; and Robert Grant, M.A., F.R.A.S. In 'Two Volumes. Vol, I. 8vo. with Plates and Woodeuts, 21s.

Arnold.-Poems. By Matthew Arnold. Third Fedition of the lürst Scries. Fcp. 8ro. priee 5s. 6d.
Arnold. - Poems. By IMatthew Arnold. Second Series, about one-third new ; the rest finally sclected from the Tolumes of 1849 and 1852, now withdrawn. Fcp. Sro. price 5 s.

Lord Bacon's Works. A New Edition, rerised and elucidated; and enlarged by the addition of many pieces not pronted bcfore Colleeted and Edited by Robert Lesite Eliss, M.A., Fellow of Trinity College, Cambridge; Jaues Spedding, M.A. of Trinity College, Cambridye ; and Dovalas Dexon Heath, Esq., Barrister-at-Law, and late Fellow of Trinity College, Cambridgc.The publieation has commenced with the Division of the Philosoplical IForis, to be completed in 5 rols., of whiel Vols. I. in III. in 8ro., price 18s. each, are now ready. Vols. IV. and V. are in the press.
Joanna Baillie's Dramatic and Poetical Works: Comprising the Plays of the Passions, Miscellaneous Dramas, Metrical Legends, Fugitive Pieces, and Ahalya Bacc. Sceond Edition, with a Life of Jomna Baillie, Portrait, and Vignette. Square erown 8 vo . 21s. eloth; or 42 s . bound in moroeco by Hayday.
Baker. - The Rifle and the Hound in Ceylon. By S. W. Baker, Esq. New Edition, with 13 Illustrations engrared on Wood. Fcp. 8vo. 4s. 6d.
Baker. - Eight Years' Wanderings in Ceylon. By S. W. Baker, Esq. With 6 coloured Plates. 8ro. price 15 s .
Barth. - Travels and Discoveries in North and Central Africa: Being the Journal of an Expedition undertaken under the auspices of Her Britamie Majesty's Government in the Years 1819-1855. By Menhy Bartit, Ph.D., D.C.L., Fellow of thic Royal Geographical and Asiatic Societics, \&e. Vols. I. to Itl., with 11 Maps, 100 Engravings on Wood, and 36 Illustrations in tinted Lithography, price 63s.- Vols. IT. and V., eompleting the work, are in the press.
Bayldon's Art of Valuing Rents and Tillages, and Claims of Tenants upon Qnitting Farms, at both Michachmas and Lady-Day; as revised by Mr. Donaldson. Seventh Edicion, enlarged and adapted to the Present Trme: With the Principles and Mode of Valning Land and other Property for Paroelnal Assessment and Enfranchisement of Copyholds, muder the recent Aets of Parliament. By Robert Baker, LandAgent and Valuer. 8ro. 10s. 6d.

A Montl in the Forests of France. By the Hon. Graythey F. Bebieley, Author of Reminiscences of a IItuntsinan. Svo. with 2 Etchings by Joinn Lecch (1 coloured).
[Searly ready.
Black's Practical Treatise on Brewing, based on Chemieal and Eeonomieal Prineiples : With Formule for Publie Brewers, and Instructions for Private Families. New Edition, with Additions. 8ro. 103. 6d.
Blaine's Encyclopædia of Rural Sports; or, a complete Aceount, Historical, Practieal, and Descriptive, of Hunting, Sloooting, Fishing, Racing, and other Field Sports and Athletie Anusements of the present day. Now Edition, revised by Harky Hieoter, Ephemira, and Mr. A. Grailam. With upwarls of 600 Woodents. 8ro. 50 s.
Blair's Chronological and Historical Tables, from the Creation to the Present Time: With Additions and Correetions from the most authentic Writers; including the Computation of St. Paul, as comneeting the Period from the Exode to the Temple. Under the revision of Sir Henry Eliss, K.II. Imperial Svo. 31s. 6d, half-morocco.

Bloomfield. - The Greek Testament, with copious English Notes, Critieal, Philologieal, and Explanatory. Espeeially adapted to the use of Theological Students and Ministers. By the Rer. S. T. Broomfield, D.D., F.S.A. Nintlı Edition, revised. 2 rols. 8ro. with MIap, price $£ 2.8$.
Dr. Bloomfield's College and School Edition of the Greek Testament: With brief Enclish Notes, chiefly Pliilologieal and Explanatory, especially formed for use in Colleges and the Publie Schools. Seventh Edition, improred; with Map and Index. Fcp. 8ro. 7s. 6d.
Dr. Bloomfield's College and School Sexicon to the Greek Testament. New Edition, carefully recrised. Fcp. 8vo. price 10s. 6d. cloth.

Bourne. - A Treatise on the Steam-Engine, in its Application to Mines, Mills, Steam-Navigation, and Railways. By the Artisan Club. Edited by Jomn Bourns, C.E. New Edition; witl 33 Steel Plates and 349 Wood Engravings. 4to. price 27s.
Bourne's Catechism of the Steam-Engine in its varions Applications to Mines, Mills, Steam-Navigation, Railways, and Agriculture: With Practical Instruetions for the Mranufacture and Management of Engines of every class. Fourth Edition, enlarged; with 85 Woodeuts. Fep. 8ro. 6s.

Bourne. - A Treatise on the Screw Propeller: With various Suggestions of Improvement. By Join Bourne, C.E. New Edition, thoroughly revised and correeted. With 20 large Plates and numerous Woodcuts. 4to. price 38 s .

Boyd. - A Manual for Naval Cadets. Published with the sajaction and approval of the Lords Commissioners of the Admiralty. By Joiry M'Neidi Bord, Captain, R.N. With Compass-Signals in Colours, and 236 Woodeuts. Fep. Svo. 10s. 6d.
Brande.-A Dictionary of Science,Literature, and Art: Comprising the History, Deseription, and Scientifie Principles of every Braneh of Human Knowledge; with the Derivation and Definition of all the Terms in general use. Edited by W. I. Brande, F.R.S.L. and E.; assisted by Dr. J. Cadvin. Third Edition, revised and correeted; witl numerous Woodeuts. 8ro. 603.

Professor Brande's Lectures on Organic Chemistry, as applied to Mannfactures; ineluding Dyeing, Bleaeliing, Calico-Printing, Sugar-Manufaeture, the Preservation of Wood, Tanning, \&e.; delivered before the Members of the Royal Institution. Arranged by permission from the Leeturer's. Notes by J. Scorfern, M.B. Fep. 8vo. with Woodcuts, price 7s. 6d.

Brewer. - An Atlas of History and Geography, from the Commencement of the Clristian Era to the Present Time: Comprising a Series of Sixteen colourcd Maps, arranged in Clironologieal Order, with Illustrative Memoirs. By the Rev. J. S. Bremer. M.A., Professor of English History and Literature in King's College, London. Second Edilion, revised and correeted. Royal 8ro. 12s. 6d. half-bound.
Brodie. - Psychological Inquiries, in a Series of Essays intended to illustrate the Influence of the Physieal Organisation on the Mental Faeulties. By Sir Benjamin C. Brodie, Bart. Third Edition. Fcp.8vo. 5s.
Bull. - The Maternal Management of Children in Health and Disease. By T. Bulu, M.D., Member of the Royal College of Plysicians; formerly PlyssicianAccoucheur to the Finsbury Midwifery Institution. New Edition. Fep. 8ro. 5s.

Dr. T. Bull's Hints to Mothers on the Management of their Health during the Period of Pregnancy and in the Lying-in Room: With an Exposinre of Popular Errors in connexion with those subjects, \&e.; and Hints upon Nursing. New Edition. Fep, 8vo. 5s.

Buckingham.-Autobiography of James Silk Buckingham: Inchuding lis Voyages, Travels, Adventures, Speculations, Suecesses and Failures, frankly and faithfully narrated; with Characteristic Sketehes of Public Men. Vols. I. and II. post 8ro. 21s.
Bunsen. - Christianity and Mankind, their Begimnings and Prospects. By Christian Charles Josias Bunsen, D.D., D.C.L., D.Ph. Being a New Edition, correeted, remodelled, and extended, of Hippolytus and his Age. 7 vols. 8vo. £5.5s.
*** This Second Edition of the IIippolytus is composed of three distinct works, which may be hal scparately, as follows:-

1. Hippolytus and his Age; or, the Beginnings ard Prospects of Cluristianity'. 2 'ols. Svo. price £1. 10s.
2. Ontline of the Philosoply of Universal History ?pplied to Langnage and Religion: Containin\% an iscconmt of the Alphabetical Conferences. 2 vols. 8 ro. price E1. 18 s .
3. Analecta Ante-Nicæna, 3 vols. Sro. price $22.2 s$.

Bunsen. - Lyra Germanica: Hymns for the Sundays and ehief Festivals of the Christian Year. Translated from the German by Catherine Winkwortif. Third Edition, Fep. 8ro. 5s.
*** This selection of Germarı Hymne has been made from a collection published in Germany bo the Chevalier BUNSEN; and forms a companion volume to
Theologia Germanica: Which setteth forth many fair lincaments of Divine Truth, and saitl very lofty and lovely things touching a Perfect Life. Translated dy Susanna Winkwortif. With a Preface, by the Ret. Charles Kingistef; and a Letter by Cheralier Bunsen. Third Edition. Fep. 8ro. 5s.
Bunsen. - Egypt's Place in Universal History: An Historieal Investigation, in Fire Books. By C. C. J. Bunsen, D.D., D.C.L., D.Ph. Translated from the German by C. H. Cottreli, Esq., M.A. With many Illustrations. Vol. I. 8vo. 28s.; Vol. II. 8ro. 30s.

Burton (J. H.)-The History of Scotland

 from the Revolution to the Extinction of the Last Jacobite Insurrection (1689-1748). By Joif IIlll Burton. 2 vols. 8ro. 26 s.Bishop S. Butler's General Atlas of Modern and Ancient Geography ; comprising Fifty-two full-coloured Maps; with complete Indices. New Edition, nearly all re-engraved, enlarged, and greatly improved. Edited by the Author's Son. Royal 4to. 24s. half-bound.
$\left\{\begin{array}{l}\text { The Modern Atlas of } 28 \text { full-colourcd Mans. } \\ \text { Poyal Svo. price } 12 \text { s. }\end{array}\right.$ $\{$ The Ancient Atlas of en full-coloured Mans. Royal Sro, price las.
Bishop S. Butler's Sketch of Modern and Aveient Geography. New Edition, thoroughly revised, with such Alterations introduced as continually progressive Discoveries and the latest Information have rendered necessary. Post 8vo. price 7s. 6d.

Burton.--First Footsteps in East Africa ; or, an Exploration of Harar. By Riciard F. Burton, Captain, Bombay Army. With Maps and coloured Plates. 8vo. 18s.

Burton. - Personal Narrative of a Pilgrimage to El Medinah and Meccah. By Richard F. Burton, Captain, Bombay Army. Second lidition, rerised; with coloured Plates and Woodcuts. 2 vols erown 8 vo. priee 24s.

The Cabinet Lawyer: A Popular Digest of the Laws of England, Civil and Criminal ; with a Dietionary of Law Terms, Maxims, Statutes, and Judicial Antiquitics; Correct Tables of Assessed Taxes, Stamp Duties, Excise Lieenses, and Post-Horse Duties; Post-Office Regulations ; and Prison Discipline. 17th Edition, comprising the Publie Aets of theSession 1857. Fep. 8ro. 10s. 6d.

The Cabinet Gazetteer: A Popular Expo. sition of All the Countries of the World: their Government, Population, Revenues, Commeree, and Industries; Agricultural, Manufactured, and isineral Products; Re ligion, Laws, Mamers, and Social State; With brief Notices of their History and Antiquities. By the Author of The Cabinct Lawyer. Fep. 8ro. 10s. 6d. cloth; or 13s. bound in ealf.
"The anthor has nerlected no modern sources of information, and all his short, succinct, and neat descriptions of the different places are quite conformable to present ktiowledge. Sarawak, for example, in Borneo, is not omitted, and of sim Francisco there is quite a detailed description. The work is compiled with considerable care, and in the 912 pares
that it contaius there is a Vast amount of gcograplical and topowr:pheacal information pleasantly condensed. The Cubinet Gazeltcer. though not intended to supersede more claborate works, will, to some extent, have that effect ; but it will be sule to find alarge and perminent circulation of its own."

Economist.
Calendar of English State Papers, Domestic Scries, of the Reigns of Edward VT., Mary, Elizabeth, 1547-1580, preserved in the State Paper Department of Mer Majesty's Public Record Office. Edited by Robert Limon, Esq., F.S.A., under the dircetion of the Master of the Rolls, and with the sanction of Her Majesty's Secretary of State for the Home Department. Imperial Sro. 15 s.

Calendar of English State Papers, Domestic Series, of the Reign of James I., 1603-1610 (comprising the Papers relating to the Gumpowder Plot), preserved in the State Paper Department of H.MT. Public Record Office. Edited by Mary Anae Everett Green, Author of The Lives of the Princesses of Engluad, \&e., under the direetion of the Master of the Rolls, and with the sanction of II. MI. Secretary of State for the Wome Department. Imperial $8 \mathrm{~B}^{\circ} 0.15 \mathrm{~s}$.

Calvert. - The Wife's Manual ; or, Prayers, Thoughts, and Songs on Several Oecasions of a Matron's Life. By the Rev. IV. Calvert, MI.A. Ornamented from Desimns by the Author in the style of Queen E'izabcll's Prayer-Book. Second Edition. Crown 8vo. 10s. Gd.

Carlisle (Lord).-A Diary in Turkish and Greek Waters. By the Right Hon. the Earl of Carlisle. Fifth Edition. Post 8ro. price 10s. 6d.

Caslow.-Popular Conchology; or, the Shell Cabinct arranged aecording to the Modern System: With a detailed Aceount of the Animals, and a complete Descriptive List of the Families and Genera of Recent and Fossil Shells. By Aanes Catlow. Seeond Elition, mueh improved; with 405 Woodeut Illustrations. Post 8vo. price 14.s.

Cecil, - The Stud Farm ; or, Hints on Breeding Horses for the 'Iurf, the Chase, and the Road. Addressed to Breeders of RaceHorses and ILunters, Landed Proprictors, and especially to Tenant Farmers. By Cecil. Fep. Sro. with Frontispiece, 5 s.

Cecil's Stable Practice ; or, Hints on Training for the Turf, the Chase, and the Road; with Observations on Racing and Hunting, Wasting, Racc-Riding, and Handieapping: Addressed to Owners of Racers, Hunters, and other Horses, and to all who are conecmed in Racing, Stecple-Chasing, and Fox-IIunting. Fep. 8vo. with Plate, priee 5 s. half-bound.
Chapman. - History of Gustavus Adolphus, and of the Thirty Tears' War up to the King's Death: With some Aceount of its Conclusion by the Peace of Westphalia, in 1648. By B. Chapman, M.A., Viear of Letierhead. 8vo. with Plans, 12s. 6d.

Chevreul On the Harmony and Contrast of Colours, and their Applieations to the Arts: Including Painting, Interior Deeoration, Tapestries, Carpets, Mosaics, Coloured Glazing, Paper-Staining, Calico-Printing, Letterpress-Printing, Map-Colouring, Dress, Landscape and Flower-Gardening, \&e. \&e. Tran*lated by Chardes Martel. Second Edition; with 4 Plates. Crown 8 vo. priee 10s. 6d.

Comnolly.-History of the Royal Sappers and Xiners: Tncluding the Services of the Corps in the Crimes and at the Siege of Sebastopol. By T. W.J. Coxyolly, Quartermaster of the Royal Enginecrs. Second Eddion, revised and enlarged; with 17 coloured plates. 2 vols. 8 ro. price 30 s.

Conybeare and Howson.-The Life and Epistles of Saint Paul: Comprising a eomplete Biograjhy of the Apostle, and a 'ranslation of his Epistles inserted in Chronologieal Order. By the Rer. W. J. Conybeare, M.A.; and the Rev. J. S. Mowson, M.A. Second Lilition, revised and corrected; with several Maps and Woodcuts, and 4 Plates. 2 vols. square crown 8vo. 31s. 6d. cloth.
** The Original Edition, with more numerous Illustrations, in 2 vols. 4 to. price 4 ss. - may also be had.

Conybeare.-Essays, Ecclesiastical and social : Reprinted, with Additions, from the Edinburgh Review. By the Rer. W. J. Conybrare, M.A., late Fellow of Trinity College, Cambridge. 8ro, 12s.

Dr. Copland's Dictionary of Practical Medicine: Comprising General Pathology, the Nature and Treatment of Diseases, Morbid Structures, and the Disorders espeeially ineidental to Climates, to Sex, and to the different Epoehs of Life; with numerous approved Formule of the Medienes reeommended. Vols. I. and II. Sro. price f^{2}; and Parts X. to XVIII. 4s. 6d. cach. ** Part XIX., completing the work, is neanly ready.
Cotton. - Instructions in the Doctrine and Practice of Cluristiminity. Intended ehiefly as an Introduction to Confirmation. By G. E. L. Cotton, M.A. 18mo. 2s. 6d.

Cresy's Encyclopædia of Civil Engineering, Historical, Theoretical, and Praetical. Illustrated by upwards of 3,000 Woodeuts. Second Edilion, revised and brought down to the Present Time in a Supplement,eomprisingMetropolitan WaterSupply, Drainage of Towns, Railways, Cubical Proportion, Brick and Troin Construction, Iron Serew Piles, Tubular Thridges, \&e. Svo. 63s. cloth. - The Supplement separately, price 10s. 6d. eloth.

The Cricket-Field; or, the Science and History of the Game of Crieket. By the Author of Principles of Sciemitic Batting. Sccond Edition, greatly improved; with Plates and Woodents. Fip. 8vo. priee 5s.

Crosse.-Memorials, Scientific and Literary, of Andrew Crosse, the Electrician. Edited by Mrs. Crosse. Post 8ro. 9s. 6 d .
Cruikshank. - The Life of Sir John Falstaff, illustrated by George Cruikshank. With a Diography of the Knight, from authentie sources, by Robert B. Brovaf, Esq. Royal 8ro.-In course of publication monthly, and to be completed in 10 Niumbers, cach containing 2 Plates, price 1 s . The first 6 Numbers are now ready.

Lady Cust's Invalid's Book. - The Invalid's Own Book: A Collection of Recipes from various Books and various Countrics. By the Honourable Lady Cugt, Second Edition. Fep, 8vo. price 2s. 6d.

Dale.-The Domestic Liturgy and Family Chaplain, in Two Parts : Part I. Church Services adapted for Domestic Use, with Prayers for Every Day of the Week, selected fron the Book of Common Prayer; Part II. an appropriate Sermon for Every Sunday in the Year. By the Rcr. Thomas Dale, M.A., Canon Residentiary of St. Paul's. Second Edition. Post 4to. 21s. cloth; $31 \mathrm{~s}, 6 \mathrm{~d}$. calf ; or $£ 2.10 \mathrm{~s}$. morocco.

Davy (Dr. J.) - The Angler and his Friend ; or, Piscatory Colloquies and Fishing Excursions. By John Daty, M.D., F.R.S,, \&cc. Fep, 8ru. price 6s.

The Angler in the Lake District: Or, Piscatory Colloquies and Fishing Excursions in Westmoreland and Cumberland. By Joms D.tTY, MI.D., I.R.S. Fep. Sro. Gs. Gd.

Delabeche.-Report on the Geology of Cornwall, Deron, and West Somerset. By Sir H. T. Delabeche, F.R.S. With Maps, Plates, and Woodcuts. 8ro. price 14s.

De la Rive.-A Treatise on Electricity in Theory and Practice. By A. De la Rive, Professor in the Academy of Geneva. Translated for the Author by C. V. Walker, F.R.S. In Three Volumes; with numerous Woodents. Tol. I. 8 ro. price 18s.; Vol. II. price 28s.-Tol. ILI. is in the press.

De Vere.-May Carols. By Aubrey de Yere, Author of The Search after Prosperine, \&e. Fep. 8ro. 5 s.

Discipline. By the Author of "Letters to my Unknown Friends," \&c. Second Edition, enlarged. 18mo. price 2s, 6d.

Dodd.-The Food of London : A Sketch of the chicf Varictics, Sources of Supply, probable Quantitics, Mocies of Arrival, Processes of Manufacture, suspected Idultcration, and Machincry of Distribution of the Food for a Commmity of Tiro Millions and a Half. By Georae Dodd, Author of British Manufactures, \&c. Post 8vo. 10s. 6d.

Estcourt.-Music the Voice of Harmony in Creation. Selected and arranged by Mary Jane Estcourt. Fep. Sro. 7s. 6d.

The Eclipse of Faith; or, a Visit to a Religıous Sceptic. 8thEdition. Fep. 8vo. 5s.

Defence of The Eclipse of Faith, by its Author: Being a Rejoinder to Professor Newman's Reply: Including a full Examination of that Writer's Criticism on the Character of Christ; and a Chapter on the Aspects and Pretensions of Modern Deism. Second Edition, revised. Post 8ro. 5s. 6d.

The Englishman's Greek Concordance of̃ the New Testament: Being an Attempt at a Terbal Comnexion betwcen the Greek and the English Texts; including a Concordance to the Proper Names, with Indexes, GreekTnglish and English-Greek. New Edition, with a new Index. Royal 8vo. price 42s.

The Englishman's Hebrew and Chaldee Concordance of the Old Testament: Being an Attempt at a Verbal Comexion between the Original and the English Translations; with Indexes, a List of the Proper Names and their Occurrences, \&c. 2 rols. royal 3vo. £3. 13s. 6d. ; large paper, £4. 14s. 6d.

Ephemera's Handbook of Angling; toaching Fly-Fishing, Trolling, Bottom3 Tishing, Salmon-Fishing : With the Natural History of River-Fish, and the best Modes of Catching them. Third Edition, corrected and improved; with Woodeuts. Fcp. 8ro.5s.

Ephemera. - The Book of the Salmon: Comprising the Theory, Principles, and Practice of Fly-Fisling for Salmon: Lists of good Salmon Flies for every good River in the Empire; the Natural History of the Salmon, its Habits described, and the best way of artificially Breeding it. By Epiesmera ; assisted by Andrew Youna. Fcp. 8vo. with coloured Plates, price 14s.

Tairbairn.-Useful Information for \$nginecrs: Being a Series of Lectures delivered to the Working Engincers of Yorkshire and Laneashirc. With Appendices, containing the Results of Experimental Inquiries into the Strength of Materials, the Causes of Boilce Explosions, \&e. By William Fatrbairy, F.R.S., F.G.S. Second Edition; with numerons Plates and Woodeuts. Crown Sro. price 10s. 6d.

The Fairy Family: A Series of Ballads and Metrical Tales illustrating the Fairy Mythology of Europe. With Frontispicce and Pictorial Titlc. Crown 8ro. 10s. Gd.

Flemish Interiors. By the Writer of
A Glunce lehind the Grilles of Religious Houses in France. Fcp. 8ro. 7s. 6d.

Forester.-Travels in the Islands of Corsica and Sardinia. By Thomas Forester, Author of Rambles in Norway. With numerous eoloured Illustrations and Woodeuts, from Sketches made during the Tour by Lieutenant-Colonel M. A. Bidduripi, R.A. Imperial 8ro.
[In the press.
Garratt.-Marvels and Mysteries of Instinet ; or, Curiosities of Animal Life. By George Garratt. Second Eidilion, revised and improred; with a Frontispiece. Fep. Sro. 4s. 6d.

Gilbart.-A Practical Treatise on Banking. By James Willian Gitibart, F.R.S., Gencral Manager of the London and Westminster Bank. Sirth Edition, revised and cnlarged. 2 rols. 12 mo . Portrait, 163.

Gilbart. - Logic for the Million: A Familiar Exposition of the Art of Reasoning. By J. W. Gilbart, F.R.S. 5tlı Edition; with Portrait of the Author. 12mo. 3s. 6d.

The Poetical Works of Oliver Goldsmith. Edited by Bol'ton Corney, Esq. Illustrated by Wood Engravings, from Designs by Members of the Etching Club. Square crown 8 ro. cloth, 21 s ; morocco, £1. 16 s.

Gosse. - A Naturalist's Sojourn in Jamaica. By P. II. Gosse, Esq. With Plates. Post 8ro. price 14 s .

Green.-Lives of the Princesses of Fingland. By Mrs. Marx Anne Everett Green, Editor of the Letters of Royal and Illustrious Ladics. With numerons Portraits. Complete in 6 vols. post 8 ro. price 10s. 6cl. eacli.-Any Tolume may be liad separately to complete sets.
Mr. W. R. Greg's Essays on Political and Social Seience, contributed ehiefly to the Edinburgh Review. 2 vols. Svo. price 24s.

Greyson. - Selections from the Correspondence of R. E. II. Greison, Esq. Edited by the Author of The Eclipse of Faith. 2 vols. fep. 8vo. price 12 s .

Grove. - The Correlation of Physical Forecs. By W. R. Grove, Q.C., M.A., F.R.S., de. Thirel Edition. Svo. prico 7s.

Gurney.-St. Louis and Henri IV.: Bcing a Sceond Serics of Historical Sketches. By the Rev. Jomin If. Gurnex, M.A., Reetor of St. Mary's, Marylobonc. Fep. 8vo. Gs.

Evening Recreations; or, Samples from the Lecture-Room. Edited by the Rev. J. H. Gurney, M.A. Crown Svo. y s.

Gwilt's Encyclopædia of Architecture, Historieal, Thcoretical, and Practical. By Josepir Gwilt. With more than 1,000 Wood Engravings, from Designs by J. S. Gwilt. Third Edition. 8ro. 42s.

Halloran.-Eight IMonths' Journal kept on board onc of II.M. Sloops of War, during Visits to Loochoo, Japan, and Pootoo. By Alfred L. Malloran, Master, R.N. With Etehings and Woodeuts. Post 8ro. 7s. Gd.

Hare (Archdeacon).-The Life of Luther, in Forty-eight Historical Engravings. By Gustav König. With Explanations by Arcideacon IAre and Susanya Winkwortir. Fcp. 4to. priee 28s.
Harford.-Life of Michael Angelo Bronarroti: With Translations of many of his Yoems and Letters; also Memoirs of Saronarola, Raphacl, and Vittoria Colonna. By doine S. Marford, Esq., I.C.L., F.R.S., Member of the Acadeny of Painting of St. Luke, at Rome, and of the Roman Archrological Societs. With Portrait and Plates. 2 rols. 8ro. 25 s.

Illustrations, Architectural and Pictorial, of the Genius of Michael Angelo Buonarroti. With Deseriptions of the Plates, by the Cornmendatore Canina; C. R. Cockereil, Esq., R.A.; and J. S. Harford, Esq., D.C.L., F.R.S. Folio, 73s. Gd. half-bound.

Harrison.-The Light of the Forge ; or, Counsels drawn from the Sick-Bed of E. M. By the Rev. W. Marrison, M.A., Domestic Chaplain to H.R.H. the Duehess of Cambridge. Ficp. 8ro. price 5 s.
Harry Hieover.-Stable Talk and Table Talk; or, Speetacles for Young Sportsmen. By Ifarry Hfeoter. New Edition, 2 vols. 8ro. with Portrait, price 24s.

Harry Hieover.-The Hunting-Field. By Harry Hieover. With Two Plates. Fcp. 8 ro. 5 s , half-bound.

Harry Ficover. - Practical Horsemanship. By Marry Mieoter. Second Edilion; with 2 Plates. Fcp. Svo. 5s. half-bound.

Harry Hieover. - The Pocket and the Stud; or, Practical IIints on the Management of the Stable. By Harry Hieover. Second Edition; with Portrait of the Author. Fcp. 8 vo. price 5 s. half-bound.

Harry Hicover.-The Stud, for Practical Purposes and Practical Men: Being a Guide to the Clioice of a Horse for use more than for show. By Harry Hieoter. With 2 Plates. Ficp. 8 ro. priee 5 s. half-bound.

Hassall. - Adulterations Detected; or, Plain Instructions for the Discovery of Frauds in Food and Medieine. By Arthure Hile Hassall, M.D. Lond., Analyst of The Lancet Sanitary Commission, and Author of the Reports of that Commission published under the title of Food and its Adulterations (which may also be had, in Sro. price 28s.) Witlı 225 Illustrations, engraved on Wood. Crown Sro. 17s. 6u.

Hassall.-A History of the British Fresh

Water Alge: Including Deseriptions of the Desmider and Diatomaceæ. With upwards of One Hundred Plates of Figures, illustrating the various Species. By Arther Mill Hassale, M.D., Author of Microscopic Anatomy of the Iluman Bocly, \&e. 2 rols. Sro. with 103 Plates, price £1. 15 s .

Col. Hawker's Instructions to Young

 Sportsmen in all that relates to Guns and Shooting. 10th Edition, rerised and brought down to the Present Time, by the Author's Son, Major P. W. L. Hitreer. With a Portrait of the Author, and numerous Plates and Woodcuts. 8ro. 21 s .Haydn's Book of Dignities : Containing Rolls of the Official Personages of the British Empire, Civil, Ecclesiastical, Judicial, Military, Naval, and Municipal, from the Earliest Periods to the Present Time. Together with the Sovereigns of Europe, from the Foundation of their respective States; the Peerage and Nobility of Great Britain ; \&c. Being a New Edition, improved and continued, of Beatson's Political Index. 8ro. 25s. half-bound.

Sir John Herschel.-Essays from the Fidinburyh and Ruarterly Reviexs, with Addresses and other Pieces. By Sir Joun F. W. Hersciel, Hart., K.H., M.A. 8vo. price 18s.

Sir John Herschel.-Outlines of Astronomy. By Sir Johi F. W. Herscuel, Bart., K.II., M.A. New Edition; with Plates and Woodeuts. 8 ro. price 18 s.

Hill.-Travels in Siberia, By S. S. Hill, Esq., Author of Travels on the Shores of the Baltic. With a large Map of European and Asiatic Russia. 2 vols. post Sro. 24 .
IInchliff.-Summer Nonths among the Alps: With the Aseent of Nonte Rosa. By Thomas W. IInchlife, of Lincoh's Inn, Barrister-at-Law. With 4 tinted Views and 3 Maps. I'ost Sro. price 10s. Gd.
Hints on Etiquette and the Usages of Soeiety: With a Glance at Bad Mabils. New Edition, revised (with Additions) by a Lady of Rank. Fep. 3 ro. price ITalf-a-Crown.

Holland. - Medical Notes and Reffections. By Sir IIeniry Molfand, Bart., M.D., F.R.S., \&c., Physician in Ordinary to the Queen and Prince Albert. Whird Edition. Sro.1Ss.

Holland.-Chapters on Mental Physiology. By Sir Menry Ifolland, Bart., F.R.S., \&e. Founded chiefly on Chapters contained in the First and Second Editions of Medical Notes and Reflections by the same Author. 8ro. price 10s. 6 d .

Hook.-The Last Days of Our Lord's Ministry: A Course of Lectures on the prineipal Erents of Passion Weck. By the Rev.W. F. Hoor, D.D. New Edition. Fep. 8ro. price 6s.

Hooker.-Kew Gardens ; or, a Popular Guide to the Royal Botanic Gardens of Kew. By Sir Wifliam Jachson Hooker, K.H., \&e., Director. New Edition; witls many Woodcuts. 1Gmo. price Sixpence.

Hooker. - Iruseum of Economic Botany; or, a Popular Guide to the Useful and Remarkable Vegetable Products of the Muscum in the Royal Gardens of Kew. By Sir W.J. Hoorer, K.IF., \&e., Director. With 29 Woodents. 1Gmo. price ls.

Hooker and Arnott. - The British Plora: comprising the Phænogamous or Flowering Plants, and the Fcrns. Seventh Edition, with Additions and Corrections; and numerous Figures illustrative of the Umbelliferous Plants, the Composite Plants, the Grasses, and the Ferns. By Sir W. J. Hooker, F.R.A. and L.S., de. ; and G. A. Walker-Aknott, LL.D., F.L.S. 12 mo . with 12 Plates, price 14s.; with the Plates coloured, price 21s.

Horne's Introduction to the Critical Study and Knowledge of the Holy Scriptures. Tenth Edition, revised, corrected, and brought down to the present time. Edited by the Ree. T. Hartwele Iforne, B.D. (the Anthor); the Rev. Samuet Dayidson, D.D. of the Unirersity of Halle, and LL.D.; and S. Pbipeatx Tregeldes, LL.D. With 4 Maps and 22 Tignettes and Faesimiles. 4 rols. Svo. £3. 13s. 6d.
** The Four Yolumes may also be had separatety ns follows:-

Tor. I. A Summary of the Fridence for the Gemineness, Authenticity, Uncorruptal l'reservation, and Inspiration of the IIolyscriptures. 13ythe Rev. T. II. Horne, 13.D.. Evo.1as

You. II.- The Text of the Old Testament considered: With a Treatisc on siered Jiterpretation; and a brief Introduetion to the old Testrment liooks and the Apocrypha. By S. Davidson, D.D. (Halle) and LL.I). Svo. zis.
YoL. MI.-A Sinmmary of Biblieal Geography and Antiquities. By the Rev. '1.: II. Ilorne, 13.1)........... Svo. 15s.
YoL. IV.-An Introduction to the Textual Criticism of the New. Testament. Isy the Rev. T. H. Horne, B.D. 'the Critical Part re-written, and the remainder revised and edited by $上$. P. Tregeiles, LL.D. Svo. 18s.

Home. - A Compendious Introduction to the Study of the Bible. By the Rev. T. Hartitell Horne, B.D. New Edition, with Maps and Illustrations, 12 mo . 9s.

Hoskyns.-Talpa; or, the Chronicles of a Clay Farm: An Agricultural Fragment. By Chandos Wren IIoskyys, Esq. Fourth Edition. With 21 Woodeuts from the origiual Designs by George Cruifsiline. 16mo. price 5 s .6 d .

How to Nurse Sick Children: Intended especially as a Irclp to the Nurses in the Hospital for Sick Children; but containing Directions of service to all who have the charge of the Young. Fcp. 8vo. 1s. 6d.

Howitt (A. IM.) - An Art-Student in Mrunich. By Anna Mary Howitt. 2 rols. post 8ro. price 14s.

Howitt.-The Children's Year. By Mary Howitr. With Four Illustrations, from Designs by A. M. Howitt. Square 16 mo . 5 s .

İowitt.-Tallangetta, the Squatter's Home: A Story of Australian Life. By Wiletami IMowitt, Author of Two Years in Fictoriu, \&c. 2 vols. post 8 ro. price 18s.

Howitt. - Land, Labour, and Gold; or, 'Lwo Years in Vietoria: With Visit to Syduey and Yan Diemen's Land. By Williday Howitt. 2 vols. post 8 vo . 21 s.
Howitt.-Visits to Remarkable Places: Old Halls, Battlc-Fields, and Scenes illustrative of Striking Passages in English History and Poctry. By Willdam Howict. With about 50 Wood Engravings. Nen Edilion. 2 rols. square crown 8 vo . price 25 s .

William Howitt's Boy's Country Book: Being the Real Life of a Country Boy, written by liniself; exhibiting all the Amuscments, Pleasures, and I'ursuits of Children in the Country. New Edition; with 40 Woodcuts. Fep. 8ro. jrice 6s.

Howitt. - The Rural Life of England. By Wifleam Howitt. Now Edition, corrected and revised; with Woodeuts by Bewick and Willians. Medium 8vo. 21s.

Huc.- Christianity in China, Tartary, and Thibet. By M. l'Abbé Muc, formerly Missionary Apostolic in China; Author of The Chinese Limpire, \&e. 2 vols. 8ro. 21s.

Huc.-The Chinese Empire: A Sequel to Huc and Gabet's Journey through Tartary and Thibet. By the Abbé Huc, formerly Missionary Apostolic in China. Second Edition; with Map. 2 rols. 8vo. 24s.

Hudson's Plain Directions for Making
Wills in conformity with the Law: With a clear Exposition of the Law relating to the distribution of Personal Estate in the case of Intestacy, two Forms of Wills, and much useful information. New and enlarged Edition; including the Provisions of the Wills Act Amendment Act. Fcp. 8ro. 2s. 6d.

Hudson's Executor's Guide. New and improved Edition; with the Statutes enacted, and the Judicial Decisions pronounced since the last Edition incorporated, comprising the Probate and Administration Acts for England and Ireland, passed in the first Scssion of the New Parliament. Fep. Sro.
[Just ready.
Hudson and Kennedy.-Where there's a Will there's a Way: An Aseent of Mont Blane by a New Route and Without Guides. By the Rev. C. Uudson, M.A., St. John's Collcge, Cambridge; and E.S. Kenatedt, B.A., Caius College, Cambridge. Second Edition, with Two Asecnts of Monte Rosn: a Plate, and a coloured Map. Post Svo. 5s. 6d.

Humboldt's Cosimos. Translated, with the Author's authority, by Mis. Sabine. Vols. I. and II. 16mo. Half-a-Crown cach, sewed; 3s. 6d. each, eloth: or in post Sro. 12s. cach, eloth. Vol. IIM. post 8ro. 12s. 6d. eloth: or in 16 mo . Part I. 2s. 6 d . sewed, 3s. 6d. cloth ; and Part II. 3s. sewed, s.s. cloth,

Humboldt's. Aspects of Nature. Translated, with the Author's authority, by Mirs.Sabine. 16 mo . price 6 s : or in 2 vols. 3 s .6 d . cach, cloth; 2s. 6d. cach, sewed.

Humphreys. - Parables of Our Lord, illuminated and ornamented in the style of the Missals of the Renaissance by Mearay Noed Ilumimeys. Square fcp. Svo. 21s. in massive carved covers; or 30 s. bound in morocco by Hayday.

Hunt. - Researches on Light in its Chemical Relations; embracing a Consideration of all the Photographic Processos. By Robert Hunt, F.R.S. Second Edition, with Plate and Woodcuts. 8 vo .10 s .6 d .

Hutton.- A Hundred Years Ago: An Historical Sketeh, 1755 to 1756. By James Hutron. Post 8vo.

Idle.-Hints on Shooting, Fishing, \&cc, both on Sca and Land, and in the FreshWater Lochs of Scotland: Being the Experiences of C. Idle, Esq. Fep. 8to. 5s.

Mrs. Jameson's Legends of the Saints and Martyrs, as represented in Christian Art : Forming the First Series of Sacred and Legendary - Int. Third Edition, revised and improved; with 17 Etehings and upwards of 180 Woodeuts, many of which are new in this Edition. 2 rols, square erown Sro. 31 s . 6 d .

Mrs. Jameson's Legends of the Monastic Orders, as represented in Christian Art. Forming the Second Scrics of Sacred and Legendary Art. Sccond Edition, enlarged; with 11 Etchings by the Author, and 88 Woodents. Squarc crown 8 ro. price 28 s.

Mrs. Jameson's Legends of the Madonna, as represented in Christian Art: Forming the Third Series of Sacred and Leyendary Art. Second Edition, revised and improved : with numerous Etchings from Drawings by the Author, and upmards of 150 Woodeuts. Square crown Sro.
[Nearly ready.
Mrs. Jameson's Commonplace-Book of Thoughts, Memorics, and Fancies, Original and Selected. Part I. Ethics and Character ; Part II. Literature and Art. Second Edit. revised and corrected; with Etchings and Woodeuts. Crown 8ro. 18s.

Mrs. Jameson's Two Lectures on the Employment of Women.

1. Sisters of Cimiritr, Catholic and Protestant, Abroad and at Frome. Second Eillition, with new Preface. Fep. Svo. Is.
2. The Commenioz of Lamour: in Second Lecture on the sucial Employments of Women. Fep. Sro. Bs.

Jaquemet's Compendium of Chronology: Containing the most important Dates of General History, Political, Ecclesiastical, and Literary, from the Creation of the World to the end of the Year 1851. Edited by the Rev, J. Alcome, M.A. Second E:dition. Post 8ro. price 7s. 6d,
Lord Jeffrey's Contributions to The Edinburgh Reriew. A New Edition, complete in One Volume, with a Portrait engraved by Henry Robinson, and a Tignette. Square erown 8ro. 21s, cloth; or 30 s. calf. -Or in 3 rols. 8 ro. price 42s.

Bishop Jeremy Taylor's Entire Works: With Life by Bishop IIeber. Revised and corrected by the Rev. Charles Page Eden, Fellow of Oricl College, Oxford. Now complete in 10 vols. 8 ro. 10s. 6 d . each.

Johns.-The Land of Silence and the Land of Darkness. Being Two Essays on the Blind and on the Deaf and Dumb. By the Rer. B. G. Jonrs, Chaplain of the Blind School, St. George's Fields, Southwark. Fep. Sro. price 4s. 6d.

Johnston.-A Dictionary of Geograpliy, Descriptive, Plhysical, Statistical, and Historical: Forming a complete General Gazcttecr of the World. By A. Keitir Jurnston, F.R.S.E., F.R.G.S., F.G.S., Geographer at Edinburgh in Ordinary to Her Majesty. Second Edition, thoroughly revised. In 1 rol. of 1,360 pages, comprising about 50,000 Names of Places. 8ro. 36s. cloth; or halfbound in russia, 41s.

Kemble.-The Saxons in England: A History of the English Commonwealth till the Norman Conquest. By Joirn M. KexibLe, M.A., \&c. 2 vols. 8 ro. 28 s .

Kesteven.-A Manual of the Domestic Practice of Medicine. By W. B. Kesteven, Follow of the Royal College of Surgeons of England, \&c. Square post 8vo. 7s. 6d.
Kirby and Spence's Introduction to Entomology ; or, Elements of the Natural History of Insects : Comprising an Account of Noxious and Useful Insects, of their Metamorphoses, Food, Stratagems, Habitations, Societics, Motions, Noises, Mybernation, Instinct, \&c. Serenth Edition, with an Appendix relative to the Origin and Progress of the work. Crown 8vo. 5s.

Mrs. R. Lee's Elements of Natural History; or, First Principles of Zoology : Comprising the Principles of Classification, interspersed with amusing and instructire Ae . counts of the most remarkable Animals. New Edition; Woodeuts. Fep.8ro.7s.6d.

Letters to my Unknown Friends. By a Lady, Author of Lellers on Happiness. Fourth Edition. Fcp. 8ro. 5s.

Letters on Happiness, addressed to a Friend. 33y a Ladr, Author of Letters 10 my Unknozeir Friends. Fep. 8vo. Gs.
L.T.L.-The Poetical Works of Letitia Elizabeth Landon; comprising the Improvisatrice, the Venetian Bracelet, the Golden Tiolet, the Troubudour, and Poetical Remains. New Idition; with 2 Vignettes by Ri. Doyle. 2 rols. 16 mo .10 s . cloth; moroceo, 21s.

Dr. John Lindley's Theory and Practice of Horticulture ; or, an Attempt to explain the principal Operations of Gardening npon Physiological Grounds: Being the Second Lidition of the Tho ory of Morlicullure, much enlirged; with 98 Woodeuts. Sro. 21 s.
Dr. John Lindley's Introduction to Botany. New Edition, with Corrections and copious Additions. 2 rols. 8ro. witl Six Plates and numerous Woodeuts, price 24 s .

LARDNER'S CABINET CYCLOPEDIA

Of History, Biography, Literature, the Arts and Sciences, Natural History, and Manufactures. A Series of Original Works by

Sir John Herschel, Sir James Mackintosh, Robert Southey, Sir David Brewster,

Thomas Keiohtley, John Forster, Sir Walter Scott, Thomas Moore,

Bishop Thirlwall,
The Rev. G. R. Gleia,
J. C. L. De Sismondi,

John Phillips, F.R.S., G.S.
and other Eminent Writers.
Complete in 132 vols. fcp. 8 vo . with Vignette Titles, price, in cloth, Nineteen Guineas. The Works scpurately, in Sets or Scries, price Three Shillings and Sixpence each Volume.

A List of the Works composing the Cabinet Cyclopedia:-

Linwood.-Anthologia Oxoniensis, sive Florilegium e Lusibus pocticis diversorum Oxoniensium Greecis et Latinis decerptum. Curante Gulielmo Linwood, M.A., Edis Christi Alumno. 8ro. price 14.s.
Lorimer's (C.) Letters to a Young Master Mariner on some Subjects connceted with lis Calling. New Edition. Fep. 8vo. 5s.6d.
Loudon's Encyclopædia of Gardening: Comprising the Theory and Practice of Morticulture, Floriculture, Arboriculture, and Landseape-Gardening. With many hundred Woodeuts. New Fdition, corrected and improved by Mris. Loudon. 8 vo. 50 s.

Loudon's Encyclopædia of Trees and Shrubs, or Arboretum et Fruticetum Britannicum abridged: Containing the Hardy Trees and Shrubs of Great Britain, Native and Foreign, Scientifically and Popularly Described. With about 2,000 Woodeuts. 8 vo .50 s.
Loudon's Encyclopædia of Agriculture : Comprising the Theory and Practiee of the Valuation, Transfer, Laying-out, Improvement, and Management of Landed Property, and of the Cultivation and Eeonomy of the Animal and Vegetable Productions of Agriculture. New and cheaper Edition; with 1,100 Woodeuts. 8vo. 31s. 6d.

Loudon's Encyclopædia of Plants: Comprising the Specific Character, Description, Culture, History, Application in the Arts, and crery other desirable Particular respecting all the Plants found in Great Britain. New Edition, corrected by Mrs. Loudon. With upwards of 12,000 Woodcuts. 8ro. £3. 13s, 6d.-Sccond Supplement, 21 s.

Loudon's Encyclopædia of Cottage, Farm, and Villa Architecture and Furniture. New Edition, edited by Mris. Loudon; with morc than 2,000 Woodcuts. 8ro. 63s.
Loudon's Self-Instruction for Young Gardencrs, Foresters, Bailiffs, Land Stewards, and Farmers; in Arithmetic, Bookkeeping, Geometry, Mensuration, Practical Trigonometry, Mechanics, Land-Surreying, Levelling, Planning and Mapping, Architectural Drawing, and Isometrical Projection and Perspectivc. 8 ro. Portrait, 7 s . 6 d .

Loudon's Hortus Britannicus ; or, Catalogue of all the Plants found in Great Britain. New Edition, corrected by Mrs. Loudon. 8ro.31s.6d.

Mrs. Loudon's Lady's Country Companion ; or, How to Enjoy a Country Life Rationally. Fourth Edition, with Plates and Woodcuts. Fcp. Sro. 5s.

Mrs. Loudon's Amateur Gardener's Calcndar, or Monthly Guide to what should be aroided and done in a Garden. 16 mo . with Woodcuts, 7s. 6d.

Low'sElements of Practical Agriculture; comprehciding the Cultivation of Plants, the Husbandry of the Domestic Animals, and the Economy of the Farm. Ncw Edition; with 200 Woodents, 8 vo . 21 s .

Macaulay.-Speeches of the Right Hon. Lord Macaulay. Corrected by Hinself. 8 ro. price 12s.
Nacaulay. - The History of England from the Accession of James II. By the Right Mon, Lord Macadlay. New Edition. Vols. T. and II. Sro. price 32s.; Vols III, and IV. price 36s.

Lord Macaulay's Critical and Historical Essays contributed to The Edinburgh Review. Four Editions, as follows :-

1. A Imbrary Edition (the Eighth), in 3 vols. 8 ro. price 36 s.
2. Complete in One Volump, with Portrait and Vignette. Square crown bio. price 21 s . cloth; or
sus, calf.
,
3. Another New Edition, in 3 vols. fep. Svo. prico
els. cloth.
4. The People's Lidition, in 2 vols. crown Ewo. mice
8s. cloth.

Macaulay.-Lays of Ancient Rome, with Ivry and the Armada. By the Right Hon. Lord Macaulay. New Edition. 16 mo , price 4 s . 6 d . cloth; or 10 s .6 d . bound in morocco.
Lord Macaulay's Lays of Ancient Rome. With numerous Illustrations, Original and from the Antique, drawn on Wood by George Scharf, jun., and engraved by Samucl Williams. New Edition. Fcp. 4to. price 21 s . boards ; or 42 s . bound in morocco.
Mac Donald. - Poems. By George Mac Donald, Author of Within and Without. Fcp. 8vo. 7s.
Mac Donald.-Within and Without: A Dramatic Pocm. By George Mac Donald. Second Edition, revised ; fcp. 8vo. 4s. 6d.

Macdonald. - Vilia Verocchio; or, the Youth of Lconardo da Vinci: A Talc. By the late Miss D. L. Macdonald. Fcp. 8ro. price 6s.
MacDougall.-The Theory of War illustrated by numerous Examples from History. ByLicutenant-Colonel MacDotgaile, Superintendent of Studies in the Royal Military College, Sandhurst. Post 8 vo , with 10 Plans of Battles, price 10s. 6d.
M'Dougall.-The Eventful Voyage of II.MI. Discovery Ship Resolute to the Arctic Regions in Search of Sir John Frankilin and the Missing Creus of H.M. Discovery Ships Erebus and Tcrror, 1852, 1853, 1851. To which is added an Account of her being fallen in with by an American Whaler, after her abandonment in Barrow Straits, and of her presentation to Quecn Victoria by the Government of the United States. By George F. M‘Dotgale, Mastcr: With a coloured Chart; 8 Illustrations in tinted Lithography; and 22 Woodeuts. Svo. price 21s. cloth.
Sir James Mackintosh's Miscellaneous Works: Including his Contributions to The Edinburgh Reriew. Complete in One Tolume ; with Portrait and Vignctte. Squarc crown 8ro. 21s. cloth; or 30s. bound in calf: or in 3 vols. fcp. 8 ro. 21s.
Sir James Mackintosh's History of England from the Earliest Times to the final Establishment of the Reformation. Library Edition, revised. 2 vols. 8 ro. 21 s .
Macleod.-The Theory and Practice of Bariking: With the Elementary Principles of Currency, Prices, Credit, and Exchanges. By Menry Dunning Macleod, of the Inner Tcimple, Esq., Barrister-at-Law, 2 vols. royal Sro. price $3 u_{s}$.

Macnaught.-The Doctrine of Inspiration: Being an Inquiry concerning the Infallibility, Inspiration, and Authority of Holy Writ. By the Rev. Jonn MacNauaHt, M.A. Second Edition, revised. Crown 8 ro. priee 4s. 6 d .
M‘Culloch's Dictionary, Practical, Theorctieal, and Historical, of Commerce and Commercial Navigation. Illustrated with Maps and Plans. New Edition, corrected to the Present Time; with a Supplement. 8 vo . price 50 s . cloth ; half-russia, 55 s .
M'Culloch's Dictionary, Geographical, Statistical, and Historical, of the various Countries, Places, and prineipal Natural Objects in the World. Illustrated with Six large Maps. Ncw Edition, revised; with a Supplement. 2 vols. 8vo. price 63s.
Maguire.-Rome; its Ruler and its Institutions. By John Francis Magotre, M.P. Witl) a Portrait of Pope Pius IX. Post Sro. price 10s. 6d.
Maitland.-The Church in the Catacombs: A Description of the Primitive Church of Rome. Illustrated by its Sepulchral Remains. By the Rev. Charles Maitland. New Edition; with several Woodcuts. 8vo. price 14s.
Out-of-Doors Drawing.- Aphorisms on Drawing. By the Rev. S. C. Malan, M.a. of Balliol College, Oxford; Viear of Broadwindsor, Dorset. Post 8ro. 3s. 6d.
Mrs. Marcet's Conversations on Chemistry, in which the Elements of that Science are familiarly explained and illustrated by Experiments. New Edition, enlarged and improved. 2 vols. fcp. 8vo. price 14s.

Mrs. Marcet's Conversations on Natural Philosophy, in which the Elements of that Science are familiarly explained. New Edition, enlarged and eorrected; with 23 Platcs. Fcp. 8vo. price 10s. 6d.
Martineau.-Endeavours after the Christian Life: Discourses. By Janits Marmineau. 2 vols. post 8 ro. 7 s .6 d . cach.

Martineau.-Hymns for the Christian Church and Homc. Colleeted and cdited by Jamiss Martineau. Eleventh Edition, 32 mo . 3 s . 6 d . cloth, or 5s. calf; Tifth Edition, 32mo. 1s. 4d. cloth, or 1s. 8d. roan.
Martineau.-Miscellanies: Comprising Essays on Dr. Priestley, Arnold's Life and Correspondence, Church and State, Theodore Parker's Discourse of Religion, "Phases of Faith," the Church of England, and the Battle of the Churehes. By James Martineat. Post 8ro. 9s.

Maunder's Scientific and Literary Treasury: Λ new and popular Encyclopædia of Science and the Belles-Lettrcs; including all branches of Scienee, and every subject connected with Literature and Art. New Edition. Fep. 8vo. price 10s. cloth; bound in roan, 12s. ; calf, 12s. 6 d .
Maunder's Biographical Treasury ; consisting of Memoirs, Sketehes, and brief Notices of abore 12,000 Eminent Persons of All Ages and Nations, from the Earliest Period of History : Forming a new and complete Dietionary of Universal Biography. Ninth Edition, revised throughout. Fcp. 8 ro. 10 s . cloth; bound in roan, 12 s . ; calf, 12s. 6 d .

Maunder's Treasury of Knowledge, and Library of Reference. Comprising an English Dietionary and Grammar, a Universal Gazetteer, a Classieal Dictionary, a Chronology, a Law Dictionary, a Synopsis of the Peerage, numerous useful Tables, \&c. New Edition, carefully revised and corrected throughout: With Additions. Fcp. 8vo. 10s. cloth ; bound in roan, 12 s . ; calf, 12s. 6 d .

Maunder's Treasury of Natural History; or, a Popular Dictionary of Animated Nature: In which the Zoological Characteristies that distinguish the different Classes, Genera, and Species, are combined with a variety of interesting Information illustrative of the Habits, Instincte, and General Eeonomy of the Animal Kingdom. With 900 Woodcuts. New Edition. Fep. Sro. price 10s. cloth; roan, 12s. ; calf, 12s. 6d.
Maunder's Historical Treasury; comprising a General Introductory Outline of Universal History, Aneient and Moderm, and a Series of separate Histories of every principal Nation that exists; their Rise, Progress, and Present Condition, the Moral and Social Charaeter of their respective Inhabitants, their Religion, Manners and Customs, \&c. New Edition; rcrised throughout, with a new Genersi Indes. Fep. Sro. 10s. cloth ; roan, 12s. ; calf, 12s. 6 d .

Maunder's Geographical Treasury.The Treasury of Geography, Physical, Historical, Descriptive, and Politieal; containing a suceinet Account of Erery Countre in the World: Preceded by an Introductory Outline of tho History of Gcography; : Familiar Inqury into the Tarieties of Race and Language cxhibited by diferent Nations; and a View of the Relations of Geograply to Astronomy and the Physical Seiences. Commenced by the late Samuel Matader; completed by Williax Hughes, F.R.G.S., late Professor of Geography in the College for Civil Engincers. Nero Evition ; with 7 Maps and 16 Stcel Plates. Fep. Sro. 10 s. cloth; roan, 12s. ; calf, 12s. Gd.

Melville. - The Confidence-Man: His Masquerade. By Herman Melvilue, Author of Typee, Omoo, de. Fep. 8ro. 5s.

Merivale. - A History of the Romans under the Empire. By the Rev. Charless Mreritalfe, B.D., late Fellow of St. John's Collegc, Cambridge. Sro. with Maps.
Vols. I. and II. comprising the History to the Fall of Julins Ctrsar. Sccond Edition.
Tol. Ill. to the establishment of the Monarchy by $\mathcal{A} u$ oustus. Second Edition Its. Vols. IV. aud V. from Augustus to Claudius, B.C. 27 to 1.D. 51... 32 .

Merivale.-The Fall of the RomanRepublie : A Short History of the Last Century of the Commonwealth. By the Rev. C. Meriraie, B.D., late Fellow of St. John's College, Cambridge. New Edition. 12mo.7s.6d.

Trerivale,-An Account of the Life and Letters of Cicero. Translated from the German of Aberen; and Edited by the Rev. Charles Merivale, B.D. 12 mo . 9 s .6 d.

Merivale (L. A.)-Christian Records: A Short History of Apostolie Age. By I. A. Merivale. Fep. Svo. 7s. 6 d .

Miles.-The Horse's Foot, and How to Keep it Sound. Eighth Edilion; with an Appendix on Shoeing in general, and Hunters in particular, 12 Plates and 12 Woodeuts. By W. Miles, Esq. Impcrial 8ro. 12s. 6d.
** Two Casts or Models of Off Fore Fect. No. 1, Shod for All Pupposes, No. 2, Shod with Leather, on M1. Niles's plan, may be had, priee 3 s , each.

Miles.-A Plain Treatise on Horse-Shoeing. By William Miles, Esq. With Plates and W'oodeuts. Small 4to, priee 5s.

IVilner's History of the Church of Christ. With Additions by the late Rev. Isaac Milmer, D.D., F.R.S. A New Edition, revised, with additional Notes by the Rev. T. Granthams, B.D. 4 vols. 8vo. price 52s.

Montgomery.-Memoirs of the Life and Writings of James Montgomery : Ineluding Selcctions from his Correspondence, Remains in Prose and Verse, and Conversations. By Joux Hollaxd and James Everett. With Portraits and Vignettes. 7 vols. post 8vo. priec £3. $^{2} 13 \mathrm{~s}, 6 \mathrm{~d}$.
James Montgomery's Poetical Works: Collcetive Edition; with the Author's Autobiographical Prefaecs, complete in One Volume ; with Portrait and Vignette. Square crown 8 ro . priee 10s. 6d. eloth; moroeeo, 21s.-Or, in 4. rols. fep. 8vo. with Portrait, and 7 other Plates, priee 14s.

Moore.-The Power of the Soul over the Body, considered in relation to Health and Morals. By Georae Moore, M.D. Fifth Edition. Fep. 8ro. 6s.
"It shows that unless $/$ between mind and body the inward principle be so necessary to lumann disciplined, purified, and| enjoyment. We would enlightened, vainly must say, Read the book." we look for that liarmony ATHENAEUM.

Moore.-Man and his Motives. By George Moore, M.D. Third Edilion. Fep. Svo. 6s.

Moore. - The Use of the Body in relation to the Mind. By George Moore, M.D. Third Edition. Fcp. 8vo. 6s.

Moore. - Memoirs, Journal, and Correspondence of Thomas Moore. Edited by the Right Ifon. Lord Join Russell, M.P. With Portraits and Viguette Illustrations. 8 vols. post 8 vo. priee 10 s .6 d . each.

Thomas Moore's Poetical Works : Comprising the Author's recent Introductions and Notes. The Traveller's Edition, complete in One Volume, printed in Ruby Type; with a Portrait. Crown 3ro. 12s. 6d. cloth; morocco by Hayday, 21 s . - Also the Library Edition complete in 1 vol. medium 8 vo. with Portrait and Vignctte, 21s. eloth; morocco by Hayday, 42s. - And the Firsl collected Edition, in 10 vols. fcp. Svo. with Portrait and 19 Plates, price 35 s.

Moore. - Poetry and Pictures from Thomas Moore: Being Sclections of the most popular and admired of MIoore's Poems, copiously illustrated with highly-finished Wood Engravings from original Designs by

Pre, R.A.	F. R. Prckerscill , R.A.
E. C. Corbould,	S. Read,
J. Cropsisy,	G. Thomas,
F\%. Duncent,	F. TOPRIAM,
Birlet Foster,	M. Warben
J. C. Honslex, A.R.A.	Harrison Weill, and
H. Le Jeune,	E.Wiburd.

Fep. 4.to, printed on toned paper, and elegantly bound.
[Nearly ready.
NLoore's Epicurean. New Edition, with the Notes from the collcetive edition of Moore's Poelical Work; and a Tignette engraved on Wood from an original Design by D. Maclise, R A. 1Gmo. 5s. cloth; or 12s. 6d. moroceo by Hayday.

Moore's Songs, Ballads, and Sacred Songs. New Edition, printed in Ruby Type; with the Notes from the eollective edition of Moore's Poctical Works, and a Vignette from a Design by T. Creswick, R.A. 32mo. 2s. 6 d -An Edition in 16 mo . with Vignette by R. Doyle, priee 5s. ; or 12s. 6 d . morocco by Hayday.

Moore's Lalla Rookh: An Oriental Romance. With 13 highly-finished Steel Plates from Original Designs by Corbould, Meadows, and Stephanoff, engraved under the superiniendence of the late Charles Heath. New Edition. Square erown 8ro. price 15s. cloth ; morocco, 28 s.

Moore's Lalla Rookh. New Edition, printed in Ruby Type; with the Preface and Notes from the collective edition of MFoore's Poetical Works, and a Frontispiece from a Design by Kenny Meadows. 32 mo . 2s. 6d. -An Edition in 16mo. with Vignette, 5s.; or 12s. 6d. morocco by Hayday.

Moore's Irish Melodies. A New Edition, with 13 highly-finished Stecl Plates, from Original Designs by

$$
\begin{aligned}
& \text { C. W. Cope, R.A. D. Maclist, R.A. } \\
& \text { T. Creswick, R.A. } \\
& \text { A. Ligg, A.R.A. } \\
& \text { W. P. Fritir, R.A. } \\
& \text { W. F. Frost, A.R.A. } \\
& \text { J. C. Horsley; } \\
& \text { D. Maclisp, R.A. } \\
& \text { W. Mulready, R.A. } \\
& \text { J. Sant, } \\
& \text { F. Stone, A.P.A.; nnd } \\
& \text { E. M. WABD, R.A. }
\end{aligned}
$$

Square crown 8ro.price 21s. cloth ; or 31s.6d. handsomely bound in moroeco.

Moore's Irish Melodies, printed in Ruby Type; with the Preface and Notes from the collective edition of More's Poetical Works, the Advertisements originally prefixed, and a Portrait of the Author. 32mo. 2s. 6d.An Edition in 16mo. with Vignette, $5 \mathrm{~s} . ;$ or 12s. 6d. moroceo by Hayday.

Moore's Irish Melodies. Illustrated by D. Maclise, R.A. New Edition; with 161 Designs, and the whole of the Letterpress engraved on Steel, by F. P. Beeker. Superroyal 8 ro. 31 s .6 d . boards; £2. 12s. 6 dd . moroceo by Hayday.

Moore's Irish Melodies, the Music with the Words; the Symphonies and Aecompaniments by Sir John Sterenson, Mus. Doe. Complete in One Volume, small MLusic size, conrenient and legible at the pianoforte, but more portable than the usual form of Masical publications. Imperial 8ro. 31s. 6d. cloth; or 42 s . half-bound in morocco.

Moore.-The Crosses, Altar, and Ornaments in the Churclies of St. T'aul's, Knightsbridgc, and St. Tamabas, Timlico: A concise Report of the Proceedings and Judgments in the Cases of Westerton r. Liddell, Horne, and others, and Beal r. Liddell, Parke, and Evans ; as heard and determined by the Consistory Court of London, the Arclies Court of Canterbiny, and the Jindicial Committee of II.M. Most IIon. Privy Council. By Edmuyi F. Moore, Esq., M.A., Jarrister-at-Law. Royal 8vo. price 12 s clotl.

Morell.-Elements of Psychology : Part I., containing the Analysis of the Intellectual Powers. Dy J. D. Mormel, M.A., One of Her Majesty's Inspectors of Sehools. Post 8 ro. 7s. 6d.

Morning Clouds. [A book of practical cthies, in form of letters of counsel, eneouragement, and sympathy, specially addressed to young women on their entrance into lifc.] Post Sro. price 7s.

Moseley.-The Mechanical Principles of Enginecring and Architeeture. By H. Moselex, M.A., F.R.S., Canon of Bristol, \&e. Second Edition, enlarged; with numerous Corrections and Woodcuts. Sro.24s.

Memoirs and Letters of the late Colonel Armine S. If. Mountais, C.B., Aide-deCamp to the Queen, and Adjutant-General of Iler Majesty's Forces in India. Edited by Mrs. Mountais. With a Portrait drawn on Stone by R. J. Laxi, A.E.R.A. Post 8ro. 8s. 6 d .

Mure. - A Critical History of the Language and Literature of Ancient Greece. By Wiluiam Mcre, M.P. of Caldwell. Sccond Edition. Vols. I. to III. Svo. priee 36s. ; Vol. IV. price 15s.; Vol. V. price 18s.

Murray's Encyclopædia of Geography ; comprising a complete Deseription of the Earth: Exhibiting its Relation to the Heavenly Bodies, its Physical Structure, the Natural History of eacli Country, and the Industry, Commerec, Political Institutions, and Civil and Social State of All Nations. Second Edition ; with 82 MLaps, and upwards of 1,000 other Woodeuts. 8ro. price 60 s.

Neale. - The Closing Scene ; or, Christianity and Infidelity eontrasted in the Last Hours of Remarkable Persons. By the Rev. Ershine Neale, M.A. New Editions. 2 rols. fcp. 8vo. price 6s. cacl.

Oldacre.-The Last of the 0ld Squires. A Sketel. By Cedric Oldicre, Esq., of Sax-Norinanburs, sometime of Christ Churel, Oxon. Crorm 8ro. price 9s. 6d.

Osborn. - Quedah; or, Stray Leaves from a Journal in Malayan Waters. By Captain Siterard Osbors, R.N., C.b., Author of Stray Lcaves from cun Arctic Journat, and of the Aarrativc of the Discovery of the North-INest Passayge. With a coloured Chart and tinted Illustrations. Post Sro. price 10s. 6d.

Osborn.-The Discovery of the NorthWest Passage by II.M.S. Investigator, Captain R. M'Clulef, 1850-185\%. Edited by Captain Sufrard Osborn, C.B., from the Logs and Journals of Captain R. M‘Clure. Second Edition, rerised; with Addations to the Chapter on the Hybernation of Animals in the Arctic Regions, a Geologieal Paper by Sir Rodertce 1. Murchison, a Portrait of Captain M'Clure, a coloured Chart and tinted Illustrations. 8ro. price 15 s .

Owen.-Lectures on the Comparative Anatomy and Plysiology of the Invertebrate Animals, delirered at the Royal College of Surgeons. By Richard Oinen, F.R.S., Hunterian Professor to the College. Second Edition, witl 235 Woodcuts. 8ro. 21s.

Professor Owen's Leetures on the Comparative Anatomy and Physiology of the Vertebrate Animals, delivered at the Royal College of Surgeons in 1844 and 1846. With numerous Woodeuts. Vol. I. 8ro. priee 14s.

Memoirs of Admiral Parry, the Arctic Navigator. By his Son, the Rev. E. Parry, M.A. of Balliol College, Oxford; Domestic Chaplain to the Lord Bishop of London. Third Elition; witl a Portrait and colourcà Chart of the North-West Passage. Fep. 8ro. price 5 s.
Dr. Pereira's Elements of Materia Mediea and Therapeutics. Third Ldition, enlarged and improved from the Author's Materials, by A. S. Tayior, M.D., and G. O. Rees, M.D. : With numerous Woodcuts. Vol. I. 8ro. 28s.; Vol. II. Part I. 21s.; Vol. II. Part II. 24s.
Dr. Pereira's Lectures on Polarised Light, together with a Lceture on the Microseope. $2 d$ Edition, enlarged from Materials left by the Author, by the Rer. B. Powele, M.A., \&c. Fep. 8ro. with Woodcuts, 7s.

Perry. - The Franks, from their First Appearance in Ilistory to the Death of King Pepin. By Walter C. Perry, Barrister-at-Law, Doctor in Plinosophy and Master of Arts in the University of Göttingen. 8ro. price 12s. 6d.

Peschel's Elements of Physics. Translated from the German, with Notes, by E. West. With Diagrams and Woodcuts. 3 rols. fcp. 8 ro. 21 s .
Ida Pfeiffer's Lady's Second Journey round the World: From London to the Cape of Good Hope, Borneo, Jara, Sumatira, Celebes, Ceram, the Moluecas \&c., California, Panama, Peru, Eeuador, and the United States. 2 rols. post 8 ro. 21 s .

Phillips's Elementary Introduction to
Mineralogy. A New Edition, with extensive Alterations and Additions, by II.J. Brooke, F.R.S., F.G.S. ; and W. M. Miliel, M.A., F.G.S. With numerous Wood Engravings. Post 8ro. 18 s.

Phillips.-A Guide to Geology. By John Philitps, M.A., F.R.S., F.G.S., \&c. Fourth Edition, corrected to the Present Time; with 4 Plates. Fcp. 8ro. 5s.

Phillips. - Figures and Descriptions of the Palrozoic Fossils of Cornwall, Devon, and West Somerset ; observed in the course of the Ordnanee Geological Survey of that District. By Join Pimilips, F.R.S., F.G.S., \&cc. 8ro. with 60 Plates, price 9s.

Piesse's Art of Perfumery, and Methods of Obtaining the Odours of Plants: With Instructions for the Manufacture of Perfumes for the Handkerchicf, Scented Powders, Odorous Vinegars, Dentifrices, Pomatums, Cosmétiques, Perfumed Soap, \&c. ; and an Appendix on the Colours of Flowers, Artificial Fruit Essences, \&c. Second Edition, revised and improved; with 46 Woodeuts. Crown 8ro. 8s. 6 d .

Captain Portlock's Report on the Geolog'y

 of the County of Londonderry, and of Parts of Tyrone and Fermanagh, examined and described under the Authority of the MasterGeneral and Board of Ordnance. Sro. with 48 Plates, price 24s.Powell.-Essays on the Spirit of the Inductive Philosophy, the Unity of Worlds, and the Philosophy of Creation. By the Rev. Baden Powell, M.A.,F.R.S.,F.R.A.S., F.G.S., Sarilian Professor of Geometry in the University of Oxford. Second Edition, rerised. Crown 8ro. with Woodcuts, 12s. 6d.

Pycroft's Course of English Reading, adapted to every taste and eapacity : With Literary Anecdotes. New and cheaper Edition. Fep. 8vo. price 5s.
Raikes.-A Portion of the Journal kept by Thomas Raikes, Esq., from 1831 to 1847: Comprising Reminiseences of Social and Political Life in London and Paris during that period. Vols. I. and II. (Second Edition, , post 8ro. 21s.; Tols. III. and IV. with Index, completing the work, price 21s.

Reade. - The Poetical Works of John Edmund Reade. New Edition, revised and corrected; with Additional Pocms. 4. rols. fep. Sro. price 20 s.

Dr. Reece's Medical Guide: Comprising a eomplete Modern Dispensatory, and a Practical Treatisc on the distinguishing Symptoms, Causes, Prevention, Cure, and Palliation of the Diseases incident to the IHuman Frame. Screnteentlı Edition, correeted and enlarged by the Author's Son, Dr. H. Reeee, MI.R.C.S., se. 8 vo . 12s.

Rich's Illustrated Companion to the Latin Dictionaryand Greek Lexicon : Forming a Clossary of all the Words representing Visible Objeets connected with the Arts, Manufactures, and Every-Day Life of the Ancients. With about 2,000 Woodents from the Antique. Post 8vo.21s.
Richardson. - Fourteen Years' Experience of Cold Water: Its Uses and Abuses. By Captain M. Ricimadson, late of the 4 th Light Dragoons. Post 8vo. with Wroodeuts, price 6s.
"The first olject of tain liechardson considers Captain Richardson's the bandage not only more book is to extend the use beneficial medically than of the coli-water cure to the humbler classes, by a simpler mode of treatment. This simplicity princivally consists in the substitution of wet bandages covered by dry bandages for the wet sheet and othier processes of established hydropathy. Cap-
Horsemanship ; or, the Ait of Riding and Managing a Horse, adapted to the Guidance of Ladies and Gentlemen on the Road and in the Field: With Instructions for Breaking-in Colts and Young Horses. By Captain Richardson, late of the 4.th Light Dragoons. With 5 Plates. Square crown 8ro. 14s.
Household Prayers for Four Weeks ; With additional Prayers for Special Oecasions. To which is added a Course of Scripture Reading for Every Day in the Fear. By the Rev. J. E. Kidmbe, M.A., Ineumbent of St. Plilip's, Leckhampton. Crorm 8 ro. price 3 s .6 d .
Riddle's Complete Latin-English and English-Latin Dietionary, for the use of Colleges and Sehools. New and eheaper Edition, revised and correeted. 8ro. 21s.
Separately $\left\{\begin{array}{l}\text { The English-Latin Jictionary, } 7 \mathrm{~s}, \\ \text { The Latin-Eiglish Dictionary, }\end{array}\right.$
Riddle's Diamond Latin-English Dictionary. A Guide to the Meaning, Quality, and right Accentuation of Latin Classieal Words. Royal 32 mo . price 4 s .

Riddle's Copious and Critical JatinEnglish Lexieon, founded on the GernianLatin Dictionaries of Dr. William Frennd New and cheaper Edition. Post 4to. 31s. 6d.

Rivers's Rose-Amateur's Guide ; contain. ing ample Descriptions of all the fine leading varicties of Roses, regularly elassed in their respective Families; their History and Mode of Culture. Fifth Edition, corrected and improved. Fep. 8ro. 3s. 6d.
Dr. E. Robinson's Greek and English Lexicon to the Greek Testament. A New Edition, revised and in great part re-written. 8 ro. price 18s.
INr. Henry Rogers's Essays selected from Contributions to the Edinburgh Review. Second and cheaper Edition, with Additions. 3 rols. fep. 8ro. 21s.
Dr. Roget's Thesaurus of English Words and Phrases elassified and arranged so as to facilitate the Expression of Ideas and assist in Literary Composition. Sixth Edıtion, revised and improved. Crown 8vo. 10s. 6d.
Ronalds's Fly-Fisher's Entomology: With eoloured Representations of the Natural and Artificial Insect, and a few Observations and Instructions on Trout and Grayling Fishing. Fifth Lidition, thoroughly revised by an Experieneed Fly-Fisher; with 20 new eoloured Plates. 8ro. 14s.
Rowton's Debater: A Series of complete Debates, Outlines of Debates, and Qucstions for Discussion; with ample References to the best Sources of Information. New Edition. Fep. 8vo. 6s.
The Saints our Example. By the Author of Letters to my Unknocn Friends, icc. Fep. 8ro. priee 7s.
Scherzer.-Travels in the Free States of Central America: Niearagua, Honduras, and San Salvador. By Dr. Caml Scherzer. With a coloured Map. 2 vols. post Sro. 16s.

[^48]Dr. L. Schmitz's History of Greece, from the Jarliest 'limes to the Taking of Corinth by the Romans, B.c. 146, mainly based 1 pou Bishop Thirlwall's IIistory. Fourth Edition, with Supplementary Chapters on the Literature and the Arts of Ancient Greeec ; and illustrated with a Map of Athens and 137 Woodeuts, designed from the Antique by G. Scharf, jum., F.S.A. 12mo. 7s. 6cl.

Scrivenor's History of the Iron Trade, from the Earliest Records to the Present Period. New Edition, corrected. 8vo. price 10s. 6d.
Sir Fdward Seaward's Narrative of his Shipwreck, and consequent Discovery of certain Islands in the Caribbean Sea. Third Edition. 2 vols. post 8vo. 21s.-An Abridamext, in 16 mo . price 2 s . 6 d .

The Sermon in the Mount. Printed by C. Whittingham, uniformly with the Thumb Bible; bound and clasped. 64 mo .1 s .6 d .
Sewell. - Amy Herbert. By a Lady. Edited by the Rev. Wileiam Sewell, B.D., Fellow and Tutor of Exeter College, Oxford. New Edition. Fep. 8ro. price 6s.
Sewell.-The Earl's Daughter. By the Author of Amy Herbert. Edited by the Rev. W. Semele, B.D. 2 rols. fcp. 8 vo. 9 s .

Sewell. - Gertrude: A Tale. By the Author of Amy ITerbert. Edited by the Rev. W. Sewell, B.D. Fep. 8ro. price 6s.

Sewell. - Margaret Percival. By the Author of Amy Iferbert. Edited by the Rev. W. Seweld, B.D. 2 vols. fcp. 8 vo . price 12s.

By the same Author, New Editions,
Ivors. 2 vols. fcp. 8 vo . price 12 s .
Cleve Hall. 2 vols. fcp. 8 vo . price 12s.
Katharine Ashton. 2 vols. fcp. 8 vo . 12 s .
The Experience of Life. Fcp. 8vo. price 7s. 6d.
Lancton Parsonage: A Tale for Children, on the Practical Use of a portion of the Churcb Catechism, 2 vols. fcp. 8 ro. price 12s.
Readings for Every Day in Lent: Compiled from the Writings of Bishop Jeremy Thylor. Fep. 8vo. price 5s.
Readings for a Month preparatory to Confirmation: Compiled from the Works of Writcrs of the Early and of the English Church. New and cheaper Edition. Fep. 8vo. 4s.

Bowdler's Family Shakspeare: In which nothing is added to the Original Test; but those words and expressions are omitled which cannot with propriety be read aloud. Illustrated with Thirty-six Vignettes engraved on Wood from original Designs by
G. COOKE, R.l.
12. COOKl,
TI. HTOWARD, R.A.
IT. NINGLETON,
T. STOTIARD, R.A.
II. THOMSON, R.A.
i2. SMIRKE, R.A.
II. WORDFORDE, I.A.

New Erlition, printed in a more convenient form. 6 rols. fep. Sro. price 30s. cloth; separately, 5 s. each.
** The Irmbary Fidrior, with the same Illustrations,
in One Volume, meulium 8 ro, price 21 s cloth. in One Volume, meutium Svo. price 21s. cloth.

Sharp's New British Gazetteer, or Topographical Dictionary of the British Islands and Narrow Seas: Comprising concise Descriptions of about Sixty Thousand Places, Scats, Natural Featurcs, and Oljects of Note, founded on the best authorities. 2 vols. 8ro. price £2. 16s.
"We have already had oceasion to mention this book, and a careful examination of its contents lats convinced us of its great value. The remarkable cleamess with which its condensations and abureviations are made apvears to us its most acimirable feature. We lave
no book of similar bulk in no book of similar bulk in
the lancuage containing anything like the amount of information of various kinds so well arranged and so ensily accessible as in th is new gazetteer. Every article bears the marle of studied, carefin, and exact compilation. It eomprehends both the topography and the hydrograpley
is constructed on the plan of facilitatine reference lis bringing togetler as natuy articles as possible under distinct heads.... All the 1rositions lave hean retaken from the maps ; and not only the county but the quarter of the county given in which a hane might be looked for: We must, in short, reveat with a liheral acquieserence what Alr. Shary himself re marlis of his five yents' diligelat labonr, that it will be foum to comprise, in a clear and legible tyue, more sulsstantial information, collectellyom original suurces, and put into a concenient form, thim, the bulkiest of its class." Examiatir.

Short Whist; its Rise, Frogress, and Laws: Witlı Observations to make any one a Wlist-Player. Containing also the Laws of Piquct, Cassino, Ecarté, Cribbage, Backgammon. By Major A. New Edition ; to which are added, Precepts for Tyros, by Mrs. B. Fep. Svo. 3s.

Sinclair. - The Jowney of Life. By Catierine Sinctatr, Author of The Business of Life. New Edition. Fep. Sro. 5s.

Sir Roger De Coverley. From the Spectator. With Notes and Illustrations, by W. Menry Wills; and 12 Wood Engrayings from Designs by F. Tarler. Sccond and cheaper Edition. Crown 8ro. 10s. 6d. ; or 21 s. in morocco by Hayday.-An Edition without Woodcuts, in 16mo. price 1s.

The Sketches: Three Tales. By the Authors of Amy Herbert, The Old Mren's Home, and IIawtstone. The Third Edition; with 6 Illustrations in Aquatint. Fep. Sro. price 4 s . 6 d . boards.

Smee's Elements of Electro-Metallurgy. Third Edition, revised, corrected, and considerably enlarged; with Eleetrotypes and numerous Woodents. Post 8ro. IOs. 6a.

Smith (G.) - History of Wesleyan Methodism: Vor. T. Wealey and his Times. By George Smitir, F.A.S., Momber of thic Royal Asiatic Society, \&e.; Author of Sacred Annals, or Researches into the Mistory and Religion of Mantind, \&e. Crown Sro. with 8 Faesimiles of Methodist Society Tickets, price 10s. 6d. cloth.

Smith (G. V.) - The Prophecies relating to Nincrell and the Assyrians. Translated from the ICbrew, with Historical Introductions and Notes, exhibiting the prineipal Results of the recent Discoreries. Dy George Vance Simiti, B.A. Post Svo. with a Map, price 10s. Gd. cloth.

Smith (J.) - The Voyage and Shipwreck of St. Paul : With Dissertations on the Life and Writings of St. Luke, and the Ships and Navigation of the Ancients. By James Smith, of Jordanhill, Esq., F.R.S. Second Edition; wilh Charts, Views, and Woodcuts. Crown 8ro. 8s. Gd.

A Memoir of the Rev. Sydney Smith. By his Daughter, Lady Holland. With a Selection from his Letters, cdited by Mrs. Austin. New Elition. 2 rols, 8vo. 28s.

The Rev. Sydney Smith's Miscellaneous Works : Including his Contributions to The Edinburgh Review. Three Editions :-

1. A Library Edition (the Fourth), in 3 vols. Svo. with Portrait, 36s.
2. Complete in Ons Voluye, with Portrait and Vignette. Square eromn Sro. priee 21 s . cloth; or 30 s . bound in ealf.
3. Another NLW Edition, in 3 vols. fep. Sro. Miee 21s.

The Rev. Sydney Smith's Elementary Sketches of Moral Philosophy, delivered at the Royal Institution in the Years 1804, 1805, and 1806. Third Edition. Fep. 8ro.7s.

Snow.-A Two-Years' Cruise off Tierra del Fuego, the Falkland Islands, Patagonia, and the River Plate. A Narrative of Life in the Southern Scas. By W. Parker Svow, late Commander of the Mission Yacht Allen Gardiner; Anthor of "Voyage of the Prince Albert in Scarels of Sir John Franklin." With 3 coloured Charts and G tinted Illustrations. 2 rols. post 8 vo. 2 1s.
"A Robinson-Crusoe style of narration. and a kind of rough and licturesque treatment, sustain the interest of the nautieal descriptions more than misht be supposed; the wild and violent weather of the Falkland

Islands, with the dangers of their navigation and the peculia* charater of the River Plate, have a novelty beyond the common run of voyasing. The adventures in Tierra del Fucgo are very interesting.' SPECTATOR.

Robert Southey's Complete Poetical Works; containing all the Author's last Introductions and Notes. The Library Edition, complete in One Volume, with Portrait and Vignette. Medium 8vo. priee 21s. cloth ; 42s. bound in morocco. - Also, the First collected Edition, in 10 vols. fep. 8vo. with Portrait and 19 Vignettes, price 3 5.s.

Select Works of the British Poets ; from Chaucer to Lovelace inclusive. With Biographical Sketches by the late Roberive Soothey. Medium 8ro. price 30s.

Southey's Correspondence. - Selections from the Letters of Robert Southey, \&e. Edited by his Son-in-Law, the Rev. Joirn Wood Warter, B.1)., Viear of West Tarring, Susses. 4 vols. post 8ro. price 42s.

The Life and Correspondence of the late Robert Southey. Edited by his Son, the Rev. C. C. Southey, M.A., Vicar of Ardleigh. With Portraits and Landscape Illustrations. 6 rols. post 8 ro. price 63 s .

Southey's Doctor, complete in One Volume. Edited by the Rev. J. W. Warter, B.D. With Portrait, Vignette, Bust, and coloured Plate. Square crown 8ro. 2ls.

Southey's Commonplace-Books, complete in Four Volumes. Edited by the Rev. J. W. Warter, B.D. 4 vols. square crown $8 v o$. price £3. 18 s .
Each Commonplace-Rook, complete in itself, may be had sepurately, as follows :-
linst SEries - CHOICE PASSAGES, fe. 1ss.
Second Series - SPECIAL COLLECTIONS. Iss.
Timmd Series - ANALITICAL IREADINGS. 21s.
Fouktir Series - ORIGINAL AEMOLANDA, \&e. 21s.
Southey's Life of Wesley ; and Rise and Progress of Methodism. Ner Eidition, with Notes and Additions. Edited by the Rer. C. C. Sovthey, M.A. 2 rols. Svo. with 2 Portraits, price 28s.

Spottiswoode. - A Tarantasse Journey throngh Eastern Russia, in the Autumn of 1856. By Wililim Spottistroode, M.A., F.R.S. With a Map of Russia, several Wood Engravings, and Seven Illustrations in tinted Lithograpley from Sketeles by the Author. Post 8ro. price 10s. Gul.

Stephen. - Lectures on the History of France. By the Right Hon. Sir James Sterfien, K. C.B.,LL.D., Professor of Modern History in the Unirersity of Cambridge. Third Edition. 2 rols. 8ro. price 24s.

Stephen.-Essays in Ecclesiastical Biograply; from The Edinburgh Reriew. By the Right Hon. Sir Jamifes Sterien, K. C.B., LL.D., Professor of Modern IIistory in the University of Cambridge. Third Edition. 2 vols. 8 ro. 24 s .

Stonehenge.-The Greyhound : Being a Treatise on the Art of Brecding, Rearing, and Training Greylounds for Prublic Running; their Diseases and Treatment: Containing also Rules for the Managcment of Coursing Mcetings, and for the Decision of Courses. By Stonehenge. With Frontispiece and Woodeuts. Square crown 8 ro. price 21s. half-bound.

Stow. - The Training System, Moral Training School, and Normal Seminary for preparing Schoolmasters and Governesses. By David S'row, Esq., Honorary Secretary to the Glasgow Normal Free Scminary. Tenth Edition ; with Plates and Woodents. Post 8ro. price 6s.
Strickland. - Lives of the Queens of England. By Agaes Strickland. Dedicated, by express permission, to Her Majesty. Embellished with Portraits of every Queen, engrared from the most authentic sources. Complete in 8 rols. post 8vo. price 7s. 6d. cach. - Any Volume may be had separately to complete Scts.
Memoirs of Rear-Admiral Sir William Symonds, Kint., C.B., F.R.S., late Surveyor of the Nary. Published with the sanetion of his Executors, as direeted by his Will; and edited by J. A. Sirirr. Sro. with Plates and Wood Engravings.
[In the press.
Taylor. - Loyola: and Jesuitism in its Rudiments. By Isadc Taylor. Post 8vo. price 10s. 6d.
Taylor. - Wesley and Methodism. By Isaac Taylor. Post Sro. Portrait, 10s. 6d.
Thacker's Courser's Annual Remembrancer and Stud-Book: Being an Alphabetical Return of the Running at all the Public Coursing Clubs in England, Ireland, and Scotland, for the Season 1856-57; with the Pedigrees (as far as reecived) of the Dogs. By Robert Abram Welsif, Liverpool. 8 ro. 21 s.
*** Published annually in October.
Thirlwall.- The History of Greece. By the Right Rev. the Lord Bishor of St. Darin's (the Rer. Connop 'Thirlwall). An improved Library Edition; with Maps. 8 vols. 8 vo. price $\mathfrak{£ 3}$. - An Edition in 8 rols. fep. Svo. with Vignette Titles, priee 28s.

Thomas. - Historical Notes relative to the History of England; embracing the Period from the Accession of King Henry VIII. to the Death of Queen Anne inelusive (1509 to 1714) : Designed as a Book of instant Reference for the purpose of aseertaining the Dates of Events mentioned in History and in Manuseripts. The Names of Persons and Events mentioned in History within the above period placed in Alphabetieal and Chronologieal Order, with Dates; and the Authority from whence taken given in each ease, whether from Printed History or from Manuseripts. By F. S. Thomis, Secretary of the Public Record Department. 3 vols. royal 8 ro. price £2.

Thomson's Seasons. Edited by Bolton Corney, Esq. Illustrated with 77 fine Wood Engravings from Designs by Members of the Etehing Club. Square crown8vo. 21s. cloth; or 36 s . bound in moroceo.

Thomson (the Rev. Dr.) - An Outline of the neeessary Lars of Thought: A Treatise on Pure and Applied Logic. By Winliayr Thomson, D.D., Provost of Queen's College, Oxford. Fourth Edition, earefully revised. Fep. 8ro. priee 7s. 6d.

Thomson's Tables of Interest, at Three, Four, Four-and-a-Half, and Fire per Cent., from One Pound to Ten Thousand, and from 1 to 365 Days, in a regular progression of single Days; with Interest at all the above Rates, from One to Twelve Months, and from One to Ten Years. Also, numerous other Tables of Exchanges, Time, and Discounts. New Edition. 12 mo . price 8 s .

Thornbury.-Shakspeare's England ; or, Sketches of Social History during the Reign of Elizabeth. By G. W. Thornburix, Author of IIistory of the Buccaneers, \&e. 2 vols. erown 8ro. 21s.
"A work which stands unrivalled for the variety and entertaining character of its contents, and which well deserves a place on the library-shelf, by the side either of the historians of England or the prince of dramatists."

Johi bule.
The Thumb Bible; or, Verbum Sempiternum. By J. Tirlor. Being an Epitome of the Old and New Testaments in English Verse. Reprinted from the Edition of 1693 ; bound and elasped. 64 mo . 1s. 6 d .

Bishop Tomline's Introduction to the Study of the Bible: Containing Proofs of the Authentieity and Inspiration of the Seriptures; a Summary of the History of the Jews; an Account of the Jewish Seets; and a brief Statement of Contents of sereral Books of the Old Testament. New Edition. Fep. 8vo. 5s. 6d.

Tooke.-History of Prices, and of the State of the Circulation, during the Nine Years from 1848 to 1856 inclusite. Forming Vols. T. and YI. of Tooke's IFistory of Prices from 1792 to the Present Time; and comprising a eopions Index to the whole of the Six Tolumes. By Thomas Tooke, F.R.S. and Wilciam Newararcif. 2 vols. 8vo. priee 52s. 6 d .

Townsend.-Modern State Trials revised and illustrated with Essays and Notes. By W. C. Townsemd, Esq., M.A., Q.C. 2 rols. 8 ro . price 30 s .

COMPLETION

OF
 THE TRAVELLER'S LIBRARY.

Summary of the Contents of the TRAVELLER'S LIBRARY, now complete in 102 Parts, price One Shilling each, or in 50 Volumes, price $2 s .6 \mathrm{~d}$. each in cloth.To be had also, in complete Sets only, at Five Guineas per Set, bound in cloth, lettered, in 25 Volumes, classified as follows:-

VOYAGES AND TRAVELS.

IN EUROPE.
A CONTINENTAL TOUR by J. BARROW. ARCTIC YOYAGES AND …….. BY Fr. MAYNE. IDNCOVERIES \% HOC BIBLE BY BX I. HOPE. BRITTAYY AND THE CHASEby I. HOPE. COISICA BY F. GREGOROVIUS. GERMANY, ETC. NOTES OF $\}$.... BY S. LAING. A TRAVELLER\}.... BY BY P. MILES.
 TORLWAY' RGYBLES IN BY 'T. FORESTER
 RUSBA MND TUREEY .. BY J. R. A'CULIAOCH.
 THE RUSSIANS OF THE SOUTH, BY S. MROOKS. SWISS MEN AND SWISS $\}$ DY R. FERGUSON MoUNTANS AOCEVT OF......BY J. AULDJO. SKETCHES OF NATURE $\}$ BY F. YON TSCIIUDI. IN THE AHPS TOOUOOB THE
VISTT TO THE VAUDOIS $\}$...... BY E. BAINES.

IN ASIA.
CHINA AND THIBET........Bx THE ABBE HUC. SYRIA AND PALESTINE............."EŌTHEN." THE PHILIPPINE ISLANDS, by P. GIRONIERE.

IN AFRICA.

AFRICAN WANDERLNGS........ BY M. WFRNE. MOROCCO BX X. DURRIEU. NIGER EXPLORATION....BYT.J. HUTCHINSON. THE ZULUS OF NATAL........ by G. H. MASON.

IN AMERICA.

BRAZIL BX E. WILBERFORCE CANADA......................... BY A. M. .JAMbNON CUBA …................ BX W. II. HURLIBUT NORTH ANERICAN WILDS BYC. LANAAN.

IN AUSTRALIA.

AUSTRALIAN COLONIES BY W. HUGIIES.

ROUND THE WORLD.

A LADY'S VOYAGE...........BY IDA PFEIFFER.

HISTORY AND BIOGRAPHY.

VEMOIR OF THE DUKE OF WELLINGTON TIE LIFE OF MARSHAL $\}$ by Tmis REV. T. O. TURENNE................ COCFAYNE. SCHAMYL Bx BODENSTEDTAND VAGNER FEIRDNAND I. AND MAXIMI- $\}$ BY RANLE
 THOMAS HOLCRONT'S MEIIOIRS

CHESTERFIELD \& SELWYN, BY A. HAYWARD. SWIFT ANI RICIARDSON, BY LORD JEFFREY. DEFOL AND CHURCHILL, BY J. FORSTER. ANECDOTES OF DR. JOHNSON, BY MRS. PloZZI. TURKEY AND CHRISTENDOM.
LEIPSIC CAMPAIGN, bY the RFV. G. R. GLEIG. AN ESSAY ON THE LIFE AND? BY HENRI
GENIUS OF THOMAS FULLER $\}$ IOGERS.

ESSAYS BY LORD MACAULAY.

WAPRFN HASTKNGS.
ORD CLIVF
VILLIAM PITT
THF FARL OF CIIATIIAM
RANKE'S IHSTORY OF THE POPES.
(iLAINTONE ON CHURCII ANI) STATE

IIORAC'F W AII I OLE。
LOTR BACON.

LORD BYRON.
COMIC DRAMATISTS OF THE RESTORATION. FRFDERIC THF GREAT.
HALIAM'S CONSTITUTIONAL HISTORY
CROFFR'S EDITION OF BOSWELL'S LIFE OF JOIINSON.

LORD MACAULAY'S SIEECHES ON PARLIAMENTARY REFORM.

WORKS OF FICTION.

TIIE LOVE STORY, FROM SOUTHEY'S DOCTOR. SIR ROGEIR DE COVERLEY....\} FROM THE MEAOIRS OF A MAITRE-D'ARMES, HE DUAAS. CONFESSIONS OF A \}BY E. SOUVESTRE.

AN ATTIC PIILOSO-BY E. SOUVESTRE PHER IN PARIS iivaRD'S NARRATIVE OI SIR EDWARD NR HIS SHIPVRECK.

NATURAL HISTORY, \&c.

siATURAI HISTORY OF $\}$ BI DR. I. KEAP. INIICATIONSOOF INSTINCT, BY DR. I. KEMP.

FITHCTRIC TELEGRAPH, \&c. BT DR. G. WILSON. OUR COAL-FIFIDS AN1) OUR COAL-PITS. COINNALL, ITS MINES, MINERS, \&C.

MISCELLANEOUS WORKS.

LECTURES AND ADDRESSES $\left\{\begin{array}{l}\text { BI TITF FARI OF }\end{array}\right.$ SELECTIONS FROM SYINEY SMITH'S

WIRITIN(is. PRIXTING

RAILWAY MORALS AND $\}$ RAILWAY POLICY BY II. SPENCER. RAILWAY POLICY ...ß̈OV. W. J. CONYREARE. LONDON BI J. K. M'CULLOCH.

The Traveller's Library being now complete, the Publishers eall attention to this colleetion as well adapted for Travellers and Emigrants, for School-room Libraries, the Libreries of Mechanics' Institutions, Young Men's Libraries, the Libraries of ships, and similar purposes. The separatc volumes are suited for School Prizes, Presents to Young People, and for general instruction and entertainment. The Series comprises fourteen of the most popular of Lord Macaulay's Essays, and lis Specches on Parliamentary Reform. The department of Travels contains some account of eight of the principal countries of Europe, as well as travels in four districts of Africa, in four of America, and in thrce of Asia. Madame Pieiffer's First Journcy rouml the World is included; and a general account of the Australian Colonies. In Biography and History will be found I.ord Macanlay's Biographical Sketches of \#"arren IIastings, Clive, Pitt, Walpole, Bacon, and others; besides Memoirs of Tellington, Turenne, F. Arago, \&c.; an Essay on the Life and Genius of Thomas Fuller, with Selections from lis Writings, loy Mr. Henry Rogers; and a history of the Lcipsic Campaign, by Mr. Gleig, - which is the only separate account of this remarkable campaign. Works of Fiction did not come within the plan of the Triveller's Library; but the Confessions of a TorFing Man, by Sourestre, which is indeed a fiction founded on fact, has been included, and has been read with mousunl interest by many of the working classes, for whose use it is especially recommended. Jumas's story of the Matre-d'Armes, though in form a work of fiction, crives a striking picture of an episode in the history of Wussia. Amongst the works on Science and Natural Philosophy, a qeneral view of Creation is embodied in Dr. Kemp's Natural IIistory of Crection; and in his Indications of Instinct remarkable facts in natural history are collected. Dr: Wilson has contributed a popular account of the Electric Telcgraph. In the rolumes on the CoalFiclds, and on the Tin and other Mining Districts of Cormoall, is given an account of the mineral wealth of England, the habits and mamers of the miners, and the scenery of the surrounding country. It only remains to add, that among the Nl iscellaneous Works are a Sclection of the hest Writings of the Rev. Sydney Smith; Lorll Carlisle's Lectures and Allitresses; an account of Mormonism, by the Kev. W. J. Conybcare; an exposition of Railuay management and mismanagement, by Mr. Herbert Spencer ; an account of the Origin and Practice of Printing, by Mr. Stark; and an account of London, by Mr. M'Culloch.
"If we were ealled upon to
atie emuntries, and exampies
ay the first stone of al Melay the first stone of a Meclanics' lustitute or BookSociety's C' llertion, it sloouli be composed of the hundred and two parts of the Traveller"s Jibrary. It is the hest Shilling series extant. Here are Mr. Macanlay's best writings, the anthologia of Syduev sinith, some adof ssduev sinitl, some ad-
mirable literary essays by different anthove, several excellent volumes of science, narratives of travel in eight Enropean, four Ameriean, four Afriean, and three Asifrom the works of Sonvestre and Dunas. Bonnd together,
they form twents-five eonvenifent rolumes inic eonsociety of a hundred aud five members may possess, upon maymentof one shillingerel. An association of this lind, tomed in every small town, would thas ereate sufticient basis for a free library upon a modest scale. Good books are not herond the rearlo of working men, if working men will combine to obtain them." LEADER.
EFC' The Traveller's Library may also be had as originally issued in 102 parts, 1s. caeh, forming 50 vols. 2 s .6 d . each; or any separate parts or volumes.

Trollope. - Barchester Towers. By Anthony Trollope. 3 rols. post Sro. price 31 s .6 d .
"Barchester Towers (a and the sense and rirht kind of sequelincontinnation feeling with which the way of M1. 'Trollope's fonmer is threaded among questions novel the Wrevien) does rot depend only on story for its interest; the careful writing, the goorl humour with a tendency often to be Whandean in its expression, of ligh elured and low chureln, are rery noticeable, and sceure for it unguestionable rank amoner the fow really well-written tales that every season produces."

Exdminer.
Trollope.-The Warden. By Anthony Trollope. Post 8vo. 10s. 6d.

Sliaron Turner's Sacred History of the World, attempted to be Philosophically considered, in a Series of Letters to a Son. New Edition, edited by the Rev. S. Turner. 3 vols. post 8 ro. price $31 \mathrm{~s}, 6 \mathrm{~d}$.

Sharon Turner's History of England during the Middle Ages: Comprising the Reigns from the Norman Conquest to the Accession of Henry VIII. Fifth Edition, revised by the Rev. S. Turner. 4 vols. 8\%о. price 50s.

Sharon Turner's History of the AngloSaxons, from the Earliest Period to the Norman Conquest. Seventh Edition, revised by the Rei. S. Turnek. 3 vols. Sfo. 36 s .

Dr. Turton's Nanual of the Land and

 Fresh-Water Shells of Great Britain. Nerv Edition, thoroughly revised and brought up to the Present Time. Edited by Dr. J. E. Gray, F.R.S., \&e., Kceper of the Zoologieal Department in the British Museum. Crown Sro. with Coloured Plates. [In the press.Dr. Ure's Dictionary of Arts, Manufactures, and Mines: Containing a elear Exposition of their Prineiples and Praetiee. Fourth Edition, mueh enlarged ; most of the Artieles being entirely re-written, and many new Articles added. With nearly 1,600 Woodeuts. 2 vols. 8 ro. priee 60 s.

Van Der Hoeven's Handbook of Zoology.
Translated from the Seeond Duteh Edition by the Rev. Wilitan Clart, m.D., F.R.S., \&e., late Fellow of Trinity College, and Professor of Anatomy in the University of Cambridge, with additional Referenees furnished by the Author. In Two Volumes. Vol. I. Invertecrate Animals; with 15 Plates, comprising numerons Figures. 8ro. 30s.

Vehse.-Memoirs of the Court, Aristoeracy, and Diplomaey of Austria. By Dr.E. Verisb. Translated from the German by Fraiz Demmler. 2 vols, post 8so. 21 s.

Von Tempsky. - Mitla: A Narrative of Incidents and Personal Adventures on a Journey in Mexico and Guatemala in the Years 1853 and 1854: With Obscrvations on the Modes of Life in those Countries. By G. F. Von Tempsiy. Edited by J. S. Beil, Author of Journal of a Residence in Circassia in the Years 1836 to 1839. With Illustrations in Chromolithography and Engravings on Wood. Sro.
[In the press.
Wade. - England's Greatness: Its Rise and Progress in Government, Laws, Religion, and Social Life; Agriculture, Commerce, and Manufactures ; Seience, Literature, and the Arts, from the Earliest Period to the Peace of Paris. By Join Wade, Author of the Cabinet Lawyer, \&e. Post 8vo. 10s. 6 d .
Waterton.-Essays on Natural History, chiefly Ornithology. By C. Waterton, Esq. With an Autobiography of the Author, and Views of Walton Hall. New and cheaper Edition. 2 vols. fep. 8 vo. priee 10s.
Waterton's Essays on Natural Hist.ory. Third Scries; with a Continuation of the Autobiography, and a Portrait of the Author. Fep. 8ro. price 6s.

Webster and Parkes's Encyclopædia of Domestic Economy; comprising such subjects as are most immediately connceted with Housckeeping: As, The Construction of Domestic Edifices, with the Modes of Warming, Ventilating, and Lighting them $-\Lambda$ description of the various articles of Furniture, with the nature of their Materials-Duties of Serrants-\&c. New Edition; with nearly 1,000 Woodcuts. 8ro. price 50s.
Weld. - Vacations in Ireland. By Charles Richard Weld, Barrister-atLaw. Post 8ro. with a tinted View of Birr Castlc, price 10s. 6d.

Weld. - A Vacation Tour in the United States and Canada. By C. R. Werd, Barrister-atLaw. Post 8 vo . with Map, 10s. 6d.
West. - Lectures on the Diseases "of Infancy and Childhood. By Crarles West, M.D., Physician to the Hospital for Siek Children; Physician-Aecoucheur to, and Lecturer on Midwifery at, St. Bartholomen's Hospital. Third Edition. 8ro. 14s.
Willich's Popular Tables for ascertaining the Yalue of Lifehotd, Leaschotl, and Church Property, Rencwal Fines, \&c. With numerous additional Tables-Chemical, Astronomical, Trigonometrical, Common and Myperbolie Logarithuns; Constants, Squares, Cubes, Roots, Reciprocals, \&c. Fourth Edition, enlarged. Post 8ro. price 10:.

Whitelocke's Journal of the English Embassy to the Court of Sweden in the Years 1653 and 1654. A New Edition, revised by Menry Reeve, Esq., F.S.A. 2 rols. 8 vo. 24s.
Wilmot's Abridgment of Blackstone's Commentaries on the Laws of England, intended for the use of Young Persons, and comprised in a series of Letters from a Father to his Daughter. 12 mo . price 6s. 6d.

Wilson (W.)-Bryologia Britannica: Containing the Mosscs of Great Britain and Ireland systematically arranged and described according to the Method of Bruch and Schimper; with 61 illustrative Platcs. Being a New Edition, enlarged and altered, of the Mfuscologia Britannica of Messrs. Hooker and Taylor. By Willian Wirson, President of the Warrington Natural History Society. 8vo. 42s.; or, with the Plates coloured, price £4. 2 4s. cloth.
Yonge.-A New English-Greek Lexicon : Containing all the Greek Words used by Writers of good authority. By C. D. Yonge, B.A. Second Edition, revised and corrected. Post 4to. price 31s.

Yonge's New Latin Gradus: Containing Every Word used by the Poets of good authority. For the use of Jiton, Westminster, Winehester, Harrow, Charterhouse, and Rugby Schools; King's College, London; and Marlborough College. Fifth Edition. Post 8ro. price 9s.; or with Aprendix of Epithets classified according to their Enylish Meaning, 12s.
Youatt. - The Horse. By William Youatt. With a Treatise of Draught. New Edition, with numerous Wood Engravings, from Designs by William Marvey. (Messrs. Loveman and Co.'s Edition should be ordered.) 8vo. price 10s.
Youatt. - The Dog. By William Youatt. A New Edition; with numerous Engravings, from Designs by W. Harvey. 8vo. 6s.
Young. - The Christ of History: An Argument grounded in the Facts of His Life on Earth. By Join Young, LL.D. Second Edition. Post 8ro. 7s. 6d.
Young.-The Mystery; or, Evil and God. By Johin Young, LL.D. Post 8vo. 7s. 6d.
Zumpt's Grammar of the Latin Lan. guage. Translated and adapted for the use of English Students by Dr. L. Scimititz, F.R.S.E.: With numerous Additions and Corrections by the Author and Translator. 4.th Edition, thoroughly rerised. 8vo. 14s.
[October 18507.

domENECHTG MISEIONAKY TRAVELS IN EESITARL AMERIEN.

Pith le ten libeta 11
tey tho ation fioshiviveH. 18

Qriston= OF TBF PNESS.

[^0]: \% Literally, umamed bones; but answering to the other English appellations.

[^1]: - Stubbs has made this the Pisiform Bone; whilst the bone here called the Pisiform is his trapezium. Desirous as I am to observe an adherence to the nomenclature of human anatomy, in the present instance the incongruity appeared to be such as to warrant the hazard of a transposition of names. The bone which really is of the form and even magnitude of a pea, I bave called pisiform: whilst to Stubbs' pisiform, a broad, flat, quadrilateral bone, I have given the name of Tropezium. Giramd, the French standard anatomist, calls the small round bone "pisiforme."

[^2]: * Sainbel calls it "The Articuiar Bone."-Girard considers it as a sesamoid lone.-Our old farricrs, in their profound ignorance, hare mistaken it for a production of disease, and deseribed it as "the quittor hone."

[^3]: * It camot be demonstated without sawing through the bony arehes.

[^4]: * These well-understood and fimiliar appellations are preserved in preference to, the ardoption of those of a new nomenclature, viz., scapulo-humeral, humero hicuchial, \&e., articulations.

[^5]: * This computation does not include the Museles of the Tuternal Ear.
 \dagger Stubles considers the tendinous expansion of this musele as distinct, under the uane of "Epieranius."

[^6]: * Supposing a man to weigh 12 st., or 168 lb ., the quantity of blood contained in his body may be rated at 21 lb . or 2 gall. 2 qrits. and 1 pint. Again, granting that a dog weighs 40 lb ., the amount of his blood will be 5 pints. These calculations are useful and worth our attention, inasmuch as they serve to guide us in practice, as to the probable extent to which we may, with safety, earry venescetion in different animals. For instance, we may reckon the loss of a pint from a man to be equivalent to that of a gallon from a horse, or to four ounces from a dog, and vice vers \vec{a}; selecting individuals from each class about the respective weights we have here set down.

[^7]: * Professor Coleman, 'On the Foot of the Horse,' rol. ii.

[^8]: * The vena saphena major will prove a safe guide for the knife; and the artery will be found most aceessible at the place where that vessel ceases to be visible under the skin, or, in other words, ceases to be subeutaneous.

[^9]: * The English veterinary professors reekon eight pulmonary veins; the French, but four. The disagreement arises from the former reckoning being made at the issuc of the reins out of the substance of the lungs, and the latter being taken from their termination in the cavity of the left auriele.

[^10]: * Now and then we find, at the upper part of the tube, two or three or more of these rings accreted together; it gives rise to some prominence thereabouts generally, and may often be detected by taction in the living animal.

[^11]: * In this opinion I find I am at variance with Girard. The French professor ascribes to it the power of contracting the caliber of the trachea. "Cette couche, bien cvidemment musculcuse, pout retrecir le calibre de la trachée eu rapportant les extremités des segmens." 'Anat. Vet., p. 146 et 147, tom.ii.

[^12]: * I consider, in comparison with the hody, that they exceed in magnitude those of the human subject.

[^13]: * If the substance of the lungs be lacerated or rent asunder, the surface will be found to present a lobulated aspect. Introduce a blow-pipe into one of these lobuli, and all the other lobules-the cutire lung-may be inflated from this one; showing the free communication existing between them. The same may be effeeted by injecting. quicksilver. You may do the same with the interstitial substance: but in this case you do not fill the lobules. In fine, the lungs with their colls rescmble a sponge; only that the comnceting tissue has 130 communication with the sponge.

[^14]: * Some say, " upoin the external surfaces."

[^15]: * The facial angle is the point at which one line drawn parallel with the exterior of the frontal bone is intersected by another extended parallel with the lower border of the inferior maxilla.

[^16]: * Vide "Anterior Maxillary Region," p. 89.

[^17]: * To expose this duct, at or near its issuc from the gland, an ineision should be carried along the posterior border of the branch of the lower jaw : first, dividing the skin; sceondly, the pamiculus; thirdly, the cellular tissue immediatcly eovering the duet, which is readily distinguished by its glistening pellucid aspect. By extending the ineision around the angle of the jaw, directing it towards the immer edge of the bonc, the duct will be found making its first turn : here, however, it is lodged in a hollow, deeply buried in cellular tissue.

[^18]: * In a case of ocdema of the eoats of the stomach, I foumd the muscular coat in a state particularly farorable for demonstration. I could not delect any longitudinal fibres but at the curcatures; and they were most distinguishable around and in the vicinity of the great curvature. The circular fibres werc everywhere very strong and demonstrable-their fasciculi were planly shown, in consequence of beprg scparated and elcrated from the internal tumic by the serous fluid with which the comnecting cellular substance had become infiltrated. They were, many of them, nearly as large as crow-quills, and put on a very pale ash-coloured line.

[^19]: * Some persons say that the follicles upon the internal enat are for the purpose of secreting mucus; others, that they prepare the gastric fluid. Every

[^20]: canals, I have taken as the data of my calculation. Whatever objections they may be liable to, we may at least draw this conclusion from them, -that the intestines of a horse exceed in proportionate length those of a man.

[^21]: * Duodenum. From duodenus, consisting of twelve; so ealled because it was not supposed to exceed the breadlh of twelve fingers: but as the ancients dissected only animals, this does not hold good in the human subjeet. Hooper's Lexicon Medicum.

[^22]: * Abemethy's Tecetures, in the 'Tancet.'

[^23]: * Notwithstanding this valve, blood often gains admittance into the canal: this is observable in all cases of violent death, or in which struggies and convulsions attend expiration.

[^24]: * Vide 'Reflection of Peritoneum,' p. 249.

[^25]: * In a communication I have been favoured with from Mr. Brettargh (which I have inserted in the sceond volume of Tue Veterinarian), is contained the following information on this subject:- "Colts are foaled with their testicles in the serotum, which remain there (in ordinary eases) until the fifth or sixth month, when they are taken up between the internal and external abdominal rings, and there remain until the eleventh, twelfth, or thirteenth month, all depending upon the degree of keep, as in some that are well fed the testicles can at all times be found in the serotum. Were the testicles drawn up into the abdomen, they would be too large to pass through the intermal abdominal ring at the time they are wauted to prepare for secretion; which is oceasionally the case, and at once accounts for our meeting with horses that are said to liave but one stonc. I have seen one instance where both were wantiug in the scrotum at four jears old."

[^26]: * "The brain of the shark docs not weigh 3 ounees, although the animal itself is generally 300 lbs . in weight. The brain of the sheep, with respect to the whole weight of the body, bears the proportion of 1 to 150 . In a dog the proportion is less: it is as 1 to 100 . As we aseend in the greneral scale of rational beings, the magnitude of the brain bears an increased and strongly marked proportion to the size of the system in general. In the African, it is as 1 to 54. In an European, as 1 to the 50 th part of the system alto-gether."-Saumarez's 'System of Physiology.'

[^27]: * The cortical matter, however, camnot be all pared away-it will intrude in places, and interrupt the uniformity of the surface: indeed, the horse's brain will less admit of being carved into such an aspect, in consequence of the proportionably greater quantity of corical substance in its composition.

[^28]: * "The seat of pozeer which controls the vespiratory motions is the medulla oblongata."-" He who holds the medulla oblongata in his hand, has the key to the nervous system."-C. Bell, F.R.S.
 \dagger "In animals which do not breathe by an uniform and gencral motion of their bodies, there is no spinal marrow, but ouly a loug compound and ganglionic nerve, extending through the body for the purpose of sensation and motion. This chord in those creatures docs not actuate the animal machine with alternate dilatation and contraction." -'The Nervous System;' by Charles Bell, F.R.S.

[^29]: * "In the view which I have taken of the nerves of the (human) body, there are, besides the nerves of vision, smell, and hearing, four systems combined into a whole. Nerves entirely different in function extend through the frame: 1st, those of sensation; 2dly, those of voluntary motion; 3dly, those of respiratory motion; and, lastly, nerves constituting the sympathetic system, which from their being deficient in qualities that distinguish the three others, seem to unitc the body into a whole, in the performance of the functions of nutrition, growth, and decay, and whatever is directly necessary to animal cxistence. Of these, the first two are bound together through their whole course; the third are partially joined to the two former; and the last are the most irregular of all."-Such is a coup de wil of the new arrangement of the nerrous system introduced by Sir Charles Bell.

[^30]: * 'The Nervous System.' By C. Bell, F.R.S.
 \dagger There is no suel thing as irregularity in the nervous system. The term may be applicable to arteries or veins, because it signifies not whether a part be supplied with this or with that branch, so that arterial blood is furnished. But, one nerve eannot supply the offiee of anothc:". ('I'he property dispended resulting from the source from which the nerve is derived.) There is no such thing as a nerve deviating or being found wanting (an occurrence frequent in the vascular system) without the loss of some essential faculty.-C. Bell, F.R.S.

[^31]: * Wherever we trace nerves of motion, we find that before cntering the museles, they interchange branehes, and form an intrieate mass of nerves, or what is termed a plexus. The filaments of nerves which go to the skin, regularly diverge to their destination.-‘ Nervous System.' By C. Bell, F.R.S.
 \dagger And yet the granulations of these parts possess sensibility of which I have had very marked evidence, in the case of broken-knce. The horse has never failed to suateh up the leg, every time the granulating edges of the extensor tendon were touched with the probe.

[^32]: * This system of nerves appear to be for the purpose of "uniting the body into a whole, in the performanec of the functions of nutrition, growth, and decay, and whatever is directly necessary to animal existence." "They have nothing to do with volition, sensation, respiration, expression, sound, or speech."-Bell's 'Nervous Syslem.'
 \dagger I am by 110 means satisfied, however, about the origin of these threads of nerves, which are so fine that I have not hitherto been able to follow them distinctly through the dura mater, whose fibres so much resemble the nerves themselves, Of the two branches (said to come from the fifth pair), Girard traces the larger one to a ganglion under the occiput, opposite to the origin of the Dustachian tube, which he calls the sul-occipital yonglion; the other, he says, joins a little gangrion in the cavernous simus. From the sub-occipital ganglion, he traces two or three filaments onward to the fifth pair, at their origin; and one or two, much larger, he finds, which secm, he adds, to be destined to the medulla oblongata. Vide. Girard's 'Anat. 'ién.' edit. ii, tom. ii, p. 429.

[^33]: *** I take this opportunity of acknowledging the scrvices afforded me in the dissection of the nerves by Mr. Bean, V.S, who, I belicve, is in practice at Durlam. Unwearied assiduity and unusual zeal had qualified lim in en especial mamner for such an undertaking; and I hope that he is now enjoying that support which his professional acquirements will always render him descrving of.

[^34]: * No animals have cycbrows. In the human species it is an organ of expression; well known as such to painters, who by a little arrangement in the eycbrow can make great alteration in the expression of the comntenanee, which same alteration they cannot produce by the variation of any other feature.-Abemethy's Iectures.

[^35]: * The caruncle is a little bit of fat rising up to fill an apparent vacancy. It was thought to be an organ of secretion; but we have now reason to believe it is merely mechanical-merely placed there to prevent the tears from going beyond the puncta. In some animals-I allude to the horseit is covered by cutiele, and therefore it camot be a secretory organ.Abeinethy's ' lectures.'

[^36]: * In general form and cxternal appearance the horse's ear bears no sort of comparison with the car of a man. The external ear of the latter, altogether, has got the appellation of pima; and on examining the surface of a wellformed human ear, we perecive five eminences, the helix, antikelix, tragns, anti-

[^37]: * In the foctus a thick whitish substance is scercted by these glands, which answers the purpose of defending the parts against any acrimony in the liquor amnii. After birth, this secretion is discharged along with the subsequent issue of waxy matter.
 + In the foetus, the membrana tympani (and, indecd, the tympanum altogether) is very superficially placed; for that which forms the osseous part, of the meatus externus in the adult is a more bony ring at this period, across which the membrane is extended. This is beautifully illustrated in the cranimm of a foetal puppy now before the writer.

[^38]: * This cavity is provided with a watery (in place of an acriform) fluid, for three sufficient reasons. In the first place, water adds to the intensity of a vibration in a very much greater degree than air. Formerly it was imagined that sound could not be conducted through so dense a medium as water; but the Λ bbe Nollet overturned this hypothesis by direct and simple experiment. Every schoolboy knows that two stones struck together under water emit a sound, so far greater than the one created in air, as to be in a degree imsupportable to the hearer. Consequently, by the water in the labyrinth the inpression made upon the auditory nerve is so much the more intense.

 A scennd reason why the labyrinth should contain water (and not air), is, that sound is so much more quickly propagated by one medimm than the other. Through air it vibrates at the rate of 1132 feet in a second; through water, at the rate of 4000 feet in that time. Thus the auditory impression is more suddenly and perfectly disseminated over a cavity filled with water than it would be through ono that eontained air.

 A third reason for placing water here, ennsists in its not being nearly so expansible a fluid as air, and consequently not. subject 10 that rarefaction and mercase of volume that air is; and which might, be attended with scrious consequenees in a eavity so confined as the labyrinth is.

[^39]: * I was for some time at a loss for an appropriate title for this system of parts. The one I have adopted (synenymous with the epithets "investing," "enveloping," "covering" is the most expressive-of any one I could select -of the general plyssiological character of the contained parts.

[^40]: * 'Anatomic Générale,' tom. ir, p. 469.

[^41]: * 'Anatomic Généralc,' tom. iv, p. 496.
 \dagger A singular variety in the production of mane presents itself in a bay gelding, belonging to the Artillery. Out of the buck, posterior to the part covered by the saddle, is growing, for the space of thlice inches, a row of horse-hairs, preciscly similar in colour and quality to the mane (to wit, black), severa! of which exeech four inches in length.

[^42]: * Mr. Sewell, in the course of his visit to the continental Veterinary Schools, met with, at that of Berlin, a preparation of "the stuffed skin of an African horse, which had not the slightest "ppearance of a simgle hair upon it." "It is of a dun colour, and is no doubt a particular genus," he adds.-In consequence of the skin being in a dried state, I suspect that the down upon it had become imperceptible; for I apprehend that the surface of it was not perfectly buse during life.-Mr. Sexell's 'Report.'

[^43]: * A stonc is 8 lb .
 \dagger Horscman's weight, 111 lb. to the stone.

[^44]: * For further elucidation on the cylindrical form of the foot, consult Mr . Bracy Clark's works on the Foot of the Horse.

[^45]: * In fact, the cushion of the frog appears to be nothing more than a bulge of the part produced by the superincumbent pressure of the navicular bone.

[^46]: * The Eclipse hoof, presented by his Majesty at Λ seot Races, as the reward of the best horse on the turf, forms a notable illustration of this.

[^47]: * Aversc as I am to changing or altcring names, nothing less than a palpable contradietion, in regard both to structure and function, would have induced me to do so in the present instance.

[^48]: "Central America is not an invitins phace for the now swinselnowd andtinsel; lounting traveller. The in a filthy hovel; ammoreroats ine had; there are no inlls: fool is scarce; the prople are dishonest ; scommdrels swam? neither life nor prolerrty is sate. Dr. Scherzer travelled with gruides of dombtful fidelity, was forced to keep his hatd on his sim and revolver, smmetimes compelled to eert a few black beans or starve; now eropinsat nitht thronerh a forcst, now escorted by burefooted soldiers with helnow swinging in a hammock in a filthy hovel; annoll re-
 ceiving the lresitent of a stare by the lieght of a candle stucti in a botile. Altogether haviner a hard and hazardous life of it. But he does not complain. A checrier and braver traveller seldom las matde his w:y in outhandish tracks far beyond the limits of the civilised world. The Central Ancricm ques. fion will prohabls endow Dr. scherzer's book with au additional attraction?"

 Globe.

